Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 851-859.doi: 10.3724/SP.J.1006.2022.13013


Overexpression of ZmCIPKHT enhances heat tolerance in plant

XU Jing1(), GAO Jing-Yang1, LI Cheng-Cheng2, SONG Yun-Xia1, DONG Chao-Pei1, WANG Zhao1, LI Yun-Meng1, LUAN Yi-Fan1, CHEN Jia-Fa2, ZHOU Zi-Jian2,*(), WU Jian-Yu1,2,*()   

  1. 1College of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2021-02-03 Accepted:2021-07-12 Online:2022-04-12 Published:2021-08-10
  • Contact: ZHOU Zi-Jian,WU Jian-Yu E-mail:709823684@qq.com;zhouzijian19900601@136.com;wujianyu40@126.com
  • Supported by:
    Key Project of Henan Natural Science Foundation(162300410130)


The effects of high temperature stress on the normal growth and yield of plants is more and more serious. To adapt the changes of external environment, plants have evolved a series of molecular genetic mechanisms to respond to high temperature stress. The calcineurin B-like protein (CBL) interacting protein kinase (CIPK) is actively involved in response to high temperature stress depended on ABA signal transduction pathway in plants. Based on previous genome-wide association analysis, a candidate gene ZmCIPKHT related to maize high temperature tolerance was cloned in this study. Real-time quantitative PCR results showed that ZmCIPKHT gene was significantly induced by high temperature stress. Transient transformation of maize protoplasts revealed that ZmCIPKHT was localized in the nucleus. Overexpressing ZmCIPKHT plants of transgenic Arabidopsis thaliana had significantly higher survival rate and better growth status than wild type under high temperature stress. The yeast two-hybrid experiment confirmed that the interaction between ZmCIPKHT protein and ZmCBL4 protein in maize CBLs family. The relative expression levels of genes related to abscisic acid (ABA) pathway in transgenic Arabidopsis thaliana with ZmCIPKHT under high temperature stress were changed accordingly, indicating that the regulations of ZmCIPKHT genes under high temperature stress were in the ABA-dependent pathway. These results provide a new experimental basis for elucidating the molecular mechanism of maize CBL-CIPK signaling pathway dependent on ABA pathway to abiotic stress in plants.

Key words: maize, heat tolerance, protein kinase, CBL-CIPK, ABA signal pathway

Table 1

Primers used in this study"

Primer ID
Forward sequence (5'-3')
Reverse sequence (5'-3')

Fig. 1

Protein domains analysis of ZmCIPKHT and phylogenetic tree of CIPK protein in plants"

Fig. 2

Relative expression patterns of ZmCIPKHT genes"

Fig. 3

Molecular detection of ZmCIPKHT overexpression in Arabidopsis thaliana lines A: the detection of ZmCIPKHT overexpression lines; B: the transcriptional level of ZmCIPKHT; WT: wild type; OE: overexpression of Arabidopsis thaliana."

Fig. 4

Heat resistance identification and survival rates of transgenic Arabidopsis thaliana plants under high temperature stress A: phenotypic identification of transgenic Arabidopsis thaliana plants after heat stress; B: survival rates of transgenic Arabidopsis thaliana plants under high temperature stress; WT: wild type; OE: overexpression of Arabidopsis thaliana. The error bar represents mean ± SD of three biological replications."

Fig. 5

Relative expression levels of ABA pathway related genes of wild-type WT and overexpressed transgenic Arabidopsis thaliana OE-4 and OE-6 lines under normal conditions and high temperature stresses Wild-type materials (WT) and overexpressed Arabidopsis tharabidopsis lines (OE-4 and OE-6) were at 37℃ for a week to detect the relative expression levels of genes related to ABA pathway, the error bar represents mean ± SD of three biological replications."

Fig. 6

Subcellular localization of ZmCIPKHT in protoplasts GFP: GFP-labeled ZmCIPKHT was used for subcellular localization of maize protoplasts; Bright: protoplasts under the same field of view; Merged: the superposition of the light mirror and fluorescent picture; 35S:GFP: protoplast transferred into empty carrier; 35S:ZmCIPKHT: GFP: protoplast transferred into target carrier. Bar: 10 μm."

Fig. 7

Interaction between ZmCIPKHT and ZmCBLs by yeast two-hybrid experiment DDO: SD-Trp-Leu; QDO: SD-Trp-Leu-His-Ade."

