Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (8): 1522-1530.doi: 10.3724/SP.J.1006.2021.04194

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2

ZHANG Hai(), CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng*()   

  1. National Engineering Research Center for Sugarcane/Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops/Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2020-08-25 Accepted:2020-11-13 Online:2021-08-12 Published:2020-12-22
  • Contact: XU Jing-Sheng E-mail:zhanghai940410@163.com;xujingsheng@126.com
  • Supported by:
    National Natural Science Foundation of China(31971991);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2018026);Guiding Project of Science and Technology Department of Fujian Province(2017N0003)

Abstract:

The PsbR subunit of photosystem II (PSII) plays a vital role in the assembly and stability of the oxygen-evolving complex. In the previous study, we cloned the coding sequence of the PsbR subunit from sugarcane (Saccharum spp. hybrid) and designated it as ScPsbR. The interaction between ScPsbR and 6K2 protein encoded by Sugarcane mosaic virus (SCMV) was verified by yeast two-hybrid technology. In this study, bioinformatics analysis indicated ScPsbR protein was found to possess a canonical subunit domain of PsbR and a transmembrane domain without signal peptide, and be a stable hydrophobic protein. Phylogenetic tree analysis indicated obvious divergence between C3 and C4 plants for the PsbRs. Subcellular localization experiments suggested that ScPsbR was localized and co-localized with SCMV-6K2 to the chloroplast. The interaction of ScPsbR with the SCMV-6K2 was further verified by bimolecular fluorescence complementation assays. Real-time quantitative PCR results indicated that ScPsbR gene was tissue-specific in sugarcane plants. There was almost no expression of ScPsbR gene in the roots or stems, with increased expression level in the senescing leaves and immature leaves, and the highest expression level in mature leaves. However, the expression level of ScPsbR was significantly changed under the challenged of SCMV. During the infection of SCMV, ScPsbR was significantly up-regulated at 0-12 hour(s) and reduced to a level slightly lower than that of the control at 1-5 days with no significant differences, then significantly down-regulated in 7-15 days.

Key words: PsbR subunit, Sugarcane mosaic virus, 6K2, protein interaction

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
221-ScPsbR-F
221-ScPsbR-R
GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGGCCTCCATGATCTC
GGGGACCACTTTGTACAAGAAAGCTGGGTCGCCGGAGAGGGCGCTGGTGT
双分子荧光互补载体构建
Vector generation for BiFC
ScPsbR-qF
ScPsbR-qR
TCCATGATCTCGTCGTCAGCTCTG
ACGGTCAGGCCACCTCCAATC
定量PCR
Real-time-qPCR
GAPDH-F
GAPDH-R
CACGGCCACTGGAAGCA
TCCTCAG GGTTCCTGATGCC
内参基因
Reference gene
eEF-1α-F
eEF-1α-R
TTTCACACTTGGAGTGAAGCAGAT
GACTTCCTTCACAATCTCATCATAA
内参基因
Reference gene
SCMV-CP-F
SCMV-CP-R
TACAGAGAGACACACAGCTG
ACGCTACACCAGAAGACACT
SCMV检测
Detection of SCMV

Fig. 1

Nucleotide sequence of the ScPsbR gene and its encoded amino acid sequence *: stop codon. The sequence underlined in black indicates the transit peptide and the sequence underlined in red indicates the transmembrane domains. ↓ indicates the digestion site. The border between transit sequence and mature protein is marked with an arrowhead."

Fig. 2

Amino acid sequence alignment of ScPsbR and PsbRs from other monocotyledon species SbPsbR (XP_002444002.1): Sorghum bicolor; ZmPsbR (XP_020408082.1): Zea mays; PhPsbR (XP_025821160.1): Panicum hallii; SiPsbR (XP_004972630.1): Setaria italic; BdPsbR (XP_010234446.1): Brachypodium distachyon; OsPsbR (AAB46718.1): Oryza sativa."

Fig. 3

Phylogenetic tree of ScPsbR protein and PsbR proteins from other plant species"

Fig. 4

Subcellular localization of ScPsbR fused with YFP in the epidermal cells of N. benthamiana A: subcellular localization of ScPsbR-YFP; B: subcellular colocalization of ScPsbR-YFP with 6K2-CFP. White arrows indicate the chloroplasts, Bar: 25 μm."

