Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (7): 1761-1770.doi: 10.3724/SP.J.1006.2022.11046


Characteristics of cadmium accumulation and distribution in different organs of wheat with different cadmium-accumulating type

FENG Ya-Juan1(), LI Ting-Xuan1, PU Yong2, ZHANG Xi-Zhou1,*()   

  1. 1College of Resources, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Luzhou Municipal Bureau of Agriculture and Rural Affairs, Luzhou 646000, Sichuan, China
  • Received:2021-04-28 Accepted:2021-09-09 Online:2022-07-12 Published:2021-10-15
  • Contact: ZHANG Xi-Zhou E-mail:fengyajj@163.com;zhangxzhou@163.com
  • Supported by:
    Major Science and Technology Project of Sichuan Province(2018SZDZX0029);National Key Research and Development Program of China(2018YFC1802605)


The study of cadmium accumulation and distribution characteristics in different organs of wheat with low Cd accumulation is helpful to clarify the mechanism of low Cd accumulation in grain, which is of great significance for cultivating wheat varieties with Cd safety. A pot experiment was conducted to clarify the characteristics of Cd accumulation and distribution in different organs of different Cd accumulating wheat materials at the late growth stages. The physiological characteristics of the key organs, namely node I and glume, were further explored. The results showed that there was significant difference of Cd accumulation and distribution between the two wheats at maturity stage. Cd concentrations in node I and glume of Mianmai 37 were significantly higher than those of Kangxiu 3816. The stage of from filling to maturity was the key period for Cd accumulation in node I and glume of the accumulation of Mianmai 37. In subcellular level, Cd in node I and glume of both wheat was mostly distributed in the cell wall, accounting for 70%-80%. The distribution ratio of the soluble fraction of Mianmai 37 node I was 18%, and that of Kangxiu 3816 was 15%. The distribution ratio of the soluble fraction of Mianmai 37 glume was 19%, which was 2.7 times that of Kangxiu 3816. More Cd was found to distribute in soluble faction in node I and glume of Mianmai 37 compared with Kangxiu 3816. There was no significant difference of GSH concentration in node I of the two wheats at filling stage. The PC1 and PC2 concentrations in node I of Mianmai 37 were significantly lower than those of Kangxiu 3816, while the PC3 and PC4 concentrations were significantly higher. The concentrations of GSH, PC1, PC2, PC3, and PC4 in the glume of Mianmai 37 were significantly higher than those of Kangxiu 3816. Cd retention in node I and the soluble fraction of glumes, as well as the great increase of NPT concentrations, contributed to low Cd accumulation in Mianmai 37. The present study investigates the mechanism of Cd retention in the key organs of wheat, which is of great significance to clarify the mechanism of Cd accumulation in wheat grains.

Key words: cadmium, low accumulation wheat, subcellular, non-protein, node, glume

Fig. 1

Location diagram of different organs in wheat"

Fig. 2

Cd concentrations in different parts of wheats with different Cd accumulation types Values represent means ± standard error values. The picture (top-right) shows Cd contents of roots, stems, leaves, ears, and grains. Different lowercase letters indicate significant differences at P < 0.05 among different parts at the same lines, The different “*” symbols represent significant differences between different materials when treated with the same Cd at P < 0.05."

Table 1

Transport coefficients different parts of Cd at maturity stage of wheat with different Cd accumulation types"

