Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 704-715.doi: 10.3724/SP.J.1006.2022.11007

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Distribution of phenolic compounds and antioxidant activities in layered grinding wheat flour and the regulation effect of nitrogen fertilizer application

FENG Jian-Chao1(), XU Bei-Ming1, JIANG Xue-Li1, HU Hai-Zhou1, MA Ying1, WANG Chen-Yang1,2, WANG Yong-Hua1, MA Dong-Yun1,2,*()   

  1. 1National Engineering Research Center for Wheat/Agronomy College of Henan Agricultural University, Zhengzhou 450046, Henan, China
    2National Key Laboratory of Wheat and Maize Crop Science/Henan Agricultural University, Zhengzhou 450046, Henan, China
  • Received:2021-01-13 Accepted:2021-06-16 Online:2022-03-12 Published:2021-07-22
  • Contact: MA Dong-Yun E-mail:fjc000@163.com;xmzxmdy@126.com
  • Supported by:
    National Key Research and Development Program of China(2016YFD0300404);Science and Technology Project of Henan Province(152102110067)

Abstract:

Clarifying the distribution of phenolic compounds in layered grinding wheat flour and its response to nitrogen fertilizer application would provide useful information for wheat quality improvement and high-quality cultivation. Two wheat cultivars, purple wheat (Jizi 439) and white wheat (Xinhuamai 818), were planted with two nitrogen application rate (HN, N 210 kg hm-2; LN, N 105 kg hm-2) in Zhengzhou and Yuanyang experimental sites during growing period in 2019 and 2020. The mature grains were ground into five milling fractionations (LY1, LY2 LY3, LY4, and LY5) from the bran layer to the endospermic layer by layered grinding, and the total phenolic content (TPC), the total flavonoids content (TFC), and the anthocyanin content (AC), and their antioxidant activity were determined. The results showed that the TPC, TFC, AC, and antioxidant activity (TEAC, FRAP) in free phenols and conjugated phenols extracts decreased from the outer layer flour fractionation to the inner layer flour fractionation. The purple wheat, named as Jizi 439, had a higher antioxidant content and antioxidant activity than white wheat (Xinhuamai 818), but the difference between the two cultivars displayed a decreasing trend from the bran layer flour fractionation to endosperm layer flour fractionation. The TPC, TFC, and AC of LY1 to LY3 flour fractionation increased with the increase of nitrogen fertilizer application except for TPC of LY1 in Yuanyang. However, the contents of total phenolics and total flavonoids of LY4 to LY5 flour fractionation had a weak response to nitrogen fertilizer application. The content of ferulic acid accounted for more than 93% of the TPC in wheat grains and had a higher value under low nitrogen condition. In conclusion, purple wheat had higher antioxidant substances such as phenolics than white wheat, and the difference between purple wheat and white wheat decreased with the deepening of grinding degree. The content and activity of antioxidants in the outer layer flour fractionation were significantly responsive to nitrogen regulation, and the content increased with the increase of nitrogen.

Key words: wheat, layered grinding wheat flour, antioxidant substance, phenolic acid, nitrogen fertilizer

Fig. 1

Variation of precipitation and monthly mean temperature in 2019 and 2020"

Fig. 2

Grain shape of Jizimai 439 after layer-by-layer grinding LY1: 100%-90%; LY2: 90%-70%; LY3: 70%-50%; LY4: 50%- 30%; LY5: 30%-0."

Fig. 3

Total phenol content in wheat grain flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210 N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. LY1: 100%-90%; LY2: 90%-70%; LY3: 70%-50%; LY4: 50%-30%; LY5: 30%-0; WG: whole grain flour."

Fig. 4

Total flavonoids content in wheat grain flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

Fig. 5

Anthocyanin content in wheat grain flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

Fig. 6

TEAC value of flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210 N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

Fig. 7

FRAP value of flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210 N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

Table 1

Effects of nitrogen fertilizer on phenolic acid components contents of wheat grain (μg g-1)"