Fig. 5

Protein-protein interaction between ScPsbR and SCMV-6K2 by BiFC assays A: the C-terminal half of YFP was fused to the C-terminal of ScPsbR to generate ScPsbR-YC, while the N-terminal half of YFP was fused to the N-terminal of SCMV-6K2 to generate YN-6K2; B: the N-terminal half of YFP was fused to the N-terminal of ScPsbR to generate YN- ScPsbR, while the C-terminal half of YFP was fused to the C-terminal of SCMV-6K2 to generate 6K2-YC. Plasmids combination of YN-6K2 plus ScPsbR-YC (A), YN-ScPsbR plus SCMV-6K2-YC (B) were individually co-injected into N. benthamiana leaves for transient expression. White arrows indicate the chloroplasts with interacting fluorescent signals. The fluorescent signal was monitored by confocal microscopy at 48 hours post infiltration. Bar: 25 μm."

Fig. 6

Relative expression level of ScPsbR in different sugarcane tissues The error bars represent the standard error of each treating group (n = 3). LR: leaf roll; +1 L: 1st leaf; +7 L: 7th leaf; +3 I: 3rd internode; +8 I: 8th internode; R: root. Different lowercase letters above the bars are significantly different at the 5% probability level."

Fig. 7

Expression profile of ScPsbR under the infection of SCMV The error bars represent the standard error of each treating group (n = 3). Different lowercase letters above the bars are significantly different at the 5% probability level."

