Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 962-974.doi: 10.3724/SP.J.1006.2022.13010


Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping

YAN Yu-Ting1(), SONG Qiu-Lai2, YAN Chao1, LIU Shuang1, ZHANG Yu-Hui1, TIAN Jing-Fen1, DENG Yu-Xuan1, MA Chun-Mei1,*()   

  1. 1College of Agronomy, Northeast Agricultural University, Harbin 150000, Heilongjiang, China
    2Institute of cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, Heilongjiang, China
  • Received:2021-03-31 Accepted:2021-07-12 Online:2022-04-12 Published:2021-08-09
  • Contact: MA Chun-Mei E-mail:1290058648@qq.com;chunmm1974@163.com
  • Supported by:
    National Natural Science Foundation of China(31901473)


Crop straw resources in Northeast China are rich, but burning and discarding are serious, and nutrient utilization rate is very low. We explored the feasibility of the substitution of straw returning to nitrogen fertilizer and its effects on nitrogen accumulation under continuous cropping in cold region. A frame culture and continuous positioning experiment was carried out in the experimental site of Northeast Agricultural University from 2017 to 2019, with 15N labeled urea. A three-factor split-plot design was adopted in this experiment, the main plot was straw returning method with no straw returning (S0) and straw returning (S1), and the sub-plot was nitrogen application levels with 0 (N0), 175 (N1), and 350 (N2) kg hm-2. Two application methods were set for each fertilizer application amount, one ratio of base fertilizer and top dressing applied was 1:1, and the other ratio of base fertilizer and top dressing applied was 1:0. The results were as follows: When the straw returning amount was 12 t hm-2, the returning straw could replace 36.8 kg hm-2 pure nitrogen. The average amount of maize straw was 46.50 million tons in Heilongjiang Province from 2017 to 2019, and straw returning could replace 142,700 tons pure nitrogen. The replace amount of pure nitrogen in the ratio of base fertilizer and top dressing (1:1) was 26.88% higher than that in 1:0. Straw returning was negatively correlated with nitrogen use efficiency in maize. The average nitrogen use efficiency of maize in S0 treatment was 6.09% higher than S1 treatment, and the yield of S1 treatment was 4.66% higher than S0 treatment when the urea application amount was 350 kg hm-2 (161 kg hm-2 pure nitrogen). The highest yield of maize was 268.22 g frame-1 in the treatment of straw returning and topdressing with commonly fertilizer applied in local agriculture. In conclusion, the nitrogen substitution effect was remarkable under maize straw returning in Northeast China. Long-term combined application of crop straw and nitrogen fertilizer significantly improved the biomass, yield, and nitrogen accumulation of maize, which was a cultivation mode for increasing yield and efficiency of maize in Northeast China.

Key words: maize, nitrogen fertilizer, straw returning, nitrogen replacement amount, nitrogen accumulation, structural equation model

Table 3

Dry matter mass at mature stage in maize (g plant-1)"

2017 2018 2019
茎秆 Stalk 籽粒 Grain 茎秆 Stalk 籽粒 Grain 茎秆 Stalk 籽粒 Grain
N0 S1 187.58±8.61 a 201.65±3.20 a 146.56±2.13 a 202.20±5.97 a 136.85±6.56 a 193.23±5.77 a
S0 178.97±1.63 a 192.70±5.75 a 148.52±3.23 a 193.53±8.50 a 142.97±6.12 a 187.46±7.41 a
N1 N1-1S1 247.27±3.00 a 236.45±0.32 a 162.84±0.37 a 224.52±2.32 a 159.76±2.40 a 223.20±2.34 a
N1-1S0 220.08±2.63 b 220.40±1.11 b 155.84±0.68 b 215.74±2.61 b 157.36±0.14 a 201.77±2.39 c
N1-0S1 226.23±6.15 b 226.91±6.51 b 163.17±0.47 a 214.36±1.50 b 152.46±2.55 b 213.29±3.27 b
N1-0S0 213.53±1.85 c 215.98±0.47 c 165.99±3.15 a 213.13±1.48 b 149.91±3.58 b 198.53±3.24 c
N2 N2-1S1 266.40±3.52 a 247.94±1.04 a 181.43±1.56 a 244.11±0.17 a 178.32±1.77 a 249.55±4.78 a
N2-1S0 253.01±1.08 b 237.49±2.71 b 163.52±2.25 b 229.04±1.95 b 165.72±4.78 b 225.08±3.24 c
N2-0S1 251.93±1.22 b 234.78±0.29 b 183.68±4.10 a 232.07±3.03 b 165.63±2.04 b 233.95±1.51 b
N2-0S0 239.70±4.71 c 227.56±1.44 c 179.58±2.23 a 220.91±1.18 c 160.94±1.52 b 217.64±0.99 d
秸秆还田S ** ** ns ** ns **
施氮肥N ** ** ** ** ** **
S×N ** ** ** ** ns **