TFA-B 绵麦37 Mianmai 37 抗锈3816 Kangxiu 3816
根-茎 Root-Stem 0.846 ± 0.02* 0.593 ± 0.01
茎-叶 Stem-Leaf 1.287 ± 0.06 1.968 ± 0.02*
叶-穗 Leaf-Ear 1.439 ± 0.02* 0.541 ± 0.03
穗-籽粒 Ear-Grain 0.367 ± 0.01 1.678 ± 0.01*
叶片IV-节点III Leaf IV-Node III 0.435 ±0.024 0.441 ± 0.006
叶片III-节点II Leaf III-Node II 0.705 ± 0.043 0.806 ± 0.046
叶片II-节点I Leaf II-Node I 2.102 ± 0.007* 1.183 ± 0.056
节间IV-节点III Stem IV-Node III 1.172 ± 0.126 1.196 ± 0.031
节间III-节点II Stem III-Node II 1.882 ± 0.055 1.900 ± 0.094
节间II-节点I Stem II-Node I 3.337 ± 0.218* 2.620 ± 0.092
节点III-节间III Node III-Stem III 0.758 ± 0.024 0.669 ± 0.003
节点II-节间II Node II-Stem II 0.543 ± 0.029 0.434 ± 0.015
节点I-节间I Node I-Stem I 0.497 ± 0.052 0.626 ± 0.070
节间IV-叶片IV Stem IV-Leaf IV 2.600 ± 0.327 2.713 ± 0.072
节点III-叶片III Node III-Leaf III 2.151 ± 0.055* 1.582 ± 0.068
节点II-叶片II Node II-Leaf II 0.830 ± 0.043 1.034 ± 0.093*
节点I-叶片I Node I-Leaf I 0.341 ± 0.020 0.799 ± 0.059*
节间I-花梗 Stem I-Pedcial 1.816 ± 0.047 1.814 ± 0.102
叶片I-花梗 Leaf I-Pedcial 3.241 ± 0.103* 1.483 ± 0.089
花梗-颖壳 Pedcial-Glume 0.387 ± 0.026* 0.256 ± 0.015
颖壳-籽粒 Glume-Grain 0.575 ± 0.071 2.368 ± 0.109*

Fig. 3

Cd concentrations in node I (A) and glume (B) of wheats with different Cd accumulation types at different growth stage Values represent means ± standard error value. Different lowercase letters indicate significant differences at P < 0.05 among different growth stages at the same lines. The different “*” symbols represent significant differences between different lines with the same stage at P < 0.05."

Table 2

Transport coefficients at node I and glume of Cd at different growth stage of wheats with different Cd accumulation types"

TFA-B 开花期 Flowering stage 灌浆期 Filling stage 成熟期 Maturity stage
Mianmai 37
Kangxiu 3816
Mianmai 37
Kangxiu 3816
Mianmai 37
Kangxiu 3816
叶片II-节点I Leaf II-Node I 2.673 ± 0.250 b 2.100 ± 0.084 a 3.466 ± 0.116 a 2.994 ± 0.335 a 2.102 ± 0.007 c* 1.183 ± 0.056 b
节间II-节点I Stem II-Node I 1.657 ± 0.055 c 1.750 ± 0.039 b 4.558 ± 0.180 a 10.707± 0.197 a* 3.337 ± 0.218 b* 2.620 ± 0.092 b
节点I-节间I Node I-Stem I 0.406 ± 0.011 b 0.565 ± 0.044 a* 0.234 ± 0.006 c* 0.174 ± 0.010 b 0.497 ± 0.052 a 0.626 ± 0.070 a
节点I-叶片I Node I-Leaf I 0.185 ± 0.007 b 0.345 ± 0.018 b* 0.173 ± 0.005 b 0.208 ± 0.027 c 0.341 ± 0.020 a 0.799 ± 0.059 a*
花梗-颖壳 Pedcial-Glume 0.631 ± 0.006 a 0.682 ± 0.024 a 0.458 ± 0.033 b* 0.392 ± 0.009 b 0.387 ± 0.026 b* 0.256 ± 0.015 c
颖壳-籽粒 Glume-Grain 0.643 ± 0.023 a 2.293 ± 0.149 a* 0.575 ± 0.071 a 2.368 ± 0.109 a*

Fig. 4

Percentage of Cd in the subcellular components of wheats with different Cd accumulation types"

Fig. 5

NPT concentration in node I (A) and glume (B) of wheats with different Cd accumulation types at filling stage Values represent means ± standard error values. Different lowercase letters indicate significant differences at P < 0.05 among different Cd levels with the same lines. The different “*” symbols represent significant differences between different materials when treated with the same Cd at P < 0.05."

