Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (09): 1343-1352.doi: 10.3724/SP.J.1006.2015.01343

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and Functional Analysis of Glycine soja Bicarbonate Stress Responsive Gene GsMIPS2

CHEN Chen1, SUN Xiao-Li2, LIU Ai-Lin1, DUAN-MU Hui-Zi1, YU Yang1, XIAO Jia-Lei1, ZHU Yan-Ming1, *   

  1. 1 College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; 2 College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
  • Received:2015-01-20 Online:2015-09-12 Published:2015-09-12

Abstract: To identify the key functional genes in response to bicarbonate stress in Glycine soja L. G07256, we constructed a gene expression profile under bicarbonate treatment using high throughput RNA-seq data, from which we selected a myo-inositol- 1-phosphate synthase gene whose expression was significantly induced by bicarbonate stress. By homology-based cloning, we acquired its full length cDNA and termed as GsMIPS2. The results of quantitative real-time PCR demonstrated the bicarbonate stress induced expression of GsMIPS2 and its tissue expression specificity. We also verified the function of GsMIPS2 in bicarbonate responses by using the GsMIPS2 transgenic Arabidopsis combined with the T-DNA insertion line atmips2. We revealed that the germination rate of GsMIPS2 overexpression lines was significantly higher, while that of atmips2 mutant line was much lower than that of wild type under bicarbonate stress. These results indicate the positive role of GsMIPS2 in plant bicarbonate stress responses.

Key words: Glycine soja, GsMIPS2, Myo-inositol-1-phosphate synthase, Bicarbonate stress