Table 1

Amount of fertilizer applied in the test treatments (g frame-1)"

基肥Base fertilizer 追肥尿素(15N标记)
Topdressing CH415N2O
N0 1.06 1.06 0 0
N1-1 1.06 1.06 0.62 0.62
N1-0 1.06 1.06 1.24 0
N2-1 1.06 1.06 1.24 1.24
N2-0 1.06 1.06 2.48 0

Table 2

Nitrogen content at mature stage in maize (g kg-1)"

2017 2018 2019
茎秆 Stalk 籽粒 Grain 茎秆 Stalk 籽粒Grain 茎秆 Stalk 籽粒 Grain
N0 S1 7.40±0.20 a 14.41±0.76 a 8.11±0.19 a 13.93±0.49 a 6.10±0.08 a 12.91±0.28 a
S0 7.20±0.01 a 13.65±0.03 a 7.92±0.30 a 13.44±0.11 a 6.02±0.30 a 12.63±0.12 a
N1 N1-1S1 9.71±0.05 a 16.93±0.20 a 9.22±0.07 a 16.81±0.20 a 8.81±0.20 a 15.72±0.10 a
N1-1S0 9.42±0.07 b 16.04±0.12 b 8.71±0.01 c 15.92±0.08 b 8.17±0.03 b 15.04±0.13 c
N1-0S1 8.83±0.50 c 15.92±0.11 b 9.02±0.03 b 16.04±0.10 b 8.70±0.12 a 15.31±0.01 b
N1-0S0 8.33±0.35 c 15.02±0.31 c 9.03±0.01 b 15.43±0.03 c 8.61±0.14 a 14.72±0.03 d
N2 N2-1S1 11.13±0.04 a 18.92±0.07 a 9.72±0.03 a 17.72±0.02 a 9.80±0.20 a 16.81±0.11 a
N2-1S0 9.44±0.08 b 17.74±0.02 b 9.42±0.09 b 16.95±0.38 b 9.60±0.13 a 15.31±0.05 c
N2-0S1 9.45±0.01 b 17.03±0.21 c 9.33±0.06 b 16.57±0.22 b 9.20±0.05 b 15.71±0.11 b
N2-0S0 9.22±0.02 c 16.02±0.11 d 9.14±0.03 c 16.05±0.02 c 8.90±0.01 c 14.54±0.01 d
秸秆还田S ** ns ns * ns **
施氮肥N ** ** ** ** ** **
S×N ns ** ns ns ns **

Table 4

Nitrogen accumulation at mature stage in maize (g plant-1)"