[1] 许艳萍, 杨明, 郭鸿彦, 杨清辉. 5个工业大麻品种对5种重金属污染土壤的修复潜力. 作物学报, 2020, 46: 1970-1978.
doi: 10.3724/SP.J.1006.2020.04010
Xu Y P, Yang M, Guo H Y, Yang Q H. Phytoremediation potential of five industrial hemp varieties on five heavy metal polluted soils. Acta Agron Sin, 2020, 46: 1970-1978. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.04010
[2] Hu Y M, Zhou J, Du B Y, Liu H L, Zhang W T, Liang J N, Zhang W H, You L Y, Zhou J. Health risks to local residents from the exposure of heavy metals around the largest copper smelter in China. Ecotox Environ Saf, 2019, 171: 329-336.
doi: 10.1016/j.ecoenv.2018.12.073
[3] Abbas M S, Akmal M, Ullah S, Hassan M, Farooq S. Effectiveness of zinc and gypsum application against cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Soil Sci Plant Anal, 2017, 48: 1659-1668.
doi: 10.1080/00103624.2017.1373798
[4] 张云, 王丹媚, 王孝源, 任晴雯, 唐可, 张丽宇, 吴玉环, 刘鹏. 外源茉莉酸对菊芋镉胁迫下光合特性及镉积累的影响. 作物学报, 2021, 47: 2490-2500.
doi: 10.3724/SP.J.1006.2021.04246
Zhang Y, Wang D M, Wang X Y, Ren Q W, Tang K, Zhang L Y, Wu Y H, Liu P. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress. Acta Agron Sin, 2021, 47: 2490-2500. (in Chinese with English abstract)
[5] Qin S Y, Liu H G, Nie Z J, Rengel Z, Gao W, Li C, Zhao P. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere, 2020, 30: 168-180.
doi: 10.1016/S1002-0160(20)60002-9
[6] Yamaguchi M, Miyadate H, Akagi H, Fujimura T, Sakurai K, Satoh H, Tezuka K, Takahashi H, Satoh N N, Kawamoto T, Katou K, Masaki S, Watanabe A, Matsumoto S, Kodama I. A single recessive gene controls cadmium translocation in the cadmium hyperaccumulating rice cultivar Cho-Ko-Koku. Theor Appl Genet, 2010, 120: 1175-1182.
doi: 10.1007/s00122-009-1244-6
[7] Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Jian F M. Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA, 2010, 107: 16500-16505.
doi: 10.1073/pnas.1005396107
[8] Xu Q, Wang C, Li S, Li B, Li Q, Chen G, Chen W, Wang F. admium adsorption, chelation and compartmentalization limit root-to-shoot translocation of cadmium in rice (Oryza sativa L.). Environ Sci Pollut Res Int, 2017, 24: 11319-11330.
doi: 10.1007/s11356-017-8775-1
[9] Guo G H, Lei M, Wang Y W, Song B, Yang J. Accumulation of As, Cd, and Pb in sixteen wheat cultivars grown in contaminated soils and associated health risk assessment. Int J Environ Res Public Health, 2018, 15: 2601-2618.
doi: 10.3390/ijerph15112601
[10] 张玉盛, 肖欢, 吴勇俊, 杨小粉, 汪泽钱, 伍湘, 向焱赟, 张小毅, 敖和军. 粒肥施用时期对水稻镉积累的影响初探. 华北农学报, 2020, 35(2): 144-151.
Zhang Y S, Xiao H, Wu Y J, Yang X F, Wang J Q, Wu X, Xiang Y Y, Zhang X Y, Ao H J. Effect of application period of granular fertilizer on cadmium accumulation in rice. Acta Agric Boreali-Sin, 2020, 35(2): 144-151. (in Chinese with English abstract)
[11] Kubo K, Kobayashi H, Fujita M, Ota T, Minamiyama Y, Watanabe Y, Nakajima T, Shinano T. Varietal differences in the absorption and partitioning of cadmium in common wheat (Triticum aestivum L.) . Environ Exp Bot , 2016, 124: 79-88.
[12] Greger M, Landberg T. Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant Soil, 2008, 312: 195-205.
doi: 10.1007/s11104-008-9725-y
[13] Zhang L G, Zhang C, Du B Y, Lu B X, Hou D M, Zhou J, Zhou J. Effects of node restriction on cadmium accumulation in eight Chinese wheat (Triticum turgidum) cultivars. Sci Total Environ, 2020, 725: 138358.
doi: 10.1016/j.scitotenv.2020.138358
[14] 彭秋, 李桃, 徐卫红, 焦璐琛, 邓继宝. 不同品种辣椒镉亚细胞分布和化学形态特征差异. 环境科学, 2019, 40: 3347-3354.
pmid: 31854737