地点
Site
酚类
Phenols
品种
Cultivar
处理
Treatment
香草酸
Vanilic
acid
咖啡酸
Caffeic
acid
丁香酸
Syringic
acid
对香豆酸
p-Coumaric
acid
阿魏酸
Ferulic
acid
总酚酸
Total phenolic
acid
郑州
Zhengzhou
游离酚
Free phenol
鑫华麦818
Xinhua 818
N105 1.81 f 0.18 d 0.16 f 2.37 e 0.48 d 4.99 e
N210 2.72 e 0.23 d 0.26 e 0.17 f 0.46 d 3.83 e
冀紫439
Jizi 439
N105 2.78 e 0.38 d 0.33 d 2.25 e 1.49 d 7.22 e
N210 2.65 e 0.64 cd 0.27 e 0.05 f 0.75 d 4.35 e
结合酚
Bound phenol
鑫华麦818
Xinhua 818
N105 8.81 c 2.44 a 1.34 c 14.61 a 440.45 bc 467.65 c
N210 5.58 d 1.07 bc 1.97 a 11.38 c 433.60 c 453.59 d
冀紫439
Jizi 439
N105 15.96 a 1.59 b 1.54 b 12.84 b 517.85 a 549.77 a
N210 10.30 b 2.31 a 1.92 a 10.13 d 455.89 b 480.54 b
原阳
Yuanyang
游离酚
Free phenol
鑫华麦818
Xinhua 818
N105 2.23 f 0.155 e 0.22 e 0.63 de 1.16 e 4.39 e
N210 2.35 f 0.20 e 0.31 d 0.43 de 1.16 e 4.45 e
冀紫439
Jizi 439
N105 3.05 e 0.82 d 0.39 d 1.11 d 0.94 e 6.30 e
N210 3.71 d 0.64 d 0.21 e 0.14 e 0.86 e 5.55 e
结合酚
Bound phenol
鑫华麦818
Xinhua 818
N105 6.18 b 2.42 b 1.74 c 9.57 b 383.27 c 403.18 c
N210 4.14 d 1.96 c 1.78 c 8.31 c 339.56 d 355.75 d
冀紫439
Jizi 439
N105 15.54 a 2.27 bc 1.81 b 11.85 a 533.25 a 564.73 a
N210 15.42 a 2.82 a 1.98 a 11.92 a 503.03 b 535.17 b

Fig. 8

DPPH value of flour with different grinding degrees XH-N105, XH-N210, JZ-N105, and JZ-N210 represent Xinhua 818 under 105 N hm-2, Xinhua 818 under 210 N hm-2, Jizi 439 under 105 N hm-2, and Jizi 439 under 210 N hm-2 treatment, respectively. Different lowercase letters above the column indicate significant difference at P < 0.05 between different varieties and treatments among the same layer. Treatments are the same as those given in Fig. 3."

