Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 1038-1049.doi: 10.3724/SP.J.1006.2019.84114

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions

CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin(),SUN Jun-Ming()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Engineering Laboratory for Crop Molecular Breeding / Key Laboratory of Soybean Biology, the Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2018-08-24 Accepted:2019-01-19 Online:2019-07-12 Published:2019-03-11
  • Contact: Bin LI,Jun-Ming SUN E-mail:libin02@caas.cn;sunjunming@caas.cn
  • Supported by:
    This study was supported by the National of Research and Development Program of China(2016YFD0100201);the Beijing Science and Technology Project(Z16110000916005);the Innovation Project of Chinese Academy of Agricultural Sciences.

Abstract:

In this study, 58 soybean accessions composed of wild, semi-wild and cultivated soybean were used to analyze the oil and fatty acid contents by the NIRs and GC methods. Their genetic diversity and domestication were also analyzed based on 32 pairs of SSR markers. There was a significant difference in oil content and fatty acid compositions between wild and cultivated soybeans. The oil content of cultivated soybean (an average of 20.8%) was significantly higher than that of wild soybean (an average of 10.49%). As regards fatty acid compositions, the content of oleic acid in cultivated soybean (an average of 28.5%) was significantly higher than that of wild soybean (an average of 14.37%), on the contrary, the content of linolenic acid was lower. In cultivated soybean, the oil content positively correlated with oleic acid content (r = 0.85 **), and negatively correlated with other fatty acids. Moreover, the oleic acid content had a negative correlation with all other fatty acids, especially, with linoleic acid (r = -0.90 **) and linolenic acid (r = -0.89 **). Similar clustering results were observed in the clustering and principal component analysis based on oil compositions and SSR molecular markers showing that the soybean accessions were clustered into two main subgroups of wild and cultivated soybean, and semi-wild soybean distributed into both subgroups. Therefore, we suggest that contents of oil and fatty acid compositions are related with the domestication level in soybean, and may be used as a reference index for the evolutionary classification in soybean.

Key words: Glycine soja, Glycine gracilis, Glycine max, oil content, fatty acid components

Table 1

List of 58 soybean accessions used in this study"

编号
Number
材料
Accession
类型
Category
编号
Number
材料
Accession
类型
Category
W1 ZYD2854 野生Wild SW2 ZYD00411 半野生Semi-wild
W2 G. soja N19/2006 野生Wild SW3 ZYD3612 半野生Semi-wild
W3 KT156 野生Wild SW4 ZYD00844 半野生Semi-wild
W4 ZYD00004 野生Wild SW5 ZYD0001 半野生Semi-wild
W5 ZYD2784 野生Wild SW6 ZYD00404 半野生Semi-wild
W6 ZYD1896 野生Wild SW7 F0554 半野生Semi-wild
W7 ZYD3880 野生Wild C1 晋豆39 Jindou 39 栽培Cultivated
W8 ZYD3891 野生Wild C2 中黄13 Zhonghuang 13 栽培Cultivated
W9 ZYD01694 野生Wild C3 黑科56 Heike 56 栽培Cultivated
W10 ZYD3263 野生Wild C4 东大2号 Dongda 2 栽培Cultivated
W11 G. soja N4/2006 野生Wild C5 黑河51 Heihe 51 栽培Cultivated
W12 ZYD4 野生Wild C6 冀豆12 Jidou 12 栽培Cultivated
W13 G. soja N15/2006 野生Wild C7 周豆23 Zhoudou 23 栽培Cultivated
W14 G. soja N16/2006 野生Wild C8 中黄35 Zhonghuang 35 栽培Cultivated
W15 ZYD00412 野生Wild C9 黑河44 Heihe 44 栽培Cultivated
W16 BY019 野生Wild C10 黑河33 Heihe 33 栽培Cultivated
W17 G. soja N8/2006 野生Wild C11 吉蜜豆2号Jimidou 2 栽培Cultivated
W18 G. soja N7/2006 野生Wild C12 吉育204 Jiyu 204 栽培Cultivated
W19 G. soja N6/2006 野生Wild C13 长农16 Changnong 16 栽培Cultivated
W20 ZYD00851 野生Wild C14 哈11-2541 Ha 11-2541 栽培Cultivated
W21 ZYD00410 野生Wild C15 哈12-4891 Ha 12-4891 栽培Cultivated
W22 ZYD00838 野生Wild C16 合丰50 Hefeng 50 栽培Cultivated
W23 ZYD2512 野生Wild C17 徐豆14 Xudou 14 栽培Cultivated
W24 ZYD3767 野生Wild C18 徐豆9 Xudou 9 栽培Cultivated
W25 ZYD2784 野生Wild C19 铁豆29 Tiedou 29 栽培Cultivated
W26 ZYD00033 野生Wild C20 科丰14 Kefeng 14 栽培Cultivated
W27 G. soja N17/2006 野生Wild C21 吉蜜豆3号 Jimidou 3 栽培Cultivated
W28 ZYD00404 野生Wild C22 铁豆40 Tiedou 40 栽培Cultivated
W29 F0011 野生Wild C23 冀黄13 Jihuang 13 栽培Cultivated
SW1 ZYD1834 半野生Semi-wild C24 烟黄3号 Yanhuang 3 栽培Cultivated