2017 2018 2019
茎秆 Stalk 籽粒Grain 茎秆Stalk 籽粒 Grain 茎秆 Stalk 籽粒 Grain
N0 S1 1.662±0.050 a 2.974±0.033 a 1.021±0.003 a 2.694±0.106 a 0.825±0.014 a 2.801±0.117 a
S0 1.612±0.003 a 2.773±0.201 a 1.059±0.038 a 2.588±0.095 a 0.845±0.020 a 2.684±0.059 a
N1 N1-1S1 2.564±0.031 a 3.967±0.035 a 1.959±0.002 a 3.592±0.061 a 1.372±0.042 a 3.766±0.027 a
N1-1S0 2.177±0.021 b 3.514±0.015 c 1.299±0.024 c 3.254±0.025 c 1.330±0.006 a 3.321±0.004 b
N1-0S1 2.288±0.111 b 3.701±0.051 b 1.684±0.102 b 3.422±0.042 b 1.331±0.011 a 3.166±0.033 c
N1-0S0 1.826±0.088 c 3.400±0.114 c 1.229±0.070 c 3.185±0.069 c 1.294±0.006 b 3.015±0.151 c
N2 N2-1S1 2.965±0.135 a 4.709±0.049 a 2.854±0.034 a 3.837±0.126 a 1.597±0.040 a 4.511±0.028 a
N2-1S0 2.434±0.034 b 4.058±0.246 b 2.388±0.107 b 3.481±0.087 b 1.557±0.013 a 3.910±0.044 b
N2-0S1 2.400±0.016 b 3.938±0.055 b 2.495±0.033 b 3.511±0.030 b 1.495±0.012 b 3.866±0.017 b
N2-0S0 2.257±0.040 c 3.812±0.071 b 1.956±0.035 c 3.290±0.008 c 1.483±0.008 b 3.265±0.028 c
秸秆还田S ** ** ** ** ns **
施氮肥N ** ** ** ** ** **
S×N ns ** ns ns ** **

Table 5

Abundance of 15N of stalk and grain at mature stage in maize (%)"

2017 2018 2019
茎秆 Stalk 籽粒 Grain 茎秆 Stalk 籽粒 Grain 茎秆Stalk 籽粒 Grain
N1 N1-1S1 0.489±0.001 b 0.467±0.001 b 0.515±0.005 b 0.498±0.002 b 0.563±0.010 b 0.565±0.001 b
N1-1S0 0.503±0.001 a 0.456±0.002 c 0.557±0.003 a 0.535±0.002 a 0.632±0.026 a 0.578±0.001 a
N1-0S1 0.454±0.001 c 0.476±0.002 a 0.466±0.002 c 0.440±0.002 d 0.531±0.005 c 0.536±0.008 c
N1-0S0 0.502±0.002 a 0.466±0.002 b 0.506±0.004 b 0.471±0.003 c 0.566±0.017 b 0.544±0.001 c
N2 N2-1S1 0.596±0.003 a 0.580±0.002 a 0.656±0.001 c 0.633±0.001 b 0.761±0.007 b 0.742±0.008 b
N2-1S0 0.600±0.004 a 0.579±0.001 a 0.712±0.002 a 0.691±0.003 a 0.818±0.065 a 0.834±0.014 a
N2-0S1 0.552±0.001 c 0.535±0.001 b 0.595±0.008 d 0.536±0.002 d 0.653±0.028 c 0.658±0.012 c
N2-0S0 0.582±0.004 b 0.521±0.001 c 0.671±0.001 b 0.595±0.003 c 0.799±0.024 a 0.752±0.010 b
秸秆还田S ** ** ** ** ** **
施氮肥N ** ** ** ** ** **
S×N ** ** ** ** ns **

Fig. 1

Proportion of nitrogen sources in maize S1 means straw returning; S0 means straw removal; N1-1 means 175 kg hm-2 urea application with topdressing ratio of 1:1; N1-0 means 175 kg hm-2 urea application with topdressing ratio of 1:0; N2-1 means 350 kg hm-2 urea application with topdressing ratio of 1:1; N2-0 means 350 kg hm-2 urea application with topdressing ratio of 1:0."

Fig. 2

Estimated proportion of maize straw instead of nitrogen fertilizer Comparison was made between different treatments in the same year. Different lowercase letters indicate significant difference at the 0.05 probability level. N1-1 means 175 kg hm-2 urea application with topdressing ratio of 1:1; N1-0 means 175 kg hm-2 urea application with topdressing ratio of 1:0; N2-1 means 350 kg hm-2 urea application with topdressing ratio of 1:1; N2-0 means 350 kg hm-2 urea application with topdressing ratio of 1:0."