[1] 赵广才, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 朱英杰. 小麦生产概况及其发展. 作物杂志, 2018, (4):1-7.
Zhao G C, Chang X H, Wang D M, Tao Z Q, Wang Y J, Yang Y S, Zhu Y J. General situation and development of wheat production. Crops, 2018, (4):1-7 (in Chinese with English abstract).
[2] Brandolini A, Castoldi P, Plizzari L, Hidalgo A. Triticum monococcum, Triticum turgidum and Triticum aestivum: a two-years evaluation Triticum monococcum, Triticum turgidum and Triticum aestivum: a two-years evaluation. J Cereal Sci, 2013, 58:123-131.
doi: 10.1016/j.jcs.2013.03.011
[3] Xiao J, Kai G, Yamamoto K, Chen X. Advance in dietary polyphenols as α-glucosidases inhibitors: a review on structure-activity relationship aspect. Crit Rev Food Sci, 2013, 53:818-836.
doi: 10.1080/10408398.2011.561379
[4] Mozaffarian D, Kumanyika S K, Lemaitre R N, Olson J L, Siscovick D S. Cereal, fruit, and vegetable fiber intake and the risk of cardiovascular disease in elderly individuals. JAMA, 2003, 289:1659-1666.
doi: 10.1001/jama.289.13.1659
[5] Dykes L, Rooney L W. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 2007, 52:105-111.
[6] Pérez-Jiménez J, Torres J L. Analysis of nonextractable phenolic compounds in foods: the current state of the art. J Agric Food Chem, 2011, 59:12713-12724.
doi: 10.1021/jf203372w
[7] Fardet A, Rock E, Rémésy C. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? J Cereal Sci, 2008, 48:258-276.
doi: 10.1016/j.jcs.2008.01.002
[8] Li L, Shewry P R, Ward J L. Phenolic acids in wheat varieties in the HEALTHGRAIN Diversity Screen. J Agric Food Chem, 2008, 56:9732-9739.
doi: 10.1021/jf801069s
[9] Naczk M, Shahidi F. Extraction and analysis of phenolics in food. J Chromatogr A, 2004, 1054:95-111.
doi: 10.1016/S0021-9673(04)01409-8
[10] Bunzel M, Ralph J, Marita J M, Hatfield R D, Steinhart H. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J Sci Food Agric, 2001, 81:653-660.
doi: 10.1002/(ISSN)1097-0010
[11] 宗学凤, 张建奎, 李帮秀, 余国东, 石有明, 王三根. 小麦籽粒颜色与抗氧化作用. 作物学报, 2006, 32:237-242.
Zong X F, Zhang J K, Li B X, Yu G D, Shi Y M, Wang S G. Relationship between antioxidation and grain colors of wheat (Triticum aestivum L.). Acta Agron Sin, 2006, 32:237-242 (in Chinese with English abstract).
[12] Liu Z H, Wang H Y, Wang X E, Zhang G P, Chen P D, Liu D J. Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. J Cereal Sci, 2007, 45:319-326.
doi: 10.1016/j.jcs.2006.10.004
[13] 郭明明, 赵广才, 郭文善, 常旭虹, 王德梅, 杨玉双, 王美, 范仲卿, 亓振, 王雨. 施氮量与行距对冬小麦品质性状的调控效应. 中国生态农业学报, 2015, 23:668-675.
Guo M M, Zhao G C, Guo W S, Chang X H, Wang D M, Yang Y S, Wang M, Fan Z Q, Qi Z, Wang Y. Effects of nitrogen rate and row spacing on winter wheat grain quality. Chin J Eco-Agric, 2015, 23:668-675 (in Chinese with English abstract).
[14] 赵俊晔, 于振文. 高产条件下施氮量对冬小麦氮素吸收分配利用的影响. 作物学报, 2006, 32:484-490.
Zhao J Y, Yu Z W. Effects of nitrogen fertilizer rate on uptake, distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition. Acta Agron Sin, 2006, 32:484-490.
[15] 陆增根, 戴廷波, 姜东, 荆奇, 吴正贵, 周培南, 曹卫星. 氮肥运筹对弱筋小麦群体指标与产量和品质形成的影响. 作物学报, 2007, 33:590-597.
Lu Z G, Dai T B, Jiang D, Jing Q, Wu Z G, Zhou P N, Cao W X. Effects of nitrogen strategies on population quality index and grain yield & quality in weak-gluten wheat. Acta Agron Sin, 2007, 33:590-597 (in Chinese with English abstract).
[16] 代新俊, 杨珍平, 陆梅, 李慧, 樊攀, 宋佳敏, 高志强. 不同形态氮肥及其用量对强筋小麦氮素转运, 产量和品质的影响. 植物营养与肥料学报, 2019, 25:701-720.
Dai X J, Yang Z P, Lu M, Li H, Fan P, Song J M, Gao Z Q. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat. Plant Nutr Fert Sci, 2019, 25:701-720 (in Chinese with English abstract).
[17] 石玉, 张永丽, 于振文. 施氮量对不同品质类型小麦子粒蛋白质组分含量及加工品质的影响. 植物营养与肥料学报, 2010, 16:33-40.
Shi Y, Zhang Y L, Yu Z W. Effects of nitrogen fertilization on protein components contents and processing quality of different wheat genotypes. Plant Nutr Fert Sci, 2010, 16:33-40 (in Chinese with English abstract).
[18] Engert N, John A, Henning W, Honermeier B. Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization. J Appl Bot Food Qual, 2011, 84:111-118.