[1] Shukla D D, Frenkel M J, McKern N M, Ward C W, Jilka J, Tosic M, Ford R E. Confirmation that the Sugarcane mosaic virus subgroup consists of four distinct potyviruses by using peptide profiles of coat proteins. Arch Virol, 1992,5:363-373.
[2] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, (1):11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Cane Sugar, 2005, (1):11-16 (in Chinese with English abstract).
[3] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus—Long history but still a threat to industry. Crop Prot, 2012,42:74-78.
doi: 10.1016/j.cropro.2012.07.005
[4] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016,46:775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016,46:775-782 (in Chinese with English abstract).
[5] Yao W, Ruan M, Qin L, Yang C, Chen R, Chen B, Zhang M. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017,8:104.
[6] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from Florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018,102:2317-2323.
doi: 10.1094/PDIS-04-18-0581-RE pmid: 30207899
[7] Akbar S, Yao W, Yu K, Qin L F, Ruan M H, Powell C A, Chen B S, Zhang M Q. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus (SCMV). Photosynthesis Res, 2020. doi: 10.1007/s11120-019-00706-w.
[8] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015,46:609-613.
Zhou F J, Huang C H, Li Z W, Shang X K, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J South Agric, 2015,46:609-613 (in Chinese with English abstract).
[9] Ling H, Huang N, Wu Q, Su Y, Peng Q, Ahmed W, Gao S, Su W, Que Y, Xu L. Transcriptional insights into the Sugarcane-Sorghum mosaic virus interaction. Trop Plant Biol, 2018,11:163-176.
doi: 10.1007/s12042-018-9210-6
[10] Urcuqui-Inchima S, Haenni A L, Bernardi F. Potyvirus proteins: a wealth of functions. Virus Res, 2001,74, 157-175.
pmid: 11226583
[11] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N-PIPO. Sci Rep, 2017,7:9868.
doi: 10.1038/s41598-017-10497-6
[12] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016,45(2):135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ (Nat Sci Edn), 2016,45(2):135-140 (in Chinese with English abstract).
[13] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016,44:7618-7629.
doi: 10.1093/nar/gkw441
[14] Chung B Y, Miller W A, Atkins J F, Firth A E. An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA, 2008,105:5897-5902.
doi: 10.1073/pnas.0800468105
[15] Nicolas O, Laliberté J. The complete nucleotide sequence of turnip mosaic potyvirus RNA. J Gen Virol, 1992,73:2785-2793.
doi: 10.1099/0022-1317-73-11-2785
[16] Beauchemin C, Laliberté J F. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during Turnip mosaic virus infection. J Virol, 2007,81:10905-10913.
pmid: 17670821
[17] Cotton S, Grangeon R, Thivierge K, Mathieu I, Ide C, Wei T Y, Wang A M, Laliberté J F. Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol, 2009,83:10460-10471.
doi: 10.1128/JVI.00819-09
[18] Wei T Y, Wang A M. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J Virol, 2008,82:12252-12264.
doi: 10.1128/JVI.01329-08
[19] Wei T Y, Huang T S, McNeil J, Laliberté J F, Hong J, Nelson R S, Wang A M. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant Potyvirus replication. J Virol, 2010,84:799-809.
doi: 10.1128/JVI.01824-09
[20] Jiang J, Patarroyo C, Cabanillas G D, Zheng H Q, Laliberté J F. The vesicle-forming 6K2 protein of Turnip mosaic virus interacts with the COPII coatomer sec24a for viral systemic infection. J Virol, 2015,89:6695-6710.
doi: 10.1128/JVI.00503-15
[21] Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cytoplasmic inclusion of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017,175:1732-1744.
doi: 10.1104/pp.17.01484
[22] Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H Q, Laliberté J F. Impact on the endoplasmic reticulum and Golgi apparatus of Turnip mosaic virus infection. J Virol, 2012,86:9255-9265.
doi: 10.1128/JVI.01146-12
[23] Grangeon R, Jiang J, Wan J, Agbeci M, Zheng H Q, Laliberté J F. 6K2-induced vesicles can move cell to cell during Turnip mosaic virus infection. Front Microbiol, 2013,4:351.
doi: 10.3389/fmicb.2013.00351 pmid: 24409170
[24] Movahed N, Sun J, Vali H, Laliberté J, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019,179:507-518.
doi: 10.1104/pp.18.01342
[25] Li F, Zhang C, Tang Z, Zhang L, Dai Z, Lyu S, Li Y, Hou X, Bernards M, Wang A. A plant RNA virus activates selective autophagy in a UPR-dependent manner to promote virus infection. New Phytol, 2020. doi: 10.1111/nph.16716.