Table 6

Nitrogen use efficiency in maize (%)"

氮肥利用率Nitrogen use efficiency
2017 2018 2019 平均Average
N1 N1-1S1 38.24±0.26 a 37.58±0.11 b 39.78±0.98 a 38.53
N1-1S0 33.07±0.79 bc 39.29±0.30 a 41.71±0.84 a 38.02
N1-0S1 34.22±0.39 b 22.54±0.39 d 34.47±1.20 b 30.41
N1-0S0 32.41±0.45 c 29.99±0.74 c 36.43±0.72 b 32.94
N2 N2-1S1 39.14±0.40 a 41.48±0.51 a 41.68±0.83 a 40.77
N2-1S0 38.61±0.76 a 42.73±0.79 a 43.72±1.60 a 41.69
N2-0S1 30.94±0.47 b 28.35±0.54 c 35.08±0.86 b 31.46
N2-0S0 31.46±0.44 b 35.20±0.53 b 37.07±1.24 b 34.58
秸秆还田S ** ** ns
施氮肥N ** ** **
S×N ** ** **

Table 7

Yield in maize (g plant-1)"

2017 2018 2019 平均Average
N0 S1 244.37±0.24 a 235.11±2.29 a 240.57±1.30 a 240.02
S0 224.10±2.13 b 225.03±1.74 b 220.70±2.18 b 223.28
N1 N1-1S1 274.94±0.97 a 240.90±1.62 b 283.85±0.20 a 266.56
N1-1S0 256.28±1.52 c 231.52±3.18 c 264.00±1.10 c 250.60
N1-0S1 267.33±1.40 b 251.88±2.60 a 269.84±2.20 b 263.02
N1-0S0 252.30±0.77 d 234.92±2.26 bc 256.87±1.38 d 248.03
N2 N2-1S1 264.95±1.26 a 288.30±1.42 a 251.42±2.11 a 268.22
N2-1S0 250.86±1.35 b 278.48±1.81 c 236.14±2.65 b 255.16
N2-0S1 249.25±1.74 b 283.00±0.40 b 249.94±1.03 a 260.73
N2-0S0 247.83±1.72 b 273.05±0.45 d 229.82±1.15 c 250.23
秸秆还田S ** ** **
施氮肥N ** ** **
S×N ** ** ns

Fig. 3

Structural equation model of factors affecting nitrogen fertilizer use efficiency and yield Square boxes represent the variables that are applied in the model. The thickness of the arrow indicates the strength of the influence relationship. Numbers adjacent to arrows are the standardized path coefficients. The solid and dotted lines indicate positive and negative correlations, respectively. *: P < 0.05; **: P < 0.01; and ***: P < 0.001. R2 alongside square box indicates that the variable was explained proportion."

