Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 1029-1037.doi: 10.3724/SP.J.1006.2019.83070

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional analysis of ZmGRAS31 gene in maize

YIN Long-Fei1,2,WANG Zhao-Yang1,WU Zhong-Yi2,ZHANG Zhong-Bao2,*(),YU Rong1,*()   

  1. 1 College of Life Sciences, Capital Normal University, Beijing 100048
    2 Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences / Beijing Key Laboratory of Agricultural Gene Resources and Biotechnology, Beijing 100097, China
  • Received:2018-11-07 Accepted:2019-01-19 Online:2019-07-12 Published:2019-03-22
  • Contact: Zhong-Bao ZHANG,Rong YU E-mail:zhangzhongbao@baafs.net.cn;yurong@mail.cnu.edu.cn
  • Supported by:
    This study was supported by the Beijing Natural Science Foundation(6172007);the National Natural Science Foundation of China(31871351);the Beijing Academy of Agricultural and Forestry Sciences(KJCX20180404)

Abstract:

The GRAS gene family is a kind of plant-specific transcription factor reported in many plants. To figure out the function of maize GRAS family under stress, we obtained ZmGRAS319 (AC: NC_024462) gene from maize (Zea mays) root. Sequence analysis showed that the coding sequence (CDS) of ZmGRAS31 was 1422 bp encoding a protein of 473 amino acids with molecular weight of 51,700.38 Da and an isoelectric point of 4.73. Bioinformatics analysis revealed that ZmGRAS31 had a conserved domain unique to the GRAS transcription factor family and poor hydrophilicity, but no transmembrane structure. Transient expression of maize protoplasts indicated that ZmGRAS31 was localized in the nucleus. Real-time quantitative PCR analysis showed that the expression of ZmGRAS31 was up-regulated in maize seedlings under low temperature, dehydration, high salinity and drought conditions. The root length of the ZmGRAS31 overexpression transgenic Arabidopsis plants was longer than that of wide type under different concentrations of NaCl treatments. Therefore, our data suggested that ZmGRAS31 might be involved in abiotic stress response.

Key words: maize, ZmGRAS31, transcription factor, protoplast, qPCR, abiotic stress

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
pZmGRAS31-F AAAGCCGATGGAGACCATTTCAT
pZmGRAS31-R CTTTCATACAGGAGTCCAAGCA
pZmGRAS31SL-F CATATCGAATTCATGGAGACCATTTCATATCC
pZmGRAS31SL-R CCTAGCGGTACCTACAGGAGTCCAAGCAGATAT
pZmGRAS31RT-F CTTCGACACCATTGCTATTGG
pZmGRAS31RT-R CTTGAATCTCCAGCCTCAAC
pGAPDHRT-F CCCTTCATCACCACGGACTAC
pGAPDHRT-R AACCTTCTTGGCACCACCCT
pZmGRAS31At-F CCTATCGGCGCCATGGAGACCATTTCATATCC
pZmGRAS31At-R CCTAGCACCGGTTCATACAGGAGTCCAAGCAG

Fig. 1

Conservative domain prediction of maize ZmGRAS31 gene"

Fig. 2

Subcellular localization of ZmGRAS31 in protoplasts GFP: subcellular localization of the GFP-ZmGRAS31 fusion protein in maize protoplast; DAPI: DAPI-labeled protoplast nucleus; Bright: protoplast under the same field; Merged: merge of GFP, DAPI, and bright; CK: protoplast with empty vector; ZmGRAS31: protoplast with destination vector. Bar=10 μm."

Fig. 3

Relative expression of ZmGRAS31 in different maize tissues"

Fig. 4

Real-time quantitative PCR analysis of expression level of ZmGRAS31 gene under different treatments in shoots and roots A: dehydration treatment; B: cold (4°C) treatment; C: high salt (200 mmol L-1 NaCl) treatment; D: drought treatment. The error bar represents ± SD of triplicate experiments 2.5 转ZmGRAS31基因拟南芥的耐盐性分析"

Fig. 5

Root length of transgenic Arabidopsis thaliana under gradient NaCl concentrations A-D was seedling growth under the NaCl concentrations of 0 mol L-1, 0.10 mol L-1, 0.15 mol L-1, and 0.20 mol L-1; E: the average main root length of Arabidopsis at different NaCl concentrations. WT: wild type; OE: overexpression Arabidopsis thaliana. Bar = 1.5 cm."

Fig. 6

Root length of transgenic Arabidopsis thaliana under gradient mannitol concentrations A-D was seedling growth under the mannitol concentrations of 0 mol L-1, 0.15 mol L-1, 0.30 mol L-1, and 0.40 mol L-1; E: the average main root length of Arabidopsis at different mannitol concentrations. WT: wild type; OE: overexpression Arabidopsis thaliana. Bar = 1.5 cm."