[26] Hafrén A, Üstün S, Hochmuth A, Svenning S, Johansen T, Hofius D. Turnip mosaic virus counteracts selective autophagy of the viral silencing suppressor HCpro. Plant Physiol, 2018,176:649-662.
doi: 10.1104/pp.17.01198
[27] 王镜岩. 生物化学(第3版). 北京: 高等教育出版社, 2002. pp 197-229.
Wang J Y. Biochemistry, 3rd edn. Beijing: Higher Education Press, 2002. pp 197-229(in Chinese).
[28] Marjaana S, Sari S, Yagut A, Virpi P, Fikret M, Stenbjörn S, Eva-Mari A. PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J Biol Chem, 2006,281:145-150.
pmid: 16282331
[29] Ido K, Nield J, Fukao Y, Nishimura T, Sato F, Ifuku K. Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. J Biol Chem, 2014,289:20150-20157.
doi: 10.1074/jbc.M114.574822
[30] Allahverdiyeva Y, Mamedov F, Suorsa M, Styring S, Eva-Mari Aro I M. Insights into the function of PsbR protein in Arabidopsis thaliana. Biochim Biophys Acta, 2007,1767:677-685.
pmid: 17320041
[31] Allahverdiyeva Y, Suorsa M, Rossi F, Pavesi A, Kater M M, Antonacci A, Tadini L, Pribil M, Schneider A, Wanner G, Leister D, Aro E M, Barbato R, Pesaresi P. Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms. Plant J, 2013,75:671-684.
doi: 10.1111/tpj.2013.75.issue-4
[32] Liu H, Frankel L K, Bricker T M. Characterization and complementation of a psbR mutant in Arabidopsis thaliana. Arch Biochem Biophys, 2009,489:34-40.
doi: 10.1016/j.abb.2009.07.014
[33] 郭宇, 刘瑜, 戚娟娟, 李慧, 赫兰兰, 卢丽男, 刘翠, 宫利东, 赵东霞, 杨忠志. S4-S0转化期水结合至放氧复合体可能机制的理论研究. 化学学报, 2017,75:914-921.
doi: 10.6023/A17050214
Guo Y, Liu Y, Qi J J, Li H, He L L, Lu L N, Liu C, Gong L D, Zhao D X, Yang Z Z. Possible mechanisms of water binding to the oxygen-evolving complex during the S4-S0 transition: a theoretical investigation. Acta Chim Sin, 2017,75:914-921 (in Chinese with English abstract).
[34] 许耀照, 曾秀存, 孙万仓, 武军艳, 方彦, 刘自刚, 马骊. 白菜型冬油菜PsbR基因的克隆及低温下表达分析. 农业生物技术学报, 2017,25:1423-1433.
Xu Y Z, Zeng X C, Sun W C, Wu J Y, Fang Y, Liu Z G, Ma L. Cloning of PsbR gene in winter turnip rape (Brassica campestris) and its expression analysis under low temperature stress J Agric Biotechnol, 2017,25:1423-1433 (in Chinese with English abstract).
[35] Sasi S, Venkatesh J, Daneshi R, Gururani M A. Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants, 2018,7:100.
doi: 10.3390/plants7040100
[36] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019,20:3867.
doi: 10.3390/ijms20163867
[37] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020,46:1722-1733.
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020,46:1722-1733 (in Chinese with English abstract).
[38] Guo J, Ling H, Wu Q, Xu L, Que Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042.
doi: 10.1038/srep07042
[39] Ljungberg U, Akerlund H, Andersson B. Isolation and characterization of the 10-kDa and 22-kDa polypeptides of higher plant photosystem 2. Eur J Biochem, 1986,158:477-482.
pmid: 3525160
[40] Lautner A, Klein R, Ljungberg U, Reiländer H, Bartling D, Bartling A, Reinke H, Beyreuther K, Herrmann R G. Nucleotide sequence of cDNA clones encoding the complete precursor for the “10-kDa” polypeptide of photosystem II from spinach. J Biol Chem, 1988,263:10077-10081.
pmid: 2839473
[41] Webber A, Packman L, Gray J. A 10 kDa polypeptide associated with the oxygen-evolving complex of photosystem II has a putative C-terminal non-cleavable thylakoid transfer domain. Febs Lett, 1989,242:435-438.
pmid: 2644135
[42] Zhao J, Zhang X, Hong Y, Liu Y L. Chloroplast in plant-virus interaction. Front Microbiol, 2016,7:1565.
[43] Bhattacharyya D, Chakraborty S. Chloroplast: the trojan horse in plant-virus interaction. Mol Plant Pathol, 2018,19:504-518.
doi: 10.1111/mpp.2018.19.issue-2
[44] 翟玉山, 赵贺, 张海, 邓宇晴, 程光远, 杨宗桃, 王彤, 彭磊, 徐倩, 董萌, 徐景升. 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其与甘蔗花叶病毒VPg互作研究. 作物学报, 2019,45:1478-1487.
Zhai Y S, Zhao H, Zhang H, Deng Y Q, Cheng G Y, Yang Z T, Wang T, Peng L, Xu Q, Dong M, Xu J S. Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus. Acta Agron Sin, 2019,45:1478-1487 (in Chinese with English abstract).
[45] Balasubramaniam M, Kim B S, Hutchens-Williams H M, Loesch-Fries L S. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. Mol Plant Microbe Interact, 2014,27:1107-1118.
doi: 10.1094/MPMI-02-14-0035-R
[46] Kong L F, Wu J X, Lu L N, Xu Y, Zhou X P. Interaction between Rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Mol Plant, 2014,7:691-708.