Table 2

Analysis of variation for oil and fatty acid compositions in 58 soybean accessions"

脂肪性状
Fatty trait (%)
平均值
Mean
最小值
Min
最大值
Max
变异范围
Range
变异系数
CV (%)
偏度
Skewness
峰度
Kurtosist
差异显著性
P-value
棕榈酸 PA 12.39 9.97 15.99 6.02 9.66 0.52 0.54 < 0.0001
硬脂酸 SA 3.94 2.74 7.92 5.18 19.67 2.43 11.19 < 0.0001
油酸 OA 21.51 11.00 39.62 28.62 38.16 0.38 -1.02 < 0.0001
亚油酸 LA 53.88 39.86 60.51 20.65 8.59 -0.91 0.46 < 0.0001
亚麻酸 LNA 8.28 3.45 15.97 12.52 42.82 0.42 -1.07 < 0.0001
饱和脂肪酸 Saturated 16.33 13.09 22.91 9.82 10.23 1.22 3.41 < 0.0001
不饱和脂肪酸 Unsaturated 83.67 77.09 86.91 9.82 2.00 -1.22 3.41 < 0.0001
脂肪 Oil 15.39 6.97 24.71 17.74 34.64 -0.01 -1.38 < 0.0001

Fig. 1

Frequency distributions of oil compositions among 58 soybean accessions Abbreviations are the same as those given in Table 2."

Fig. 2

ANOVA of oil compositions among wild, semi-wild and cultivated soybean accessions according to the morphological classification W, SW, and C represent wild soybean (Glycine soja), semi-wild soybean (Glycine gracilis), and cultivated soybean (Glycine max), respectively. Bars superscripted by different letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Table 2."

Fig. 3

Pearson’s correlation coefficients between oil and fatty acid contents in 58 soybean accessions * and ** represent the significant level at the 0.05 and 0.01 probability levels, respectively. The larger the circle, the stronger the correlation, the smaller the circle, the weaker. Abbreviations are the same as those given in Table 2."

Fig. 4

Clustering analysis based on the oil compositions in 58 soybean accessions The red branches represent wild soybean, the green branches represent semi-wild soybean, and the blue branches represent cultivated soybean in the clustering results."

Fig. 5

Principal component analysis based on the oil compositions in 58 soybean accessions PC1-PC3 represent the first three principal components based on the oil and five fatty acid contents. The red circles, green triangles, and blue squares represent wild, semi-wild, and cultivated soybean accessions, respectively."