[1] 赫福霞, 李柱刚, 阎秀峰, 王秀君 . 渗透胁迫条件下玉米萌芽期抗旱性研究. 作物杂志, 2014, ( 5):144-147.
He F X, Li Z G, Yan X F, Wang X J . Effect of osmotic stress on drought resistance of maize at germination stage. Crops, 2014, ( 5):144-147 (in Chinese with English abstract).
[2] 余爱丽, 赵晋锋, 王高鸿, 杜艳伟, 李颜方, 张正 . 玉米ZmSAMS1基因在盐、干旱等逆境胁迫下的表达分析. 玉米科学, 2016,24(3):31-35.
Yu A L, Zhao J F, Wang G H, Du Y W, Li Y F, Zhang Z . Expression analysis of maize ZmSAMS1 gene under salt, drought and other Stresses. J Maize Sci, 2016,24(3):31-35 (in Chinese with English abstract).
[3] 决登伟, 桑雪莲, 舒波, 刘丽琴, 石胜友 . 玉米ZmWRKY53- likeZmWRKY67-like基因在非生物胁迫下的表达. 贵州农业科学, 2017,45(6):15-20.
Jue D W, Sang X L, Shu B, Liu L Q, Shi S Y . Expression of maize ZmWAKY53-like and ZmWRKY67-like gene under abiotic stresses. Guizhou Agric Sci, 2017,45(6):15-20 (in Chinese with English abstract).
[4] Li S F, Parish R W . Isolation of two novel myb-like genes from Arabidopsis and studies on the DNA-binding properties of their products. Plant J, 1995,8:963-972.
[5] Kwon Y, Kim J H, Nguyen H N, Jikumaru Y, Kamiya Y, Hong S W, Lee H . A novel Arabidopsis MYB-like transcription factor, MYBH, regulates hypocotyl elongation by enhancing auxin accumulation. J Exp Bot, 2013,64:3911-3922.
[6] Su L T, Li J W, Liu D Q, Zhai Y, Zhang H J, Li X W, Zhang Q L, Wang Y, Wang Q Y . A novel MYB transcription factor, GmMYBJ1, from soybean confers drought and cold tolerance in Arabidopsis thaliana. Gene, 2014,538:46-55.
[7] Oeda K, Salinas J, Chua N H . A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J, 1991,10:1793-1802.
doi: 10.1002/embj.1991.10.issue-7
[8] Finkelstein R R, Lynch T J . The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell, 2000,12:599-609.
[9] 曹红利, 岳川, 周艳华, 王璐, 郝心愿, 杨亚军, 王新超 . 茶树bZIP转录因子基因CsbZIP1的克隆与表达定位. 作物学报, 2014,40:1702-1709.
Cao H L, Yue C, Zhou Y H, Wang L, Hao X Y, Yang Y J, Wang X C . Molecular cloning and expression of a bZIP transcription factor gene CsbZIP1 in tea plant(Camellia sinensis). Acta Agron Sin, 2014,40:1702-1709 (in Chinese with English abstract).
[10] Ali N, Hadi F . CBF/DREB transcription factor genes play role in cadmium tolerance and phytoaccumulation in Ricinus communis under molybdenum treatments. Chemosphere, 2018,208:425-432.
[11] Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F . Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998,280:104-106.
[12] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K . Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998,10:1391-1406.
[13] Souer E, van Houwelingen A, Kloos D, Mol J, Koes R . The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996,85:159-170.
[14] Fang Y, You J, Xie K, Xie W, Xiong L . Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics, 2008,280:547-563.
doi: 10.1007/s00438-008-0386-6
[15] Rushton P J, Bokowiec M T, Han S, Zhang H, Brannock J F, Chen X, Laudeman T W, Timko M P . Tobacco transcription factors: novel insights into transcriptional regulation in the solanaceae. Plant Physiol, 2008,147:280-295.
doi: 10.1104/pp.107.114041
[16] Ishiguro S, Nakamura K . Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Genet Genetics, 1994,244:563-571.
[17] Du L, Chen Z . Identification of genes encoding receptor-like protein kinases as possible targets of pathogen- and salicylic acid-induced WRKY DNA-binding proteins in Arabidopsis. Plant J, 2000,24:837-847.
[18] Schrick K, Nguyen D, Karlowski W M, Mayer K F . START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors. Genome Biol, 2004,5:R41.
doi: 10.1186/gb-2004-5-6-r41
[19] Pysh L D, Wysocka-Diller J W, Camilleri C, Bouchez D, Benfey P N . The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROW- LIKE genes. Plant J, 1999,18:111-119.
[20] Hirsch S, Oldroyd G E D . GRAS-domain transcription factors that regulate plant development. Plant Signal Behavior, 2009,4:698-700.
doi: 10.4161/psb.4.8.9176
[21] Stuurman J, Jäggi F, Kuhlemeier C . Shoot meristem maintenance is controlled by a GRAS-gene mediated signal from differentiating cells. Gene Dev, 2002,16:2213-2218.
[22] Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser M T, Benfey P N . The SHORT-ROOT, gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 2000,101:555-567.