Peng Q, Li T, Xu W H, Jiao L C, Deng J B. Differences in the cadmium-enrichment capacity and subcellular distribution and chemical form of cadmium in different varieties of pepper. Environ Sci, 2019, 40: 3347-3354. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201901112 pmid: 31854737
[15] Fu X, Dou C M, Chen Y X, Chen X C, Shi J Y, Yu M G, Xu J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater, 2011, 186: 103-107.
doi: 10.1016/j.jhazmat.2010.10.122
[16] Chen G C, Liu Y Q, Wang R M, Zhang J F, Owens G. Cadmium adsorption by willow root: the role of cell walls and their subfractions. Environ Sci Pollut Res Int, 2013, 20: 5665-5672.
doi: 10.1007/s11356-013-1506-3
[17] 陈爱葵, 王茂意, 刘晓海, 曾小龙. 水稻对重金属镉的吸收及耐性机理研究进展. 生态科学, 2013, 32: 514-522.
Chen A K, Wang M Y, Liu X H, Zeng X L. Research progress on the effect of cadmium on rice and its absorption and tolerance mechanisms. Ecol Sci, 2013, 32: 514-522. (in Chinese with English abstract)
[18] Huang J, Zhang Y, Peng J S, Zhong C, Yi H Y, Ow D W, Gong J M. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol, 2012, 158: 1779-1788.
[19] Hart J J, Welch R M, Norvell W A, Sullivan L A, Kochian L V. Characterization of cadmium binding, uptake, and translocation in intact seedling of bread and durum wheat cultivars. Plant Physiol, 1998, 116: 1413-1420.
pmid: 9536059
[20] 王芳, 丁杉, 张春华, 葛滢. 不同镉耐性水稻非蛋白巯基及镉的亚细胞和分子分布. 农业环境科学学报, 2010, 29: 625-629.
Wang F, Ding S, Zhang C H, Ge Y. Non-protein thiols, subcellular and molecular distribution of cadmium in two rice cultivars with difference tolerance. J Agro-Environ Sci, 2010, 29: 625-629. (in Chinese with English abstract)
[21] Sun Q, Wang X R, Ding S M, Yuan X F. Effects of exogenous organic chelators on phytochelatins production and its relationship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress. Chemosphere, 2005, 60: 22-31.
pmid: 15910898
[22] 冯亚娟, 黄议漫, 余海英, 张锡洲. 籽粒镉低积累小麦材料的筛选及稳定性分析. 麦类作物学报, 2021, 41: 842-850.
Feng Y J, Huang Y M, Yu H Y, Zhang X Z. Screening of wheat materials with low cadmium accumulation in grains and characteristics of cadmium accumulation. J Triticeae Crops, 2021, 41: 842-850. (in Chinese with English abstract)
[23] 明毅, 张锡洲, 余海英. 小麦籽粒镉积累差异评价. 中国农业科学, 2018, 51: 4219-4229.
Ming Y, Zhang X Z, Yu H Y. The evaluation of Cd accumulation in grains of different wheat materials. Sci Agric Sin, 2018, 51: 4219-4229. (in Chinese with English abstract)
[24] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
Lu R K. Chemical Analysis Method of Soil Agriculture. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[25] 中华人民共和国国家标准.土壤质量铅、镉的测定石墨炉原子吸收分光光度法(GB T17141-1997). 1997. pp 93-98.
National Standards of the People’s Republic of China.Soil Quality-Determination of Lead, Cadmium-Graphite Furnace Atomic Absorption Spectrophotometry (GB T17141-1997). 1997. pp 93-98. (in Chinese)
[26] 中华人民共和国国家标准. 土壤质量有效态铅和镉的测定原子吸收法(GBT23739-2009) . 2009. pp 1-3.
National Standards of the People’s Republic of China. Soil Quality-Analysis of Available Lead and Cadmium Contents in Soils- Atomic Absorption Spectrophotometry (GBT23739-2009) . 2009. pp 1-3. (in Chinese)
[27] 中华人民共和国国家标准.食品安全国家标准食品中多元素的测定(GB 5009.268-2016). 2016. pp 1-14.
National Standards of the People’s Republic of China. National Standard for Food Safety-Determination of Multi-Elements in Food (GB 5009. 268-2016). 2016. pp 1-14. (in Chinese)
[28] Lai H Y. Effects of leaf area and transpiration rate on accumulation and compartmentalization of cadmium in Impatiens walleriana . Water Air Soil Pollut, 2015, 226: 2246.
doi: 10.1007/s11270-014-2246-9
[29] Huang G, Ding C, Guo F, Li X, Zhou Z, Zhang T, Wang X. The role of node restriction on Cd accumulation in the brown rice of twelve Chinese rice (Oryza sativa L.) cultivars. J Agric Food Chem, 2017, 65: 10157-10164.