[1] Zhuang M H, Zhang J, Kong Z Y, Fleming R M, Zhang C Y, Zhang Z Y. Potential environmental benefits of substituting nitrogen and phosphorus fertilizer with usable crop straw in China during 2000-2017. J Clean Prop, 2020, 267:122-125.
[2] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020.
National Bureau of Statistics. China Statistical Yearbook. Beijing: China Statistics Press, 2020 (in chinese).
[3] 刘晓永, 李书田. 中国秸秆养分资源及还田的时空分布特征. 农业工程学报, 2017, 33(21):1-19.
Liu X Y, Li S T. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China. Trans CSAE, 2017, 33(21):1-19 (in Chinese with English abstract).
[4] 柴如山, 徐悦, 程启鹏, 王擎运, 马超, 叶新新, 章力干, 郜红建. 安徽省主要作物秸秆养分资源量及还田利用潜力. 中国农业科学, 2021, 54:95-109.
Chai R S, Xu Y, Cheng Q P, Wang Q Y, Ma C, Ye X X, Zhang L G, Gao H J. Nutrient resource quantity of main crop straw and utilization potential under straw returning in Anhui province. Sci Agric Sin, 2021, 54:95-109 (in Chinese with English abstract).
[5] 串丽敏, 何萍, 赵同科, 徐新朋, 周卫, 郑怀国. 中国小麦季氮素养分循环与平衡特征. 应用生态学报, 2015, 26:76-86.
Chuan L M, He P, Zhao T K, Xu X P, Zhou W, Zheng H G. Nitrogen cycling and balance for wheat in China. Chin J Appl Ecol, 2015, 26:76-86 (in Chinese with English abstract).
[6] 曾研华, 范呈根, 吴建富, 曾勇军, 周春火, 谭雪明, 潘晓华, 石庆华. 等养分条件下稻草还田替代双季早稻氮钾肥比例的研究. 植物营养与肥料学报, 2017, 23:658-668.
Zeng Y H, Fan C G, Wu J F, Zeng Y J, Zhou C H, Tan X M, Pan X H, Shi Q H. Replacement ratio of nitrogen and potassium fertilizer by straw incorporation in early rice under the same nitrogen, phosphorus and potassium input. Plant Nutr Fert Sci, 2017, 23:658-668 (in Chinese with English abstract).
[7] 曾研华, 吴建富, 曾勇军, 范呈根, 谭雪明, 潘晓华, 石庆华. 机收稻草全量还田减施化肥对双季晚稻养分吸收利用及产量的影响. 作物学报, 2018, 44:454-462.
Zeng Y H, Wu J F, Zeng Y J, Fan C G, Tan X M, Pan X H, Shi Q H. Effects of straw incorporation with reducing chemical fertilizers on nutrient absorption and utilization and grain yield of double-cropping late rice under mechanical harvest. Acta Agron Sin, 2018, 44:454-462 (in Chinese with English abstract).
[8] Powlson D S, Pruden G, Johnston A E, Jenkinson D S. The nitrogen cycle in the broadbalk wheat experiment: recovery and losses of 15N-labelled fertilizer applied in spring and inputs of nitrogen from the atmosphere. J Agric Sci-Cambridge, 1986, 107:591-609.
doi: 10.1017/S0021859600069768
[9] Glendining M J, Poulton P R, Powlson D S, Jenkinson D S. Fate of 15N-labeled fertilizer applied to spring barley grown on soils of contrasting nutrient status. Plant Soil, 1997, 195:83-98.
doi: 10.1023/A:1004295531657
[10] Dourado N D, Powlson D, Bakar R B, Bacchi O O S, Basanta M V, Cong P T, Keerthisinghe G, Ismaili M, Rahman S M, Reichardt K, Safwat M S A, Sangakkara R, Timm L C, Wang J Y, Zagal E, Kessel C. Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc AMJ, 2010, 74:139-152.
[11] Macdonald A J, Poulton P, Powlson P S, Jenkinson D S. Effects of season, soil type and cropping on recoveries, residues and losses of 15N-labelled fertilizer applied to arable crops in the spring. J Agric Sci-Cambridge, 1997, 129:125-154.
doi: 10.1017/S0021859697004619
[12] Tosti G, Benincasa P, Farneselli M, Pace R, Tei F, Guiducci M, Thorup-Kristensen K. Green manuring effect of pure and mixed barley-hairy vetch winter cover crops on maize and processing tomato N nutrition. Eur J Agron, 2012, 43:136-146.
doi: 10.1016/j.eja.2012.06.004