[19] 孙德祥, 马冬云, 王晨阳, 李耀光, 刘卫星, 李秋霞, 冯伟, 郭天财. 不同水氮处理对豫麦49-198籽粒抗氧化物含量的影响. 作物学报, 2014, 40:2046-2051.
doi: 10.3724/SP.J.1006.2014.02046
Sun D X, Ma D Y, Wang C Y, Li Y G, Liu W X, Li Q X, Feng W, Guo T C. Effects of irrigation and nitrogen on antioxidant contents in Yumai 49-198 grains. Acta Agron Sin, 2014, 40:2046-2051 (in Chinese with English abstract).
[20] Wang Y, Li C, Wang Q, Wang H, Duan B, Zhang G. Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J Soil Sediment, 2016, 16:1858-1870.
doi: 10.1007/s11368-016-1375-8
[21] He J, Penson S, Powers S J, Hawes C, Tosi P. Spatial patterns of gluten protein and polymer distribution in wheat grain. J Agric Food Chem, 2013, 61:6207-6215.
doi: 10.1021/jf401623d
[22] Wan Y, Gritsch C S, Hawkesford M J, Shewry P R. Effects of nitrogen nutrition on the synthesis and deposition of the ω-gliadins of wheat. Ann Bot, 2014, 4:607-615.
doi: 10.1093/aob/4.3.607
[23] Adom K K, Liu R H. Antioxidant activity of grains. J Agric Food Chem, 2002, 50:6182-6187.
doi: 10.1021/jf0205099
[24] Yu L, Haley S, Perret J, Harris M. Antioxidant properties of hard winter wheat extracts. Food Chem, 2002, 78:457-461.
doi: 10.1016/S0308-8146(02)00156-5
[25] Chlopicka J, Pasko P, Gorinstein S, Jedryas A, Zagrodzki P. Total phenolic and total flavonoid content, antioxidant activity and sensory evaluation of pseudocereal breads. LWT-Food Sci Technol, 2012, 46:548-555.
doi: 10.1016/j.lwt.2011.11.009
[26] Sochor J, Ryvolova M, Krystofova O, Salas P, Kizek R. Fully automated spectrometric protocols for determination of antioxidant activity. advantages and disadvantages. Molecules, 2010, 15:8618-8640.
doi: 10.3390/molecules15128618 pmid: 21116230
[27] Huang D, Ou B, Prior R L. The chemistry behind antioxidant capacity assays. J Agric Food Chem, 2005, 53:1841-1856.
doi: 10.1021/jf030723c
[28] Abdel-Aal E S M, Young J C, Rabalski I. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J Agric Food Chem, 2006, 54:4696-4704.
doi: 10.1021/jf0606609
[29] Žilić S, Serpen A, Akıllıoğlu G, Janković M, Gökmen V. Distributions of phenolic compounds, yellow pigments and oxidative enzymes in wheat grains and their relation to antioxidant capacity of bran and rebranded flour. J Cereal Sci, 2012, 56:652-658.
doi: 10.1016/j.jcs.2012.07.014
[30] Hung P V, Maeda T, Miyatake K, Morita N. Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method. Food Res Int, 2009, 42:185-190.
doi: 10.1016/j.foodres.2008.10.005
[31] Ma D Y, Li Y G, Zhang J, Wang C Y, Qin H X, Ding H N, Xie Y X, Guo T C. Accumulation of phenolic compounds and expression profiles of phenolic acid biosynthesis-related genes in developing grains of white, purple, and red wheat. Front Plant Sci, 2016, 7:528.
[32] Liu Q, Qiu Y, Beta T. Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. J Agric Food Chem, 2010, 58:9235.
doi: 10.1021/jf101700s
[33] 刘富明, 母婷婷, 王彩霞, 李诚, 蒲至恩. 蓝色和紫色小麦多酚提取物的体外抗氧化活性评价. 食品与发酵工业, 2019, 45:202-206.
Liu F M, Mu T T, Wang C X, Li C, Pu Z E. Evaluation of in vitro antioxidant activities of polyphenol extracts from blue and purple wheat. Food Ferment Ind, 2019, 45:202-206 (in Chinese with English abstract).
[34] Adom K K, Sorrells M E, Liu R H. Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem, 2003, 51:7825-7834.
doi: 10.1021/jf030404l
[35] 胡一晨, 赵钢, 秦培友, 成颜芬, 曹亚楠, 邹亮, 任贵兴. 藜麦活性成分研究进展. 作物学报, 2018, 44:1579-1591.
Hu Y C, Zhao G, Qin P Y, Cheng Y F, Cao Y N, Zou L, Ren G X. Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.). Acta Agron Sin, 2018, 44:1579-1591 (in Chinese with English abstract).
[36] Engert N, John A, Henning W, Honermeier B. Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization Triticum aestivum ssp. aestivum L.) in dependency of nitrogen fertilization. J Appl Bot Food Qual, 2011, 84:111-118.
[37] Langenkmper G, Zrb C, Seifert M, Mder P, Betsche T. Nutritional quality of organic and conventional wheat. J Appl Bot Food Qual, 2006, 80:150-154.