doi: 10.1021/acs.jafc.7b03333
[30] Liu C X, Guttieri M J, Waters B M, Eskridge K M, Easterly A, Baenziger P S. Cadmium concentration in terminal tissues as tools to select low-cadmium wheat. Plant Soil, 2018, 430: 127-138.
doi: 10.1007/s11104-018-3712-8
[31] Herren T, Feller U. Transfer of zinc from xylem to phloem in the peduncle of wheat. J Plant Nutr, 1994, 17: 1587-1598.
doi: 10.1080/01904169409364831
[32] Stephan U W, Scholz G. Nicotianamine: mediator of transport of iron and heavy metals in the phloem. Physiol Plant, 1993, 88: 522-529.
[33] 张子叶, 纪雄辉, 谢运河, 柳赛花, 田发祥, 易红伟. 水稻对镉和砷的吸收转运规律研究. 杂交水稻, 2020, 35(6): 68-74.
Zhang Z Y, Ji X H, Xie Y H, Liu S H, Tian F X, Yi H W. Studies on the uptake and transport dynamics of cadmium and arsenic in rice. Hybrid Rice, 2020, 35(6): 68-74. (in Chinese with English abstract)
[34] Shi G L, Li D J, Wang Y F, Liu C H, Hu Z B, Lou L Q, Rengel Z, Cai S. Accumulation and distribution of arsenic and cadmium in winter wheat (Triticum aestivum L.) at different developmental stages. Sci Total Environ, 2019, 667: 532-539.
doi: 10.1016/j.scitotenv.2019.02.394
[35] 倪中应, 章明奎, 王京文, 李丹, 石一珺. 水稻不同生育期镉吸收与积累特征研究. 农学学报, 2020, 10(3): 49-54.
Ni Z Y, Zhang M K, Wang J W, Li D, Shi Y J. Cadmium uptake and accumulation in rice at different growth stages. J Agric, 2020, 10(3): 49-54. (in Chinese with English abstract)
[36] Rodda M S, Li G, Reid R J. The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant Soil, 2011, 347: 105-114.
doi: 10.1007/s11104-011-0829-4
[37] Harris N S, Taylor G J. Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol, 2013, 13: 103.
doi: 10.1186/1471-2229-13-103 pmid: 23856013
[38] 赵步洪, 张洪熙, 奚岭林, 朱庆森, 杨建昌. 杂交水稻不同器官镉浓度与累积量. 中国水稻科学, 2006, 20: 306-312.
Zhao B H, Zhang H X, Xi L L, Zhu Q S, Yang J C. Concentrations and accumulation of cadmium in different organs of hybrid rice. Chin J Rice Sci, 2006, 20: 306-312. (in Chinese with English abstract)
[39] 李芹, 张曼, 张锡洲, 余海英, 李廷轩. 水稻镉安全材料分蘖期根部镉积累分布特征. 植物营养与肥料学报, 2019, 25: 443-452.
Li Q, Zhang M, Zhang X Z, Yu H Y, Li T X. Accumulation and distribution characteristics of Cd in roots of cadmium-safe rice line at tillering stage. J Plant Nutr Fert, 2019, 25: 443-452. (in Chinese with English abstract)
[40] 王学华, 戴力. 作物根系镉滞留作用及其生理生化机制. 中国农业科学, 2016, 49: 4323-4341.
Wang X H, Dai L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots. Sci Agric Sin, 2016, 49: 4323-4341. (in Chinese with English abstract)
[41] 李丹丹, 周东美, 汪鹏, 翁南燕. 小麦根对镉离子的吸收机制及镉的亚细胞分布. 生态毒理学报, 2010, 5: 857-861.
Li D D, Zhou D M, Wang P, Weng N Y. Uptake and subcellular distribution of cadmium in wheat (Triticum aestivum) roots. Asian J Ecotox, 2010, 5: 857-861. (in Chinese with English abstract)
[42] 刘清泉, 陈亚华, 沈振国, 郑录庆. 细胞壁在植物重金属耐性中的作用. 植物生理学报, 2014, 50: 605-611.
Liu Q Q, Chen Y H, Shen Z G, Zheng L Q. Roles of cell wall in plant heavy metal tolerance. Plant Physiol J, 2014, 50: 605-611. (in Chinese with English abstract)
[43] Wu Z C, Zhao X H, Sun X C, Tan Q L, Tang Y F, Nie Z J, Hu C X. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus). Chemosphere, 2015, 119: 1217-1223.
doi: 10.1016/j.chemosphere.2014.09.099
[44] Guo J Y, Zhang X Z, Ye D H, Huang H G, Wang Y D, Zhen Z C, Li T X, Yu H Y. Crucial roles of cadmium retention in nodeII for restraining cadmium transport from straw to ear at reproductive period in a grain low-cadmium rice line (Oryza sativa L.). Ecotox Environ Safe, 2020, 205: 111323.
doi: 10.1016/j.ecoenv.2020.111323
[45] Sghayar S, Ferri A, Lancilli C, Lucchini G, Abruzzese A, Porrini M, Ghnaya T, Nocito F F, Abdelly C, Sacchi G A. Analysis of cadmium translocation, partitioning and tolerance in six barley (Hordeum vulgare L.) cultivars as a function of thiol metabolism. Biol Fert Soils, 2015, 51: 311-320.
doi: 10.1007/s00374-014-0977-9
[46] Lu M, Yu S, Lian J P, Wang Q, He Z L, Feng Y, Yang X E. Physiological and metabolomics responses of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation. Sci Total Environ, 2021, 769: 145345.
doi: 10.1016/j.scitotenv.2021.145345
[1] WANG Sha-Sha, HUANG Chao, WANG Qing-Chang, CHAO Yue-En, CHEN Feng, SUN Jian-Guo, SONG Xiao. Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1926-1937.
[2] YUAN Shen, PENG Shao-Bing. Comparison of grain heavy metal concentration between main and ratoon seasons of ratoon rice [J]. Acta Agronomica Sinica, 2022, 48(7): 1822-1831.
[3] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[4] LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099.
[5] LU Hai, LI Zeng-Qiang, TANG Mei-Qiong, LUO Deng-Jie, CAO Shan, YUE Jiao, HU Ya-Li, HUANG Zhen, CHEN Tao, CHEN Peng. DNA methylation in response to cadmium stress and expression of different methylated genes in kenaf [J]. Acta Agronomica Sinica, 2021, 47(12): 2324-2334.
[6] ZHANG Yun, WANG Dan-Mei, WANG Xiao-Yuan, REN Qing-Wen, TANG Ke, ZHANG Li-Yu, WU Yu-Huan, LIU Peng. Effects of exogenous jasmonic acid on photosynthetic characteristics and cadmium accumulation of Helianthus tuberosus L. under cadmium stress [J]. Acta Agronomica Sinica, 2021, 47(12): 2490-2500.
[7] MA Meng, YAN Hui, GAO Run-Fei, KOU Meng, TANG Wei, WANG Xin, ZHANG Yun-Gang, LI Qiang. Construction linkage maps and identification of quantitative trait loci associated with important agronomic traits in purple-fleshed sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(11): 2147-2162.
[8] WANG Zhen, YAO Meng-Nan, ZHANG Xiao-Li, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus [J]. Acta Agronomica Sinica, 2020, 46(9): 1312-1321.
[9] WANG Dan-Dan, LIU Hong-Juan, WANG Hong-Xia, ZHANG Peng, SHI Chun-Yu. Cloning and functional analysis of the sweet potato sucrose transporter IbSUT3 [J]. Acta Agronomica Sinica, 2020, 46(7): 1120-1127.
[10] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[11] HENG You-Qiang,YOU Xi-Long,WANG Yan. Pathogenesis-related protein gene SfPR1a from Salsola ferganica enhances the resistances to drought, salt and leaf spot disease in transgenic tobacco [J]. Acta Agronomica Sinica, 2020, 46(4): 503-512.
[12] LI Na-Na, LIU Ying, ZHANG Hao-Jie, WANG Lu, HAO Xin-Yuan, ZHANG Wei-Fu, WANG Yu-Chun, XIONG Fei, YANG Ya-Jun, WANG Xin-Chao. Promoter cloning and expression analysis of the hexokinase gene CsHXK2 in tea plant (Camellia sinensis) [J]. Acta Agronomica Sinica, 2020, 46(10): 1628-1638.
[13] Gui-Hong LIANG,Ying-Peng HUA,Ting ZHOU,Qiong LIAO,Hai-Xing SONG,Zhen-Hua ZHANG. Bioinformatics analysis and response to nitrate-cadmium stress of NRT1.5 and NRT1.8 family genes in Brassica napus [J]. Acta Agronomica Sinica, 2019, 45(3): 365-380.
[14] Ling WANG,Feng LIU,Ming-Jian DAI,Ting-Ting SUN,Wei-Hua SU,Chun-Feng WANG,Xu ZHANG,Hua-Ying MAO,Ya-Chun SU,You-Xiong QUE. Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane [J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379.
[15] Yu-Jie ZHANG,Yuan-Yuan ZHANG,Hua-Ning ZHANG,Ning QIN,Guo-Liang LI,Xiu-Lin GUO. Characterization and Regulatory Roles in Thermotolerance of Wheat Heat Shock Transcription Factor Gene TaHsfA2e [J]. Acta Agronomica Sinica, 2018, 44(12): 1818-1828.
Full text



[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[3] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[4] LI Hao ; ZHANG Ping-Ping ; ZHA Xiang-Dong ; XIA Xian-Chun ; HE Zhong-Hu ;;. Isolation of Differentially Expressed Genes from Wheat Cultivars Jinan 17 and Yumai 34 with Good Bread Quality under Heat Stress during Grain Filling Stage[J]. Acta Agron Sin, 2007, 33(10): 1644 -1653 .
[5] . [J]. Acta Agron Sin, 1962, 1(03): 232 -258 .

CHANG Li-Ying;GU Dong-Xiang;ZHANG Wen-Yu;YANG Jie;CAO Wei-Xing;ZHU Yan

. A Simulation Model of Leaf Elongation Process in Rice[J]. Acta Agron Sin, 2008, 34(02): 311 -317 .
[7] HUANG Hua-Hong;LU Guo-Quan;SHU Qing-Yao. Genetic Variation in the Starch Gelatinization Characteristics of Sweet Potato with High Pigment Contents[J]. Acta Agron Sin, 2005, 31(01): 92 -96 .
[8] LI Jin-Cai ;WEI Feng-Zhen;WANG Cheng-Yu;YIN Jun. Effects of Waterlogging on Senescence of Root System at Booting Stage in Winter Wheat[J]. Acta Agron Sin, 2006, 32(09): 1355 -1360 .
[10] LIN Rui-Yu;CHEN Hong-Fei;DENG Jia-Yao;LIANG Yi-Yuan;LIANG Kang-Jing;LIN Wen-Xiong. Analysis on Energy Accumulation and Calorific Value of Early-Season Rice and Its Ratooning Rice under Different Cultivation Models[J]. Acta Agron Sin, 2007, 33(11): 1794 -1801 .