[13] 白伟, 安景文, 张立祯, 逄焕成, 孙占祥, 牛世伟, 蔡倩. 秸秆还田配施氮肥改善土壤理化性状提高春玉米产量. 农业工程学报, 2017, 33(15):168-176.
Bai W, An J W, Zhang L Z, Pang H C, Sun Z X, Niu S W, Cai Q. Improving of soil physical and chemical properties and increasing spring maize yield by straw turnover plus nitrogen fertilizer. Trans CSAE, 2017, 33(15):168-176 (in Chinese with English abstract).
[14] 侯贤清, 李荣, 吴鹏年, 李培富, 王西娜. 秸秆还田配施氮肥对土壤碳氮含量与玉米生长的影响. 农业机械学报, 2018, 49(9):238-246.
Hou X Q, Li R, Wu P N, Li P F, Wang X N. Effects of straw returning with nitrogen application on soil carbon, nitrogen content and maize growth. Trans CSAE, 2018, 49(9):238-246 (in Chinese with English abstract).
[15] Yang H S, Xu M M, Li Y F, Xu C F, Zhai S L, Liu J. The impacts of ditch-buried straw layers on the interface soil physicochemical and microbial properties in a rice-wheat rotation system. Soil Tillage Res, 2020, 202:104656.
[16] Jian J S, Du X, Reiter M S, Stewart R D. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol Biochem, 2020, 143:107735.
[17] Akhtar K, Wang W Y, Ren G X, Khan A, Feng Y Z. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ Int, 2019, 132:105092.
[18] 李涛, 何春娥, 葛晓颖, 欧阳竹. 秸秆还田施氮调节碳氮比对土壤无机氮、酶活性及作物产量的影响. 中国生态农业学报, 2016, 24:1633-1642.
Li T, He C E, Ge X Y, Ou-Yang Z. Responses of soil mineral N contents, enzyme activities and crop yield to different C/N ratio mediated by straw retention and N fertilization. Chin J Eco-Agric, 2016, 24:1633-1642 (in Chinese with English abstract).
[19] Cong P T, Dung T D, Hien T M, Hien N T, Choudhury A T, Kecskés M L, Kennedy I R. Inoculant plant growth-promoting microorganisms enhance utilization of urea-N and grain yield of paddy rice in southern Vietnam. Eur J Soil Biol. 2009, 45:52-61.
doi: 10.1016/j.ejsobi.2008.06.006
[20] 梁斌, 赵伟, 杨学云, 周建斌. 氮肥及其与秸秆配施在不同肥力土壤的固持及供应. 中国农业科学, 2012, 45:1750-1757.
Liang B, Zhao W, Yang X Y, Zhou J B. Nitrogen retention and supply after addition of N fertilizer and its combination with straw in the soils with different fertilities. Sci Agric Sin, 2012, 45:1750-1757 (in Chinese with English abstract).
[21] Zhao S C, Li K J, Zhou W, Qiu S H, Huang S W, He P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric Ecosyst Environ, 2016, 216:82-88.
doi: 10.1016/j.agee.2015.09.028
[22] 陈良, 池惠荣, 高占峰, 曾艳军, 徐晓荣. 主要农作物对 15N标记肥料丰度的选择: II. 玉米大豆. 核农学通报, 1991, 12(2):79-83.
Chen L, Chi H R, Gao Z F, Zeng Y J, Xu X R. Main crop fertilizer of 15N markers abundance choice: II. Corn, soybean. Bull Nucl Agron, 1991, 12(2):79-83 (in Chinese with English abstract).
[23] 龚振平, 邓乃榛, 宋秋来, 李中韬. 基于长期定位试验的松嫩平原还田玉米秸秆腐解特征研究. 农业工程学报, 2018, 34(8):139-145.
Gong Z P, Deng N Z, Song Q L, Li Z T. Decomposing characteristics of maize straw returning in Songnen Plain in long-time located experiment. Trans CSAE, 2018, 34(8):139-145 (in Chinese with English abstract).
[24] 何甜甜, 王静, 符云鹏, 符新妍, 刘天, 李亚坤, 李建华. 等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响. 环境科学, 2021, 42:450-458.
He T T, Wang J, Fu Y P, Fu X Y, Liu T, Li Y K, Li J H. Effects of adding straw and biochar with equal carbon content on soil respiration and microbial biomass carbon and nitrogen. Chin J Environ Sci, 2021, 42:450-458 (in Chinese with English abstract).
[25] Yan S S, Song J M, Fan J S, Yan C, Dong S K, Ma C M, Gong Z P. Changes in soil organic carbon fractions and microbial community under rice straw return in northeast China. Glob Ecol Conserv, 2020, 22:e00962.