Table 3

Genetic diversity parameters of SSR markers across 58 soybean accessions"

引物
Primer
连锁群
Linkage group
染色体
Chr.
等位基因数目
Allele number
基因多样性
Gene diversity
多态性信息含量
PIC
Satt 236 A1 5 10 0.85 0.83
Satt 300 A1 5 13 0.86 0.85
Satt 390 A2 8 5 0.73 0.69
Satt 409 A2 8 14 0.88 0.86
Satt 197 B1 11 14 0.84 0.83
Satt 556 B2 14 15 0.85 0.83
Satt 281 C2 6 18 0.91 0.90
Satt 286 C2 6 13 0.84 0.82
Satt 307 C2 6 8 0.65 0.62
Satt 184 D1a 1 6 0.63 0.59
Satt 267 D1a 1 10 0.71 0.68
Satt 005 D1b 2 17 0.83 0.82
Satt 157 D1b 2 13 0.85 0.84
Satt 216 D1b 2 16 0.79 0.78
Satt 230 E 15 7 0.62 0.58
Satt 146 F 13 13 0.80 0.78
Satt 334 F 13 8 0.77 0.75
引物
Primer
连锁群
Linkage group
染色体
Chr.
等位基因数目
Allele number
基因多样性
Gene diversity
多态性信息含量
PIC
Satt 586 F 13 11 0.83 0.81
Satt 309 G 18 6 0.73 0.69
Satt 442 H 12 8 0.61 0.53
Satt 239 I 20 12 0.87 0.85
Satt 571 I 20 8 0.79 0.76
Sct 189 I 20 12 0.83 0.81
Satt 431 J 16 15 0.89 0.89
Satt 596 J 16 10 0.86 0.84
Satt 242 K 9 11 0.87 0.86
Satt 588 K 9 11 0.80 0.78
Satt 373 L 19 12 0.80 0.79
Satt 308 M 7 13 0.85 0.84
Satt 346 M 7 9 0.73 0.69
Satt 590 M 7 18 0.91 0.90
Satt 530 N 3 12 0.82 0.80
平均Mean 11.5 0.80 0.78

Fig. 6

NJ dendrogram of 58 soybean accessions based on 32 SSR markers The red, green, and blue branches represent the wild, semi-wild, and cultivated soybean accessions, respectively; CI and CII indicate two major subgroups, G1 and G2 represent typical wild soybean (Glycine soja) and cultivated soybean (Glycine max) with distant genetic relationships and obvious morphological differences in clustering results."

Fig. 7

Principal component analysis of 58 soybean accessions based on 32 SSR genetic markers PC1a-PC3a represent the first three principal components based on the 32 pairs of SSR markers. The red circle, green triangle, and blue square represent wild, semi-wild and cultivated soybean accessions, respectively."

Fig. 8

ANOVA analysis of oil compositions between wild and cultivated soybean accessions based on the result of NJ dendrogram W and C represent wild soybean (Glycine soja) and cultivated soybean (Glycine max), respectively. Bars superscripted by different letters are significantly different at the 0.05 probability level. Abbreviations are the same as those given in Table 2."