[23] Yoo S D, Cho Y H, Sheen J . Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2007,2:1565-1572.
[24] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -∆∆CT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[25] Clough S J, Bent A F . Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J, 1998,16:735-743.
[26] Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler IV E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001,28:286-289.
[27] Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T . Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010,51:1854-1868.
doi: 10.1093/pcp/pcq153
[28] Lim J, Helariutta Y, Specht C D, Jung J, Sims L, Bruce W B, Diehn S, Benfey P N . Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. Plant Cell, 2000,12:1307-1318.
[29] Tanabe S, Onodera H, Hara N, Ishii-Minami N, Day B, Fujisawa Y, Hagio T, Toki S, Shibuya N, Nishizawa Y, Minami E . The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23. Biosci Biotechnol Biochem, 2016,80:145-151.
[30] 李丽丽, 曾卫军, 李艳红, 葛风伟, 卢函, 雷维, 杜钰, 谢红桃, 赵和平, 赵惠新 . 独行菜GRAS转录因子家族分析及LaSCL18基因克隆与冷相关性研究. 分子植物育种, 2017,15:3428-3437.
Li L L, Zeng W J, Li Y H, Ge F W, Lu H, Lei W, Du Y, Xie H T, Zhao H P, Zhao H X . Analysis of GRAS family transcription factors, cloning and researching cold tolerance of LaSCL18 gene in Lepidium. Mol Plant Breed, 2017,15:3428-3437 (in Chinese with English abstract).
[31] 郭华军, 焦远年, 邸超, 姚冬霞, 张盖华, 郑雪, 刘岚, 张群莲, 郭蔼光, 苏震 . 拟南芥转录因子GRAS家族基因群响应渗透和干旱胁迫的初步探索. 植物学报, 2009,44:290-299.
Guo H J, Jiao Y N, Di C, Yao D X, Zhang G H, Zheng X, Liu L, Zhang Q L, Guo A G, Su Z . Discovery of Arabidopsis GRAS family genes in response to osmotic and drought stresses. Chin Bull Bot, 2009,44:290-299 (in Chinese with English abstract).
[32] 马洪双, 夏新莉, 尹伟伦 . 胡杨SCL7基因及其启动子片段的克隆与分析. 北京林业大学学报, 2011,33(1):1-10.
Ma H S, Xia X L, Yin W L . Cloning and analysis of SCL7 gene from Populus euphratica. J Beijing For Univ, 2011,33(1):1-10 (in Chinese with English abstract).
[33] 张焕欣, 董春娟, 尚庆茂 . 辣椒GRAS家族全基因组鉴定与表达分析. 园艺学报, 2017,44:2305-2317.
Zhang H X, Dong C J, Shang Q M . Genome-wide identification and expression analysis of GRAS gene family in Pepper. Acta Hortic Sin, 2017,44:2305-2317 (in Chinese with English abstract).
[34] 郭鹏, 邢新, 金华, 董燕 . 玉米ZmSCL7的克隆及功能研究. 中国农业科学, 2013,46:2584-2591.
Guo P, Xing X, Jin H, Dong Y . Cloning and functional study of ZmSCL7 in Zea mays. Sci Agric Sin, 2013,46:2584-2591 (in Chinese with English abstract).
[35] 李慧聪, 李国良, 郭秀林 . 玉米热激转录因子基因ZmHsf-like对逆境胁迫响应的信号途径. 作物学报, 2014,40:622-628.
Li H C, Li G L, Guo X L . Signal transduction pathway of ZmHsf-like gene responding to different abiotic stresses. Acta Agron Sin, 2014,40:622-628 (in Chinese with English abstract).
[36] Klingler J P, Batelli G, Zhu J K . ABA receptors: the START of a new paradigm in phytohormone signaling. J Exp Bot, 2010,61:3199-3210.
doi: 10.1093/jxb/erq151
[37] Fujii H, Verslues P E, Zhu J K . Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci USA, 2011,108:1717-1722.
[38] Wang R, Jing W, Xiao L Y, Jin Y K, Shen L K, Zhang W H . The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor 1. Plant Physiol, 2015,168:1076-1090.
doi: 10.1104/pp.15.00298
[39] Tuberosa R, Sanguineti M C, Landi P, Giuliani M M, Salvi S, Conti S . Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol, 2002,48:697-712.
doi: 10.1023/A:1014897607670
[40] 潘清春 . 两种氮水平下玉米苗期根系与田间产量相关性状QTL定位. 内蒙古农业大学硕士学位论文, 内蒙古呼和浩特, 2010.
Pan Q C . QTL Mapping for Root and Grain Yield Traits in Maize under Two Nitrogen Conditions. MS Thesis of Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China, 2010.
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[6] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[7] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[8] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[9] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[10] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[11] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[12] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[13] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[14] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[15] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!