Fig. 8

ZmCIPKHT-mediated Ca2+ pathway depended on ABA signaling pathway to regulate maize heat tolerance"

[1] Burke J J, Chen J. Enhancement of reproductive heat tolerance in plants. PLoS One, 2015, 10:e0122933.
[2] 任寒, 刘鹏, 董树亭, 张吉旺, 赵斌. 高温胁迫影响玉米生长发育的生理机制研究进展. 玉米科学, 2019, 27(5):109-115.
Ren H, Liu P, Dong S T, Zhang J W, Zhao B. Research progress on physiological mechanism of high temperature stress on growth and development of maize. J Maize Sci, 2019, 27(5):109-115 (in Chinese with English abstract).
[3] Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends Biochem Sci, 2012, 37:118-125.
doi: 10.1016/j.tibs.2011.11.007 pmid: 22236506
[4] Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss Y G, Maathuis F J, Goloubinoff P. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell, 2009, 21:2829-2843.
doi: 10.1105/tpc.108.065318
[5] Suzuki N, Sejima H, Tam R, Schlauch K, Mittler R. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana. Plant J, 2011, 66:844-851.
doi: 10.1111/j.1365-313X.2011.04550.x
[6] Rudd J J, Franklin-Tong V E. Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol, 2010, 151:7-33.
doi: 10.1046/j.1469-8137.2001.00173.x
[7] Hashimoto K, Eckert C, Anschütz U, Scholz M, Held K, Waadt R, Reyer A, Hippler M, Becker D, Kudla J. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL- interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins. J Biol Chem, 2012, 287:7956-7968.
doi: 10.1074/jbc.M111.279331 pmid: 22253446
[8] D’Angelo C, Weinl S, Batistic O, Pandey G K, Cheong Y H, Schültke S, Albrecht V, Ehlert B, Schulz B, Harter K, Luan S, Bock R, Kudla J. Alternative complex formation of the Ca- regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis. Plant J, 2006, 48:857-872.
doi: 10.1111/tpj.2006.48.issue-6
[9] Li L, Kim B G, Cheong Y H, Pandey G K, Luan S. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA, 2006, 103:12625-12630.
[10] DeFalco T A, Bender K W, Snedden W A. Breaking the code: Ca2+ sensors in plant signalling. Biochem J, 2009, 425:27-40.
doi: 10.1042/BJ20091147 pmid: 20001960
[11] Ma X, Li Q H, Yu Y N, Qiao Y M, Haq S U, Gong Z H. The CBL-CIPK pathway in plant response to stress signals. Int J Mol Sci, 2020, 21:5668.
doi: 10.3390/ijms21165668
[12] Yang Y, Wu Y, Ma L, Yang Z, Dong Q, Li Q, Ni X, Kudla J, Song C, Guo Y. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis. Plant Cell, 2019, 31:1367-1384.
doi: 10.1105/tpc.18.00568
[13] Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134:43-58.
pmid: 14730064
[14] Piao H L, Xuan Y H, Park S H, Je B I, Park S J, Park S H, Kim C M, Huang J, Wang G K, Kim M J, Kang S M, Lee I J, Kwon T R, Kim Y H, Yeo U S, Yi G, Son D, Han C D. OsCIPK31, a CBL-interacting protein kinase is involved in germination and seedling growth under abiotic stress conditions in rice plants. Mol Cells, 2010, 30:19-27.
doi: 10.1007/s10059-010-0084-1
[15] Cheong Y H, Pandey G K, Grant J J, Batistic O, Li L, Kim B G, Lee S C, Kudla J, Luan S. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf ranspiration and root potassium uptake in Arabidopsis. Plant J, 2007, 52:223-239.
pmid: 17922773
[16] Pandey G K, Kanwar P, Singh A, Steinhorst L, Pandey A, Yadav A K, Tokas I, Sanyal S K, Kim B G, Lee S C, Cheong Y H, Kudla J, Luan S. Calcineurin B-Like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis. Plant Physiol, 2015, 169:780-792.
doi: 10.1104/pp.15.00623
[17] Shi H, Ishitani M, Kim C, Zhu J K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA, 2000, 97:6896-6901.
doi: 10.1073/pnas.120170197
[18] Cui X Y, Du Y T, Fu J D, Yu T F, Wang C T, Chen M, Chen J, Ma Y Z, Xu Z S. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC Plant Biol, 2018, 18:93.
doi: 10.1186/s12870-018-1306-5
[19] Wang Y, Li T, John S J, Chen M, Chang J, Yang G, He G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. Plant Physiol Biochem, 2018, 123:103-113.
doi: 10.1016/j.plaphy.2017.11.019
[20] Gao J, Wang S, Zhou Z, Wang S, Dong C, Mu C, Song Y, Ma P, Li C, Wang Z, He K, Han C, Chen J, Yu H, Wu J. Linkage mapping and genome-wide association reveal candidate genes conferring thermotolerance of seed-set in maize. J Exp Bot, 2019, 70:4849-4864.
doi: 10.1093/jxb/erz171
[21] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Prot, 2007, 2:1565-1572.
doi: 10.1038/nprot.2007.199