[1] 庄无忌, 韩华琼, 谢发明, 张乔, 李福山, 舒世珍, 常汝镇 . 栽培、野生、半野生大豆脂肪酸组成的初步分析研究. 大豆科学, 1984,3:223-230.
Zhuang W J, Han H W, Xie F M, Zhang Q, Li F S, Shu S Z, Chang R Z . Composition of fatty acid in cultivated, semi-cultivated and wild soybean. Soybean Sci, 1984, 3:223-230 (in Chinese with English abstract).
[2] 吕景良, 邵荣春, 吴百灵, 梁岐, 吴桂荣 . 东北地区大豆品种资源脂肪酸组成的分析研究. 作物学报, 1990,16:349-356.
Lyu J L, Shao R C, Wu B L, Liang Q, Wu G R . Studies on the fatty acid composition of soybean germplasm resources in northeast China. Acta Agron Sin, 1990,16:349-356 (in Chinese with English abstract).
[3] Thelen J J, Ohlrogge J B . Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng, 2002,4:12-21.
doi: 10.1006/mben.2001.0204
[4] 李志香, 沈翠平 . 多不饱和脂肪酸对人体的作用. 生物学通报, 1998,33(1):9-10.
Li Z X, Shen C P . The effect of polyunsaturated fatty acids on the human health. Bull Biol, 1998,33(1):9-10 (in Chinese).
[5] Willett W C, Stampfer M J, Manson J E, Hu F B, Oh K . Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med, 1997,337:1491-1499.
doi: 10.1056/NEJM199711203372102
[6] Mounts T L, Warner K, List G R, Kleiman R, Fehr E G, Hammond E G, Wilcox J R . Effect of altered fatty acid composition on soybean oil stability. J Am Oil Chem Soc, 1988,65:624-628.
doi: 10.1007/BF02540691
[7] Judd J T, Clevidence B A, Muesing R A, Wittes J, Sunkin M E, Podczasy J J . Dietary trans fatty acids: effects on plasma lipids and lipoproteins of healthy men and women. Am J Clin Nutr, 1994,59:861-868.
doi: 10.1093/ajcn/59.4.861
[8] Krisetherton P M . Trans-fats and coronary heart disease. Crit Rev Food Sci, 2010,50:29-30.
doi: 10.1080/10408398.2010.526872
[9] 李福山 . 中国野生大豆资源的地理分布及生态分化研究. 中国农业科学, 1993,26(2):47-55.
Li F S . Studies on the ecological and geographical distribution of the Chinese resources of wild soybean (Glycine soya). Sci Agric Sin, 1993,26(2):47-55 (in Chinese with English abstract).
[10] Zhao H K, Zhuang B C, Wang Y M, Li Q J . AFLP analysis of wild (G. soja) and cultivated soybean(G. max) in China. Chin High Technol Lett, 2000,10:32-35.
[11] 吴晓雷, 贺超英, 陈受宜, 庄炳昌, 王克晶, 王学臣 . 用SSR分子标记研究大豆属种间亲缘进化关系. 遗传学报, 2001,28:359-366.
Wu X L, He C Y, Chen S Y, Zhuang B C, Wang K J, Wang X C . Phylogenetic analysis of interspecies in genus. Glycine through SSR markers. J Genet Genomics, 2001,28:359-366 (in Chinese with English abstract).
[12] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X . Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015,4:408-414.
[13] 王彪, 常汝镇, 陶莉, 关荣霞, 闫丽, 张明恢, 冯忠孚, 邱丽娟 . 分析中国栽培大豆遗传多样性所需SSR引物的数目. 分子植物育种, 2003,1:82-88.
Wang B, Chang R Z, Tao L, Guan R X, Yan L, Zhang M H, Feng Z F, Qiu L J . Identification of SSR primer numbers for analyzing genetic diversity of Chinese soybean cultivated soybean. Mol Plant Breed, 2003,1:82-88 (in Chinese with English abstract).
[14] 范胜栩, 李斌, 孙君明, 韩粉霞, 闫淑荣, 王岚, 王连铮 . 气相色谱方法定量检测大豆5种脂肪酸. 中国油料作物学报, 2015,37:548-553.
Fan S X, Li B, Sun J M, Han F X, Yan S R, Wang L, Wang L Z . A quantitative gas chromatographic method for determination of soybean seed fatty acid components. Chin J Oil Crop Sci, 2015,37:548-553 (in Chinese with English abstract).
[15] Ma L, Li B, Han F X, Yan S R, Wang L Z, Sun J M . Evaluation of the chemical quality traits of soybean seeds, as related to sensory attributes of soymilk. Food Chem, 2015,173:694-701.
doi: 10.1016/j.foodchem.2014.10.096
[16] McQuitty L L . Similarity analysis by reciprocal pairs for discrete and continuous data. Educa Psychol Measure, 1996,26:825-831.