doi: 10.1093/mp/sst158
[47] Abbink T E, Peart J R, Mos T N, Baulcombe D C, Bol J F, Linthorst H J. Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology, 2002,295:307-319.
doi: 10.1006/viro.2002.1332
[48] Farooq T, Liu D, Zhou X, Yang Q Y. Tomato yellow leaf curl China virus impairs photosynthesis in the infected Nicotiana benthamiana with βC1 as an aggravating factor. Plant Pathol J, 2019,35:521-529.
doi: 10.5423/PPJ.OA.04.2019.0120
[49] Yao W, Ruan M H, Qin L F, Yang C Y, Chen R K, Chen B S, Zhang M Q. Field performance of transgenic sugarcane lines resistant to Sugarcane mosaic virus. Front Plant Sci, 2017,8:104.
[50] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lyu M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M A, Souza G M, Moore P H, Sankoff D, Van Buren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018,50:1565-1573.
doi: 10.1038/s41588-018-0237-2
[51] 崔晓艳, 魏太云, 陈新. 马铃薯Y病毒属病毒的细胞生物学研究进展. 中国农业科学, 2012,45:1293-1302.
Cui X Y, Wei T Y, Chen X. Advances in research on cell Biology of Potyvirus. Sci Agric Sin, 2012,45:1293-1302 (in Chinese with English abstract).
[52] Wei T Y, Zhang C, Hou X, Sanfaçon H, Wang A M. The SNARE protein Syp71 is essential for Turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog, 2013,9:e1003378.
doi: 10.1371/journal.ppat.1003378
[53] Gnanasekaran P, Ponnusamy K, Chakraborty S. A geminivirus betasatellite encoded βC1 protein interacts with PsbP and subverts PsbP-mediated antiviral defence in plants. Mol Plant Pathol, 2019,20:943-960.
doi: 10.1111/mpp.12804
[54] Fraile A, Garcíaarenal F, Carr J P, Loebenstein G. The coevolution of plants and viruses: resistance and pathogenicity. Adv Virus Res, 2010,76:1-32.
[55] Ng J C, Perry K L. Transmission of plant viruses by aphid vectors. Mol Plant Pathol, 2004,5:505-511.
doi: 10.1111/mpp.2004.5.issue-5
[56] Nault L R. Arthropod transmission of plant viruses: a new synthesis. Ann Entomol Soc Am, 1997,90:521-541.
doi: 10.1093/aesa/90.5.521
[1] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[2] LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209.
[3] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[4] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection [J]. Acta Agronomica Sinica, 2021, 47(1): 94-103.
[5] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[6] ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein [J]. Acta Agronomica Sinica, 2020, 46(11): 1722-1733.
[7] YANG Sha,LI Yan,GUO Feng,ZHANG Jia-Lei,MENG Jing-Jing,LI Meng,WAN Shu-Bo,LI Xin-Guo. Screening of AhCaM-Interactive Proteins in Peanuts Using Yeast Two Hybrid System [J]. Acta Agron Sin, 2015, 41(07): 1056-1063.
[8] LIU Rong-Bang,CHEN Ming,GUO Meng-Meng,SI Qing-Lin,GAO Shi-Qing,XU Zhao-Shi,LI Lian-Cheng,MA You-Zhi,YIN Jun. Characterization and Functional Analysis of a Small GTP-binding Protein AtRAB Interacting with H+-Pyrophosphatase AVP1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2014, 40(10): 1756-1766.
[9] ZHANG Xiao-Hong,XU Peng-Bo,GUO Meng-Meng,XU Zhao-Shi,LI Lian-Cheng,CHEN Ming,MA You-Zhi. Characteristic and Function Analysis of a Copper Ion Binding Protein, AtBCB Interacting with G Protein α Subunit GPA1 in Arabidopsis thaliana [J]. Acta Agron Sin, 2013, 39(11): 1952-1961.
[10] WANG Xin-Dong,CHEN Liang,ZHANG Zeng-Yan. Interaction between Wheat Resistance-related Kinase TiDPK1 and BYDV Coat Protein [J]. Acta Agron Sin, 2013, 39(10): 1720-1726.
[11] TANG Qing-Lin,XU Jun-Qiang,SONG Ming,WANG Zhi-Min. Expression of Floral Meristem Identity Gene AP1 in vitro and Validation of Interaction between AP1 and FLC in Brassica juncea Coss. (Mustard) [J]. Acta Agron Sin, 2012, 38(07): 1328-1333.
[12] YANG Hun, ZHANG He-Cui, Richard CONVERSE, SHU Li-Quan, YANG Yong-Jun, XUE Li-Yan, LUO Bing, CHANG De-Long, GAO Qi-Guo, WANG Xiao-Jia. Interaction between Two Self-incompatible Signal Elements, EXO70A1 and ARC1 [J]. Acta Agron Sin, 2011, 37(12): 2136-2144.
[13] QIU Zhi-Gang, XU Zhao-Shi, ZHENG Tian-Hui, LI Lian-Cheng, CHEN Ming, MA Wei-Zhi. Screening and Identification of Proteins Interacting with ERF Transcription Factor W17 in Wheat [J]. Acta Agron Sin, 2011, 37(05): 803-810.
[14] SONG Jian-Min,DAI Shuang,LI Hao-Sheng,LIU Ai-Feng,CHENG Dun-Gong,CHU Xiu-Sheng. Expression of a Wheat Endosperm 14-3-3 Protein and Its Interactions with Starch Biosynthetic Enzymes in Amyloplasts [J]. Acta Agron Sin, 2009, 35(8): 1445-1450.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!