[22] Wang Q, Yu G, Chen Z, Han J, Wang K. Optimization of protoplast isolation, transformation and its application in sugarcane (Saccharum spontaneum L.). Crop J, 2020, 2214-5141.
[23] Gao L, Shen G, Zhang L, Qi J, Zhang C, Ma C, Li J, Wang L, Malook S U, Wu J. An efficient system composed of maize protoplast transfection and HPLC-MS for studying the biosynthesis and regulation of maize benzoxazinoids. Plant Methods, 2019, 15:144.
doi: 10.1186/s13007-019-0529-2
[24] Zhang F, Li L, Jiao Z, Chen Y, Liu H, Chen X, Fu J, Wang G, Zheng J. Characterization of the calcineurin B-Like (CBL) gene family in maize and functional analysis of ZmCBL9 under abscisic acid and abiotic stress treatments. Plant Sci, 2016, 253:118-129.
doi: S0168-9452(16)30480-0 pmid: 27968980
[25] Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, Kudla J. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol, 2004, 134:43-58.
pmid: 14730064
[26] Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol, 2007, 144:1416-1428.
pmid: 17535819
[27] Tai F, Yuan Z, Li S, Wang Q, Liu F, Wang W. ZmCIPK8, a CBL- interacting protein kinase, regulates maize response to drought stress. Plant Cell Tissue Organ Cult, 2016, 124:459-469.
doi: 10.1007/s11240-015-0906-0
[28] 李健, 王逸茹, 张凌霄, 孙明昊, 秦阳, 郑军. 玉米ZmCIPK24-2基因在盐胁迫应答中的功能研究. 作物学报, 2020, 46:1351-1358.
doi: 10.3724/SP.J.1006.2020.03008
Li J, Wang Y R, Zhang L X, Sun M H, Qin Y, Zheng J. Function of ZmCIPK24-2 in response to salt stress in maize. Acta Agron Sin, 2020, 46:1351-1358 (in Chinese with English abstract).
[29] Chen X, Gu Z, Xin D, Hao L, Liu C, Huang J, Ma B, Zhang H. Identification and characterization of putative CIPK genes in maize. J Genet Genomics, 2011, 38:77-87.
doi: 10.1016/j.jcg.2011.01.005
[30] Charng Y Y, Liu H C, Liu N Y, Chi W T, Wang C N, Chang S H, Wang T T. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol, 2007, 143:251-262.
doi: 10.1104/pp.106.091322
[31] Wang D F, Pang X J, Yang F, Kou S, Zhang, Yu P X, Niu Y B, Antioxidative enzymes, calcium, and ABA signaling pathway are required for the stress tolerance of transgenic wheat plant by the ectopic expression of harpin protein fragment Hpa110-42 under heat stress. Russ J Plant Physiol, 2017, 64:899-905.
doi: 10.1134/S1021443717060140
[32] Chen K, Li G J, Bressan R A, Song C P, Zhu J K, Zhao Y. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62:25-54.
doi: 10.1111/jipb.v62.1
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[3] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[4] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[5] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[6] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[7] XU Ning-Kun, LI Bing, CHEN Xiao-Yan, WEI Ya-Kang, LIU Zi-Long, XUE Yong-Kang, CHEN Hong-Yu, WANG Gui-Feng. Genetic analysis and molecular characterization of a novel maize Bt2 gene mutant [J]. Acta Agronomica Sinica, 2022, 48(3): 572-579.
[8] SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738.
[9] QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319.
[10] YAN Yan, ZHANG Yu-Shi, LIU Chu-Rong, REN Dan-Yang, LIU Hong-Run, LIU Xue-Qing, ZHANG Ming-Cai, LI Zhao-Hu. Variety matching and resource use efficiency of the winter wheat-summer maize “double late” cropping system [J]. Acta Agronomica Sinica, 2022, 48(2): 423-436.
[11] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[12] YU Rui-Su, TIAN Xiao-Kang, LIU Bin-Bin, DUAN Ying-Xin, LI Ting, ZHANG Xiu-Ying, ZHANG Xing-Hua, HAO Yin-Chuan, LI Qin, XUE Ji-Quan, XU Shu-Tu. Dissecting the genetic architecture of lodging related traits by genome-wide association study and linkage analysis in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 138-150.
[13] ZHAO Xue, ZHOU Shun-Li. Research progress on traits and assessment methods of stalk lodging resistance in maize [J]. Acta Agronomica Sinica, 2022, 48(1): 15-26.
[14] NIU Li, BAI Wen-Bo, LI Xia, DUAN Feng-Ying, HOU Peng, ZHAO Ru-Lang, WANG Yong-Hong, ZHAO Ming, LI Shao-Kun, SONG Ji-Qing, ZHOU Wen-Bin. Effects of plastic film mulching on leaf metabolic profiles of maize in the Loess Plateau with two planting densities [J]. Acta Agronomica Sinica, 2021, 47(8): 1551-1562.
[15] ZHANG Xue-Lin, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize [J]. Acta Agronomica Sinica, 2021, 47(8): 1603-1615.
Full text



No Suggested Reading articles found!