[17] Saitou N, Nei M . The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987,4:406-425.
[18] 徐豹, 庄炳昌, 路琴华, 王玉民, 胡传璞, 梁歧, 郑惠玉, 吕景良 . 中国野生大豆(G. soja)脂肪及其脂肪酸组成的研究. 吉林农业科学, 1993, ( 2):1-6.
Xu B, Zhuang B C, Lu Q H, Wang Y M, Hu C P, Liang Q, Zheng H Y, Lyu J L . A study of fat content and fatty acid composition of wild soybean (G. soja) in China. Jilin J Agric Sci, 1993, ( 2):1-6 (in Chinese with English abstract).
[19] 王连铮, 吴和礼, 姚振纯, 林红 . 黑龙江省野生大豆的考察和研究. 植物研究, 1983,3(3):116-130.
Wang L Z, Wu H L, Yao Z C, Lin H . Investigation and research of the wild soybean in Heilongjiang province. Bull Bot Res, 1983,3(3):116-130 (in Chinese with English abstract).
[20] 姚利坡 . 野生大豆与栽培大豆遗传关系研究. 河北师范大学硕士学位论文, 河北石家庄, 2009.
Yao L P . Studies on the Genetic Relationship between G. soja and G. max. MS Thesis of Hebei Normal University, Shijiazhuang, Hebei, China, 2009 (in Chinese with English abstract).
[21] 赵洪锟, 王玉民, 李启云, 张明, 庄炳昌 . 中国不同纬度野生大豆和栽培大豆SSR分析. 大豆科学, 2001,20:172-720.
Zhao H K, Wang Y M, Li Q Y, Zhang M, Zhuang B C . SSR analysis of wild soybean (G. soja) and cultivated soybean from different latitude in China. Soybean Sci, 2001,20:172-176 (in Chinese with English abstract).
[22] 王金陵 . 大豆的进化与其分类栽培及育种的关系. 中国农业科学, 1962,3(1):11-15.
Wang J L . The evolution of soybean and its relationship with cultivating and breeding. Sci Agric Sin, 1962,3(1):11-15 (in Chinese).
[23] Han Y P, Zhao X, Liu D Y, Li Y H, Lightfoot D A, Yang Z J, Zhao L, Zhou G, Wang Z K, Huang L, Zhang Z W, Qiu L J, Zheng H K, Li W B . Domestication footprints anchor genomic regions of agronomic importance in soybeans. New Phytol, 2016,209:871-884.
doi: 10.1111/nph.13626
[24] 宋万坤, 于妍, 高运来, 姜威, 刘春燕, 孙殿君, 陈庆山, 胡国华 . 大豆饱和脂肪酸组分改良研究进展. 生物技术通报, 2008, ( 增刊1):18-21.
Song W K, Yu Y, Gao Y L, Jiang W, Liu C Y, Sun D J, Chen Q S, Hu G H . Genetic modification of saturated fatty acid composition of soybean. Biotechnol Bull, 2008, ( suppl-1):18-21 (in Chinese with English abstract).
[25] 吴俏槿, 杜冰, 蔡尤林, 梁钻好, 林志光, 邱国亮, 董立军 . α-亚麻酸的生理功能及开发研究进展. 食品工业科技, 2016,37(10):386-390.
Wu Q J, Du B, Cai Y L, Liang Z H, Lin Z G, Qiu G L, Dong L J . Research development of alpha-linolenic acid. Sci Tech Food Ind, 2016,37(10):386-390 (in Chinese with English abstract).
[1] DONG Yan-Kun, HUANG Ding-Quan, GAO Zhen, CHEN Xu. Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules [J]. Acta Agronomica Sinica, 2022, 48(2): 353-366.
[2] ZHANG Xue-Cui, SUN Su-Li, LU Wei-Guo, LI Hai-Chao, JIA Yan-Yan, DUAN Can-Xing, ZHU Zhen-Dong. Identification of resistance gene against phytophthora root rot in new soybean lines breeded in Henan province [J]. Acta Agronomica Sinica, 2021, 47(2): 275-284.
[3] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[4] Dai-Ling LIU,Jun-Feng XIE,Qian-Rui HE,Si-Wei CHEN,Yue HU,Jia ZHOU,Yue-Hui SHE,Wei-Guo LIU,Wen-Yu YANG,Xiao-Ling WU. QTL analysis for relative contents of glycinin and β-conglycinin fractions from storage protein in soybean seeds under monoculture and relay intercropping [J]. Acta Agronomica Sinica, 2020, 46(3): 341-353.
[5] Dan-Xia KE,Kun-Peng PENG,Meng-Ke ZHANG,Yan JIA,Jing-Jing WANG. Cloning and Salt Resistance Function Identification of GmHDL57 Gene from Glycine max [J]. Acta Agronomica Sinica, 2018, 44(9): 1347-1356.
[6] Dan-Xia KE,Kun-Peng PENG,Yan JIA,Shuo ZENG,Ying-Zhi WANG,Jing-Yi ZHANG. Functional Characterization of Soybean Cystatins Gene GmCYS2 [J]. Acta Agronomica Sinica, 2018, 44(8): 1159-1168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!