[1] Kawanabe S, Zhu T C. Degeneration and conservation of Aneurolepisium chinense grassland in northern China. J Jpn Grassl Sci , 1991, 37: 91-99
[2] 李彬, 王志春, 孙志高, 陈渊, 杨福. 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 2005, 23(2): 154-158 Li B, Wang Z C, Sun Z G, Chen Y, Yang F. Resources and sustainable resource exploitation of salinized land in China. Agric Res Arid Areas , 2005, 23(2): 154-158 (in Chinese with English abstract)
[3] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol , 2009, 149: 88-95
[4] 李向华, 王克晶, 李福山, 严茂粉. 野生大豆( Glycine soja )研究现状与建议. 大豆科学, 2005, 24: 305-309 Li X H, Wang K J, Li F S, Yan M F. Research progress of wild soybean ( Glycine soja ) and suggestions for improving its effective utilization and protection. Soybean Sci , 2005, 24: 305-309 (in Chinese with English abstract)
[5] Loewusa F A, Murthy P P N. Myo -inositol metabolism in plants. Plant Sci , 2000, 150: 1-19
[6] Nelson D E, Rammesmayer G, Bohnert H J. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance. Plant Cell , 1998, 10: 753-764
[7] Das-Chatterjee A, Goswami L, Maitra S, Dastidar K G, Ray S, Majumde A L. Introgression of a novel salt-tolerant L- myo - inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka ( PcINO1 ) confers salt tolerance to evolutionary diverse organisms. FEBS Lett , 2006, 580: 3980-3988
[8] Patra B, Ray S, Richter A, Majumder A L. Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo -inositol and methylated inositol. Protoplasma , 2010, 245: 143-152
[9] Kaur H, Verma P, Petla B P, Rao V, Saxena S C, Majee M. Ectopic expression of the ABA-inducible dehydration-responsive chickpea L- myo -inositol 1-phosphate synthase 2 ( CaMIPS2 ) in Arabidopsis enhances tolerance to salinity and dehydration stress. Planta , 2013, 237: 321-335
[10] Joshi R, Ramanarao M V, Baisakh N. Arabidopsis plants constitutively overexpressing a myo -inositol 1-phosphate synthase gene ( SaINO1 ) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem , 2013, 65: 61-66
[11] Hegeman C E, Good L L, Grabau E A. Expression of D- myo -inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiol , 2001, 125: 1941-1948
[12] Kido E A, Ferreira Neto J R, Silva R L, Belarmino L C, Bezerra Neto J P, Soares-Cavalcanti N M, Pandolfi V, Silva M D, Nepomuceno A L, Benko-Iseppon A M. Expression dynamics and genome distribution of osmoprotectants in soybean: identifying important components to face abiotic stress. BMC Bioinform , 2013, 14(suppl) 1: S7
[13] Willems E, Leyns L, Vandesompele J. Standardization of real-time PCR gene expression data from independent biological replicates. Anal Biochem , 2008, 379: 127-129
[14] Nour-Eldin H H, Hansen B G, Norholm M H, Jensen J K, Halkier B A. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucl Acids Res , 2006, 34: e122
[15] Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana . Plant J , 1998, 16:735-743
[16] Lu B B, Du Z, Ding R X, Zhang L, Yu X J, Liu C H, Chen W S. Cloning and characterization of a differentially expressed phenylalanine ammonialyse gene ( liPAL ) after genome duplication from tetraploid Isatis indigotica fort. J Integr Plant Biol , 2006, 48: 1439-1449
[17] Cui M, Liang D, Wu S, Ma F W, Lei Y S. Isolation and developmental expression analysis of L- myo -inositol-1-phosphate synthase in four Actinidia species. Plant Physiol Biochem , 2013, 73: 351-358
[18] Rao P S, Mishra B, Gupta S R, Rathore A. Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed , 2008, 127: 256-261
[19] Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot , 2005, 54: 8-21
[20] Shi D C, Yin L J. Difference between salt (NaCl) and alkaline (Na 2 CO 3 ) stresses on Puccinellia tenuiflora (Griseb.) Scribn et Merr. plants. Acta Bot Sin , 1993, 3: 144-149
[21] Majee M, Maitra S, Dastidar K G, Pattnaik S, Chatterjee A, Hait N C, Das K P, Majumder A L. A novel salt-tolerant L- myo - inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem , 2004, 279: 28539-28552
[22] Ghosh Dastidar K, Maitra S, Goswami L, Roy D, Das K P, Majumder A L. An insight into the molecular basis of salt tolerance of L- myo -inositol 1-P synthase ( PcINO1 ) from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. Plant Physiol , 2006, 140: 1279-1296
[23] Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H. Global transcriptome profiling of wild soybean ( Glycine soja ) roots under NaHCO 3 treatment. BMC Plant Biol , 2010, 10: 153
[24] Johnson M D, Sussex I M. 1L- myo -inositol 1-phosphate synthase from Arabidopsis thaliana . Plant Physiol , 1995, 107: 613-619
[25] Wongkaew A, Nakasathien S, Srinives P. Isolation and characterization of D- myo -inositol-3-phosphate synthase from mungbean ( Vigna radiata ). Plant Mol Biol Rep , 2009, 28: 122-127
[26] Majumdera A L, Johnsonb M D, Henry S A. 1L- myo -inositol- 1-phosphate synthase. Biochim Biophys Acta , 1997, 1348: 245-256
[27] Zhu D, Li R, Liu X, Sun M, Wu J, Zhang N, Zhu Y. The positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PLoS One , 2014, 9: e111984
[28] Yoshida K T, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S. Temporal and spatial patterns of accumulation of the transcript of myo -inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol , 1999, 119: 65-72
[29] Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Verma P K, Chattopadhyay D. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum . Plant Physiol , 2004, 135: 1608-1620
[30] Raboy V. Myo -inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry , 2003, 64: 1033-1043
[31] Saxena S C, Salvi P, Kaur H, Verma P, Petla B P, Rao V, Kamble N, Majee M. Differentially expressed myo -inositol monophosphatase gene ( CaIMP ) in chickpea ( Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses. J Exp Bot , 2013, 64: 5623-5639
[1] CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049.
[2] ZHU Ping-Hui**,CHEN Ran-Ran**,YU Yang,SONG Xue-Wei,LI Hui-Qing,DU Jian-Ying,LI Qiang,DING Xiao-Dong,ZHU Yan-Ming*. Cloning of Gene GsWRKY15 Related to Alkaline Stress and Alkaline Tolerance of Transgenic Plants [J]. Acta Agron Sin, 2017, 43(09): 1319-1327.
[3] FAN Hu, WEN Zi-Xiang, WANG Chun-E, WANG Fang, XING Guang-Nan, ZHAO Tuan-Jie,GAI Jun-Yi. Association Analysis between Agronomic-Processing Traits and SSR Markers and Genetic Dissection of Specific Accessions in Chinese Wild Soybean Population [J]. Acta Agron Sin, 2013, 39(05): 775-788.
[4] WANG Zhen-Yu,CAI Hua,BAI Xi,JI Wei,LI Yong,WEI Zheng-Wei,ZHU Yan-Ming. Isolation of GsGST19 from Glycine soja and Analysis of Saline-Alkaline Tolerance for Transgenic Medicago sativa [J]. Acta Agron Sin, 2012, 38(06): 971-979.
[5] CAI Hua, ZHU Yan-Meng, LI Yong, BAI Ti, JI Wei, WANG Dong-Dong, SUN Xiao-Li. Isolation and Tolerance Analysis of GsNAC20 Gene Linked to Response to Stress in Glycine soja [J]. Acta Agron Sin, 2011, 37(08): 1351-1359.
[6] XIAO Xin-Hui, LI Xiang-Hua, LIU Xiang, ZHANG Ying, WANG Ke-Jing. Difference of Ion Accumulation in Wild Soybean (Glycine soja) under High Saline-alkali Stress [J]. Acta Agron Sin, 2011, 37(07): 1289-1300.
[7] WANG Xi, LI Yong, ZHU Yan-Ming, BAI Xi, CAI Hua, JI Wei. Cloning and Tolerance Analysis of GsANN Gene Related to Response on Stress in Glycine soja [J]. Acta Agron Sin, 2010, 36(10): 1666-1673.
[8] FAN Jin-Ping;BAI Xi;LI Yong;JI Wei;WANG Xi;CAI Hua;ZHU Yan-Ming. Cloning and Function Analysis of Gene SAMS from Glycine soja [J]. Acta Agron Sin, 2008, 34(09): 1581-1587.
[9] WEN Zi-Xiang;ZHAO Tuan-Jie;ZHENG Yong-Zhan;LIU Shun-Hu;WANG Chun-E;WANG Fang;GAI Jun-Yi. Association Analysis of Agronomic and Quality Traits with SSR Markers in Glycine max and Glycine soja in China: II. Exploration of Elite Alleles [J]. Acta Agron Sin, 2008, 34(08): 1339-1349.
[10] WEN Zi-Xiang;ZHAO Tuan-Jie;ZHENG Yong-Zhan;LIU Shun-Hu;WANG Chun-E;WANG Fang;GAI Jun-Yi. Association Analysis of Agronomic and Quality Traits with SSR Markers in Glycine max and Glycine soja in China: I. Population Structure and Associated Markers [J]. Acta Agron Sin, 2008, 34(07): 1169-1178.
[11] GAI Jun-Yi;XU Dong-He;GAO Zhong;Yoshiya Shimamoto Jun Abe;Hirofumi Fukushi;Shunji Kitajima. Studies on the Evolutionary Relationship among Eco-types of G.max and G.soja in China [J]. Acta Agron Sin, 2000, 26(05): 513-520.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!