[26] 于舒函, 龚振平, 马春梅, 王永吉, 张喜亭. 秸秆还田与施氮肥对松嫩平原玉米氮素吸收及产量的影响. 玉米科学, 2017, 25(4):129-134.
Yu S H, Gong Z P, Ma C M, Wang Y J, Zhang X T. Effects of straw returning and nitrogen fertilizer on nitrogen uptake and yield of maize in Songnen Plain. J Maize Sci, 2017, 25(4):129-134 (in Chinese with English abstract).
[27] 高杰, 于舒函, 李二艳, 于雷, 马春梅. 松嫩平原秸秆还田对连作春玉米氮素供应与吸收的影响. 核农学报, 2021, 35:183-191.
Gao J, Yu S H, Li E Y, Yu L, Ma C M. Effect of straw returning on the supply and absorption of nitrogen in continuous spring maize in Songnen Plain. Acta Agric Nucl Sin, 2021, 35:183-191 (in Chinese with English abstract).
[28] 王秋菊, 焦峰, 刘峰, 迟凤琴, 姜辉, 李鹏绯. 草甸白浆土稻秆氮利用效率及氮素调控对水稻产量的影响. 农业工程学报, 2019, 35(11):86-94.
Wang Q J, Jiao F, Liu F, Chi F Q, Jiang H, Li P F. Nitrogen utilization efficiency of rice straw and effect of nitrogen regulation technology on yield in meadow albic soil. Trans CSAE, 2019, 35(11):86-94 (in Chinese with English abstract).
[29] 韩上, 武际, 李敏, 唐杉, 王慧, 程文龙, 石祖梁, 桑亚松. 秸秆还田条件下氮肥运筹对作物产量和氮肥利用效率的影响. 中国土壤与肥料, 2020, (3):23-28.
Han S, Wu J, Li M, Tang S, Wang H, Cheng W L, Shi Z L, Sang Y S. Effects of nitrogen fertilization managements on crops yield and nitrogen nutrient use efficiency under straw returning. China Soils Fert, 2020, (3):23-28 (in Chinese with English abstract).
[30] 张维乐, 戴志刚, 任涛, 周先竹, 王忠良, 李小坤, 丛日环. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响. 中国农业科学, 2016, 49:1254-1266.
Zhang W L, Dai Z G, Ren T, Zhou X Z, Wang Z L, Li X K, Cong R H. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems. Sci Agric Sin, 2016, 49:1254-1266 (in Chinese with English abstract).
[31] 张鑫, 周卫, 艾超, 黄绍敏, 梁国庆. 秸秆还田下氮肥运筹对夏玉米不同时期土壤酶活性及细菌群落结构的影响. 植物营养与肥料学报, 2020, 26:295-306.
Zhang X, Zhou W, Ai C, Huang S M, Liang G Q. Effects of nitrogen management on soil enzyme activities and bacterial community structure in summer maize growing stages under straw incorporation. Plant Nutr Fert Sci, 2020, 26:295-306 (in Chinese with English abstract).
[32] 杨晨璐, 刘兰清, 王维钰, 任广鑫, 冯永忠, 杨改河. 麦玉复种体系下秸秆还田与施氮对作物水氮利用及产量的效应研究. 中国农业科学, 2018, 51:1664-1680.
Yang C L, Liu L Q, Wang W Y, Ren G X, Feng Y Z, Yang G H. Effects of the application of straw returning and nitrogen fertilizer on crop yields, water and nitrogen utilization under wheat- maize multiple cropping system. Sci Agric Sin, 2018, 51:1664-1680 (in Chinese with English abstract).
[33] 匡恩俊, 迟凤琴, 宿庆瑞, 张久明, 高中超. 三江平原地区不同有机物料腐解规律的研究. 中国生态农业学报, 2010, 18:736-741.
Kuang E J, Chi F Q, Su Q R, Zhang J M, Gao Z C. Decomposition regularity of organic materials in Sanjiang Plain region. Chin J Eco-Agric, 2010, 18:736-741 (in Chinese with English abstract).
[34] 张经廷, 张丽华, 吕丽华, 董志强, 姚艳荣, 金欣欣, 姚海坡, 贾秀领. 还田作物秸秆腐解及其养分释放特征概述. 核农学报, 2018, 32:2274-2280.
Zhang J T, Zhang L H, Lyu L H, Dong Z Q, Yao Y R, Jin X X, Yao H P, Jia X L. Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops. Acta Agric Nucl Sin, 2018, 32:2274-2280 (in Chinese with English abstract).
[35] 闫超. 水稻秸秆还田腐解规律及土壤养分特性的研究. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2015.
Yan C. Studies on Decomposition Regularity of Returning Rice Straw and Soil Nutrient Properties. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang,China, 2015 (in Chinese with English abstract).
[36] Zhang C M, Chang Z, Thompson G. Carbon and nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil Sci Plant Nutr, 2017, 63:377-387.