[38] Fares C, Menga V, Codianni P, Russo M, Perrone D, Suriano S, Michele S, Rascio A. Phenolic acids variability and grain quality of organically and conventionally fertilised old wheats under a warm climate. J Sci Food Agric, 2019, 99:4615-4623.
doi: 10.1002/jsfa.2019.99.issue-10
[39] Stracke B A, Eitel J, Watzl B, Mäder P, Rüfer C. Triticum aestivum L.): a comparative study Triticum aestivum L.): a comparative study. J Agric Food Chem, 2009, 57:10116-10121.
doi: 10.1021/jf901267z
[40] Pandino G, Mattiolo E, Lombardo S, Lombardo G M, Mauromicale G. Organic cropping system affects grain chemical composition, rheological and agronomic performance of durum wheat. Agriculture-Basel, 2020, 10:46.
[1] ZHANG Yi-Duo, LI Guo-Qiang, KONG Zhong-Xin, WANG Yu-Quan, LI Xiao-Li, RU Zhen-Gang, JIA Hai-Yan, MA Zheng-Qiang. Breeding of FHB-resistant wheat line Bainong 4299 by gene pyramiding [J]. Acta Agronomica Sinica, 2022, 48(9): 2221-2227.
[2] TAN Zhao-Guo, YUAN Shao-Hua, LI Yan-Mei, BAI Jian-Fang, YUE Jie-Ru, LIU Zi-Han, ZHANG Tian-Bao, ZHAO Fu-Yong, ZHAO Chang-Ping, XU Ben-Bo, ZHANG Sheng-Quan, PANG Bin-Shuang, ZHNAG Li-Ping. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242-2254.
[3] FENG Zi-Heng, LI Xiao, DUAN Jian-Zhao, GAO Fei, HE Li, YANG Tian-Chong, RONG Ya-Si, SONG Li, YIN Fei, FENG Wei. Hyperspectral remote sensing monitoring of wheat powdery mildew based on feature band selection and machine learning [J]. Acta Agronomica Sinica, 2022, 48(9): 2300-2314.
[4] CAO Ji-Ling, ZENG Qing, ZHU Jian-Guo. Responses of photosynthetic characteristics and gene expression in different wheat cultivars to elevated ozone concentration at grain filling stage [J]. Acta Agronomica Sinica, 2022, 48(9): 2339-2350.
[5] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[6] LI Yong-Bo, CUI De-Zhou, HUANG Chen, SUI Xin-Xia, FAN Qing-Qi, CHU Xiu-Sheng. Preparation of highly specific wheat ATG8 antibody and its application in the detection of autophagy [J]. Acta Agronomica Sinica, 2022, 48(9): 2390-2399.
[7] WANG Yun-Qi, GAO Fu-Li, LI Ao, GUO Tong-Ji, QI Liu-Ran, ZENG Huan-Yu, ZHAO Jian-Yun, WANG Xiao-Ge, GAO Guo-Ying, YANG Jia-Peng, BAI Jin-Ze, MA Ya-Huan, LIANG Yue-Xin, ZHANG Rui. Variation of ear temperature after anthesis and its relationship with yield in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2400-2408.
[8] LIU Kun, HUANG Jian, ZHOU Shen-Qi, ZHANG Wei-Yang, ZHANG Hao, GU Jun-Fei, LIU Li-Jun, YANG Jian-Chang. Effects of panicle nitrogen fertilizer rates on grain yield in super rice varieties with different panicle sizes and their mechanism [J]. Acta Agronomica Sinica, 2022, 48(8): 2028-2040.
[9] DU Qi-Di, GUO Hui-Jun, XIONG Hong-Chun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, SONG Xi-Yun, LIU Lu-Xiang. Gene mapping of apical spikelet degeneration mutant asd1 in wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1905-1913.
[10] FENG Ya-Juan, LI Ting-Xuan, PU Yong, ZHANG Xi-Zhou. Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type [J]. Acta Agronomica Sinica, 2022, 48(7): 1761-1770.
[11] TAO Yu, YAO Yu, WANG Kun-Ting, XING Zhi-Peng, ZHAI Hai-Tao, FENG Yuan, LIU Qiu-Yuan, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, ZHANG Hong-Cheng. Combined effects of panicle nitrogen fertilizer amount and shading during grain filling period on grain quality of conventional japonica rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1730-1745.
[12] LIU A-Kang, MA Rui-Qi, WANG De-Mei, WANG Yan-Jie, YANG Yu-Shuang, ZHAO Guang-Cai, CHANG Xu-Hong. Effects of filming and supplemental nitrogen fertilizer application on plant growth and population quality of late sowing winter wheat before winter [J]. Acta Agronomica Sinica, 2022, 48(7): 1771-1786.
[13] WANG Juan, LIU Yi, YAO Dan-Yu, ZOU Jing-Wei, XIAO Shi-He, SUN Guo-Zhong. Identification on sensitivity of wheat to low temperature at reproductive stages [J]. Acta Agronomica Sinica, 2022, 48(7): 1721-1729.
[14] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[15] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .