Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (9): 1367-1379.doi: 10.3724/SP.J.1006.2018.01367

• RESEARCH PAPERS • Previous Articles     Next Articles

Cloning and Expression Characteristic Analysis of ScWRKY4 Gene in Sugarcane

Ling WANG1(),Feng LIU1,Ming-Jian DAI1,Ting-Ting SUN1,Wei-Hua SU1,Chun-Feng WANG1,Xu ZHANG1,Hua-Ying MAO1,Ya-Chun SU1,2,*(),You-Xiong QUE1,2,*()   

  1. 1 Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2 Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education / Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
  • Received:2018-01-28 Accepted:2018-06-12 Online:2018-09-10 Published:2018-07-02
  • Contact: Ya-Chun SU,You-Xiong QUE E-mail:lingw2017@126.com;syc2009mail@163.com;queyouxiong@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31671752);This study was supported by the National Natural Science Foundation of China(31101196);Natural Science Foundation of Fujian Province for Distinguished Young Scholars(2015J06006);Research Funds for Distinguished Young Scientists in Fujian Provincial Department of Education(SYC-2017);China Agriculture Research System (CARS-17)


WRKY is one of the specific transcriptional regulators in plants and widely involved in the response of plants to diverse biotic and abiotic stresses. In this study, based on our previous transcriptome data of sugarcane (Saccharum spp.), we successfully cloned a WRKY gene from sugarcane variety ROC22, named as ScWRKY4 (GenBank accession number MG852087). Sequence analysis showed that the full-length cDNA of ScWRKY4 gene was 1265 bp, containing a 741 bp complete open reading frame and encoding 246 amino acids residues. ScWRKY4 protein had a conservative WRKYGQK domain and a zinc finger motif C2H2, belonging to IIc subgroup of WRKY transcription factor family. Bioinformatics analysis indicated that ScWRKY4 was an alkaline unstable hydrophilic protein with no signal peptide and transmembrane structure. The secondary structural element of ScWRKY4 protein was lack of beta helix structure. ScWRKY4 was located in the nucleus after transient expression in Nicotiana benthamiana. The result of yeast hybridization experiment demonstrated that ScWRKY4 did not possess transcriptional activity. Real-time fluorescent quantitative PCR showed that the expression of ScWRKY4 gene had no significant difference in root, leaf, bud and stem epidermis, while had the highest expression level in stem pith, which was 18.38 times higher than that in root. During inoculation with smut pathogen (Sporisorium scitamineum) at 0-72 h, the gene expression level of ScWRKY4 was down-regulated in sugarcane smut-resistant cultivar Yacheng 05-179, while was more stable in the susceptible one ROC22. The transcript of ScWRKY4 was up-regulated by exogenous hormone stresses of abscisic acid, salicylic acid, and methyl jasmonate, as well as by the abiotic treatments of sodium chloride and polyethylene glycol. These results suggest that ScWRKY4 gene may not participate in sugarcane smut resistance, or only play a negative role in this defense reaction, but positively involve in the response mechanism of salt and drought resistance in sugarcane.

Key words: sugarcane, WRKY transcription factor, bioinformatics, subcellular localization, transcriptional activity, real-time flourescent quantitative PCR

Table 1

Sequence and usage of primers"

Primer name
Primer sequence (5°-3°)
Full length amplifcation
Reference gene
Subcellular localization

Fig. 1

PCR amplification of ScWRKY4 gene in sugarcaneM: 15000+2000 bp DNA marker; 1: PCR product."

Fig. 2

Nucleotide acid sequences and deduced amino acid sequences of sugarcane ScWRKY4 gene obtained by PCR amplification (*: stop codon)The sequence of WRKYGQK motif is highlighted in red box, and that of C2H2 motif (CX4CX23HXH) in black box."

Fig. 3

Conserved domain prediction of ScWRKY4 protein"

Fig. 4

Sequence alignment of ScWRKY4 and WRKYs in other speciesSorghum bicolor: SbWRKY57 (XP_002448267.2); Zea mays: ZmWRKY36 (NP_001151912.1); Dichanthelium oligosanthes: DoWWRKY12 (OEL21317.1); Setaria italic: SiWRKY12 (XP_004956420.1); Brachypodium distachyon: BdWRKY12 (XP_014751531.1); Oryza sativa OsWRKY12 (XP_015635033.1)."

Fig. 5

Phylogenetic tree of ScWRKY4 protein and WRKYs in sugarcane and other species"

Fig. 6

Subcellular localization assay of sugarcane ScWRKY4 (A) The enzyme digestion to identify the insert-integrated subcellular localization expression vector 35S::ScWRKY4::GFP. 1: 15000+2000 bp DNA marker; 2: 35S::GFP/Xba I; 3: ScWRKY4 ORF PCR product; 4: 35S::ScWRKY4::GFP/Xba I; 5: 35S::ScWRKY4::GFP/Xba I+BamH I; 6: 100 bp ladder DNA marker. (B) Subcellular localizations of the Agrobacterium mediated transformation of ScWRKY4 and empty vector in Nicotiana benthamiana leaves 48 h after infiltration. The epidermal cells of N. benthamiana were used for taking images of visible light, green fluorescence, blue fluorescence, merged visible light and green fluorescence and blue fluorescence; white arrows 1, 2, and 3 indicate plasma membrane, nucleus and cytoplasm, respectively; scale bar = 25 μm; 35S::GFP: the Agrobacterium tumefaciens strain carrying the empty vector pCAMBIA 1300-GFP; 35S::ScWRKY4::GFP: the A. tumefaciens strain carrying the recombinant vector pCAMBIA 1300-ScWRKY4-GFP; DAPI: 4’,6-diamidino-2-phenylindole."

Fig. 7

Transactivation activity assay of ScWRKY4 in sugarcane (A) The enzyme digestion to identify the insert-integrated vector pGBKT7-ScWRKY4. 1: 15000+2000 bp DNA marker; 2: pGBKT7/Nde I; 3: ScWRKY4 ORF PCR product; 4: pGBKT7-ScWRKY4/Nde I; 5: pGBKT7-ScWRKY4/Nde I+BamH I; 6: 2000 bp ladder DNA marker. (B) The test of transactivation activity assay of ScWRKY4. SD/-Trp: synthetic dropout medium plate; SD/-Trp (+ X-α-Gal): synthetic dropout medium plate without tryptophan (plus 5-bromo-4-chloro-3-indoxyl-α-D-galactopyranoside); SD/-Trp (+ X-α-Gal+ AbA): synthetic dropout medium plate without tryptophan (plus 5-bromo-4-chloro-3-indoxyl-α-D-galactopyranoside and aureobasidin A)."

Fig. 8

Specificity analysis of ScWRKY4 gene in sugarcane ROC22 tissueBars superscripted by different lowercase letters are significantly different (P ≤ 0.05); n = 3; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a reference gene; R: root; B: bud; L: leaf; SP: stem pith; SE: stem epidermis."

Fig. 9

Expression of sugarcane ScWRKY4 gene under the infection of smut pathogenYacheng 05-179: smut-resistant sugarcane variety; ROC22: smut-susceptible sugarcane variety. Bars superscripted by different lowercase letters are significantly different (P ≤ 0.05); n = 3; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a reference gene."

Fig. 10

Relative expression level of the sugarcane ScWRKY4 gene under different plant hormones and abiotic stress treatmentsBars superscripted by different lowercase letters are significantly different (P ≤ 0.05); n = 3; Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a reference gene; SA: salicylic acid (5 mmol L-1); MeJA: methyl jasmonate (25 μmol L-1); NaCl: sodium chloride (simulating salt stress) (250 mmol L-1); PEG: polyethylene glycol (simulating drought treatment) (25.0%); ABA: abscisic acid (100 μmol L-1)."

[1] Porto M S , Pinheiro M P N, Batista V G L, Santos R C D, Filho P A M, Lima L M. Plant promoters: an approach of structure and function. Mol Biotechnol, 2014,56:38-49
doi: 10.1007/s12033-013-9713-1 pmid: 24122284
[2] 李田, 孙景宽, 刘京涛 . 植物转录因子家族在耐盐抗旱调控网络中的作用. 生命科学, 2015,27:217-227
Li T, Sun J K, Liu J T . Role of different transcription factor families in the regulatory networks of drought and salinity tolerance in plants. Chin Bull Life Sci, 2015,27:217-227 (in Chinese with English abstract)
[3] Ishiguro S, Nakamura K . Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet, 1994,244:563-571
[4] Eulgem T, Somssich I E . Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 2007,10:366-371
doi: 10.1016/j.pbi.2007.04.020 pmid: 17644023
[5] Song Y, Ai C R, Jing S J, Yu D Q . Research progress on function analysis of rice WRKY genes. Rice Sci, 2010,17:60-72
[6] Pandey S P, Somssich I E . The role of WRKY transcription factors in plant immunity. Plant Physiol, 2009,150:1648-1655
[7] Mangelsen E, Kilian J, Berendzen K W, Kolukisaoglu Ü H, Harter K, Jansson C, Wanke D . Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics, 2008,9:194
[8] Wei K F, Chen J, Chen Y F, Wu L J, Xie D X . Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res, 2012,19:153-164
[9] Rushton P J, Torres J T, Parniske M, Parniske M, Wernert P, Hahlbrock K, Somssich L M . Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J, 1996,15:5690-5700
[10] Dong J, Chen C H, Chen Z X . Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol, 2003,51:21-37
[11] Liu D L, Leib K, Zhao P Y, Kogel K H, Langen G . Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and repressors of the pathogen-inducible gene HvGER4c. Mol Genet Genomics, 2014,289:1331-1345
[12] Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Ramachandran S . A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treatments. Plant Cell Physiol, 2008,49:865-879
[13] Qiu D, Xiao J, Xie W B, Liu H B, Li X H, Xiong L Z, Wang S P . Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant, 2008,1:538-551
[14] Peng Y, Bartley L E, Chen X W, Dardick C, Chern M, Ruan R, Canlas P E, Ronald P C . OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas orvzae pv. orvzae in rice. Mol Plant, 2008,1:446-458
[15] 魏晓爱, 姚文静, 姜廷波, 周博如 . 拟南芥WRKY基因家族应答非生物胁迫基因的鉴定. 东北林业大学学报, 2016,44(10):45-48
Wei X A, Yao W J, Jiang T B, Zhou B R . Identification of WRKY gene in response to abiotic stress from WRKY transcirption factor gene family of Arabidopsis thaliana. . J Northeast For Univ, 2016,44(10):45-48 (in Chinese with English abstract)
[16] Wu J, Chen J B, Wang L F, Wang S M . Genome-wide investigation of WRKY transcription factors involved in terminal drought stress response in common bean. Front Plant Sci, 2017,8:380
[17] Jiang Y Z, Duan Y J, Jia Y, Ye S L, Zhu J R, Zhang F Q, Lu W X, Fan D, Luo K M . Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot, 2014,65:6629-6644
[18] Zhang T, Tan D, Zhang L, Zhang X, Han Z . Phylogenetic analysis and drought-responsive expression profiles of the WRKY transcription factor family in maize. Agric Gene, 2017,3:99-108
[19] Liu J X, Que Y X, Guo J L, Xu L P, Wu J Y, Chen R K . Molecular cloning and expression analysis of a WRKY transcription factor in sugarcane. Afr J Biotechnol, 2012,11:6434-6444
doi: 10.5897/AJB11.3602
[20] 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄 . 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析. 热带作物学报, 2013,34:2200-2208
Huang N, Zhang Y Y, Ling H, Luo J, Wu Q B, Que Y X . Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane. Chin J Trop Crops 2013,34:2200-2208 (in Chinese with English abstract)
[21] Que Y X, Su Y C, Guo J L, Wu Q B, Xu L P . A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One, 2014,9:e106476
[22] Wei K, Chen J, Chen Y F, Wu L J, Xie D X . Multiple-strategy analyses of ZmWRKY subgroups and functional exploration of ZmWRKY genes in pathogen responses. Mol Biosyst, 2012,8:1940-1949
[23] 苏亚春 . 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福建农林大学博士学位论文, 福建福州, 2014
Su Y C . Transcriptomics and Proteomics of Sugarcane Response to Sporisorium scitamineum Infection and Mining of Resistance-Related Genes. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian,China, 2014 ( in Chinese with English abstract)
[24] Zhou X J, Yan S W, Sun C, Li S Z, Li J, Xu M Y, Liu X Q, Zhang S J, Zhao Q Q, Li Y, Fan Y L, Chen R M, Wang L . A maize jasmonate zim-domain protein, ZmJAZ14, associates with the JA, ABA, and GA signaling pathways in transgenic Arabidopsis. PLoS One, 2015,10:e0121824
[25] 阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯 . 甘蔗基因表达定量PCR分析中内参基因的选择. 热带作物学报, 2009,30:274-278
Que Y X, Xu L P, Xu J S, Zhang J S, Zhang M Q, Chen R K . Reference gene selection in quantitative PCR analysis of gene expression in sugarcane. Chin J Trop Crops 2009,30:274-278 (in Chinese with English abstract)
[26] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25:402-408
[27] 苏亚春, 王竹青, 李竹, 刘峰, 许莉萍, 阙友雄, 戴明剑, 陈允浩 . 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定. 作物学报, 2017,43:510-521
Su Y C, Wang Z Q, Li Z, Liu F, Xu L P, Que Y X, Dai M J, Chen Y H . Molecular cloning and functional identification of peroxidase gene ScPOD02 in sugarcane. . Acta Agron Sin 2017,43:510-521 (in Chinese with English abstract)
[28] Yadav R L, Solomon S . Potential of developing sugarcane by-product based industries in India. Sugar Tech, 2006,8:104-111
doi: 10.1007/BF02943642
[29] 付瑜华, 卢加举, 李向勇 . 甘蔗主要病害抗病遗传育种研究进展. 生物技术通报, 2014,45(2):1-6
Fu Y H, Lu J J, Li X Y . Progress on disease-resistant breeding of major diseases in sugarcane. Biotechnol Bull, 2014,45(2):1-6 (in Chinese with English abstract)
[30] Eulgem T, Rushton P J, Robatzek S, Somssich I E . The WRKY superfamily of plant transcription factor. Trends Plant Sci, 2000,5:199-206
doi: 10.1016/S1360-1385(00)01600-9 pmid: 10785665
[31] Zhang Y J, Wang L J . The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol, 2005,5:1-12
doi: 10.1186/1471-2148-5-1 pmid: 544883
[32] 向小华, 吴新儒, 晁江涛, 杨明磊, 杨帆, 陈果, 刘贯山, 王元英 . 普通烟草WRKY基因家族的鉴定及表达分析. 遗传, 2016,38:840-856
Xiang X H, Wu X R, Chao J T, Yang M L, Yang F, Chen G, Liu G S, Wang Y Y . Genome-wide identification and expression analysis of the WRKY gene family in common tobacco (Nicotiana tabacum L.) Hereditas (Beijing), 2016,38:840-856 (in Chinese with English abstract)
[33] 彭俊楚 . 大豆GmWRKYs基因的克隆和功能研究. 华南农业大学博士学位论文, 广东广州, 2016
Peng J C . Isolation and Function Analysis of Soybean GmWRKYs. PhD Dissertation of South China Agricultural University, Guangzhou, Guangdong, China, 2016 ( in Chinese with English abstract)
[34] 徐群刚, 邝健飞, 单伟, 陆旺金, 陈建业 . 香蕉果实冷胁迫相关MaWRKY11转录因子的特性、互作蛋白筛选与鉴定. 热带亚热带植物学报, 2015,23:543-552
Xu Q G, Kuang J F, Shan W, Lu W J, Chen J Y . Characterization and interacting-protein identification of MaWRKY11 transcription factor related to cold stress from banana fruits.. J Trop Subtrop Bot 2015,23:543-552 (in Chinese with English abstract)
[35] Jing J J, Ma S, Ye N H, Jing M, Cao J S, Zhang J H . WRKY transcription factors in plant responses to stresses. J Integr Plant Biol, 2017,59:86-101
doi: 10.1111/jipb.12513 pmid: 27995748
[36] Kim K C, Lai Z, Fan B, Chen Z . Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. . Plant Cell, 2008,20:2357-2371
[37] Song Y, Jing S J, Yu D Q . Overexpression of the stress-induced OsWRKY08, improves osmotic stress tolerance in Arabidopsis. Chin Sci Bull, 2009,54:4671-4678
[38] Ren X, Chen Z, Liu Y, Zhang H R, Zhang M, Liu Q, Hong X H, Zhu J K, Gong Z Z . ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J, 2010,63:417-429
[1] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[2] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[3] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[4] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[5] FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907.
[6] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[7] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[8] JIAN Hong-Ju, SHANG Li-Na, JIN Zhong-Hui, DING Yi, LI Yan, WANG Ji-Chun, HU Bai-Geng, Vadim Khassanov, LYU Dian-Qiu. Genome-wide identification and characterization of PIF genes and their response to high temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 86-98.
[9] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[10] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[11] HUANG Ning, HUI Qian-Long, FANG Zhen-Ming, LI Shan-Shan, LING Hui, QUE You-Xiong, YUAN Zhao-Nian. Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(5): 882-893.
[12] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[13] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[14] LI Peng, LIU Che, SONG Hao, YAO Pan-Pan, SU Pei-Lin, WEI Yao-Wei, YANG Yong-Xia, LI Qing-Chang. Identification and analysis of non-specific lipid transfer protein family in tobacco [J]. Acta Agronomica Sinica, 2021, 47(11): 2184-2198.
[15] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
Full text



No Suggested Reading articles found!