doi: 10.1080/00380768.2017.1359797
[37] 柴如山, 王擎运, 叶新新, 江波, 赵强, 王强, 章力干, 郜红建. 我国主要粮食作物秸秆还田替代化学氮肥潜力. 农业环境科学学报, 2019, 38:2583-2593.
Chai R S, Wang Q Y, Ye X X, Jiang B, Zhao Q, Wang Q, Zhang L G, Gao H J. Nitrogen resource quantity of main grain crop straw in China and the potential of synthetic nitrogen substitution under straw returning. J Agro-Environ Sci, 2019, 38:2583-2593 (in Chinese with English abstract).
[38] Lu C Y, Chen H H, Teng Z Z, Yuan L, Ma J, He H B, Chen X, Zhang X D, Shi Y. Effects of N fertilization and maize straw on the dynamics of soil organic N and amino acid N derived from fertilizer N as indicated by 15N labeling. Geoderma, 2018, 321:118-126.
doi: 10.1016/j.geoderma.2018.02.014
[39] 张雅洁, 陈晨, 陈曦, 常江, 章力干, 郜红建. 小麦-水稻秸秆还田对土壤有机质组成及不同形态氮含量的影响. 农业环境科学学报, 2015, 34:2155-2161.
Zhang Y J, Chen C, Chen X, Chang J, Zhang L G, Gao H J. Effects of wheat and rice straw returning on soil organic matter composition and content of different nitrogen forms in soil. J Agro-Environ Sci, 2015, 34:2155-2161 (in Chinese with English abstract).
[40] Grandy A S, Salam D S, Wickings K, McDaniel M D, Culman S W, Snapp S S. Soil respiration and litter decomposition responses to nitrogen fertilization rate in no-till corn systems. Agric Ecosyst Environ, 2013, 179:35-40.
doi: 10.1016/j.agee.2013.04.020
[41] 周岚, 杨永, 王占海, 陈阜, 曾昭海. 玉米-大豆轮作及氮肥施用对土壤细菌群落结构的影响. 作物学报, 2013, 39:2016-2022.
doi: 10.3724/SP.J.1006.2013.02016
Zhou L, Yang Y, Wang Z H, Chen F, Zeng Z H. Influence of maize-soybean rotation and N fertilizer on bacterial community composition. Acta Agron Sin, 2013, 39:2016-2022 (in Chinese with English abstract).
[42] 郑丹. 不同条件下作物秸轩养分释放规律的研究. 东北农业大硕士学位论文,黑龙江哈尔滨, 2012.
Zheng D. The Nutrient Releasing Regularity of Crop Stalks under Different Conditions. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang,China, 2012 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[4] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[5] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[6] XU Jing, GAO Jing-Yang, LI Cheng-Cheng, SONG Yun-Xia, DONG Chao-Pei, WANG Zhao, LI Yun-Meng, LUAN Yi-Fan, CHEN Jia-Fa, ZHOU Zi-Jian, WU Jian-Yu. Overexpression of ZmCIPKHT enhances heat tolerance in plant [J]. Acta Agronomica Sinica, 2022, 48(4): 851-859.
[7] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[8] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[9] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[10] FENG Jian-Chao, XU Bei-Ming, JIANG Xue-Li, HU Hai-Zhou, MA Ying, WANG Chen-Yang, WANG Yong-Hua, MA Dong-Yun. Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application [J]. Acta Agronomica Sinica, 2022, 48(3): 704-715.
[11] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[12] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[13] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[14] ZHANG Jun, ZHOU Dong-Dong, XU Ke, LI Bi-Zhong, LIU Zhong-Hong, ZHOU Nian-Bing, FANG Shu-Liang, ZHANG Yong-Jin, TANG Jie, AN Li-Zheng. Nitrogen fertilizer reduction and precise application model on mechanical transplanting japonica rice with good taste quality under straw returning in Huaibei Area [J]. Acta Agronomica Sinica, 2022, 48(2): 410-422.
[15] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
Full text



No Suggested Reading articles found!