Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (2): 332-341.doi: 10.3724/SP.J.1006.2022.14001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2

YANG Zong-Tao(), LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng*()   

  1. Sugarcane Research & Development Center, China Agricultural Technology System, Fujian Agriculture and Forestry University / Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fuzhou 350002, Fujian, China
  • Received:2021-01-05 Accepted:2021-04-14 Online:2022-02-12 Published:2021-06-16
  • Contact: XU Jing-Sheng E-mail:fafuyangzongtao@163.com;xujingsheng@126.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31971991);the Science and Technology Innovation Project of Fujian Agriculture and Forestry University(CXZX2018026);Guiding Project of Science and Technology Department of Fujian Province(2017N0003)

Abstract:

Ubiquitylation plays key roles in the regulation of protein function, growth and development, and response to stress. Ubiquitin-like proteins (UBLs) are the main components of the ubiquitin-proteasome system (UPS). In our previous study, the UBL5 homologue was isolated from sugarcane (Saccharum spp. hybrid) by yeast two-hybrid (Y2H) with the 6K2 of Sugarcane mosaic virus (SCMV) as bait, and then designated as ScUBL5 with 73 aa in length. In the present study, the interaction of ScUBL5 with the SCMV-6K2 was further confirmed by bimolecular fluorescence complementation assays (BiFC). Bioinformatics analysis showed that ScUBL5 is a stable hydrophilic non-secretory protein without signal peptide or transmembrane domain. Phylogenetic tree analysis showed that ScUBL5 is species specific. Subcellular localization analysis showed that ScUBL5 is localized in cytoplasm and nucleus. ScUBL5 gene shows obvious tissue specificity in sugarcane by real-time quantitative PCR analysis. The expression levels of ScUBL5 gene in the established morphogenesis tissues such as the 1st leaf, the 7th leaf, the 8th internode and the root were significantly higher than those in the immature tissues such as leaf roll and the 3rd internode. The expression of ScUBL5 gene is significantly affected by SCMV infection. ScUBL5 was significantly upregulated in the early stage of SCMV infection, then downregulated but significantly higher than the control at the late stage of SCMV infection.

Key words: sugarcane, ubiquitin-like protein, Sugarcane mosaic virus, 6K2

Table 1

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
策略
Strategy
221-ScUBL5-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGCAGTCCATGCT 双分子荧光互补载体构建
Vector generation for BiFC
221-ScUBL5-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCTACTCTTCGTCCTCGC
ScUBL5-qF CTCCATCATCGGCGAGATCATCAC 定量PCR
Real-time-qPCR
ScUBL5-qR GGCGGCGACGAAGAAGAAGAG
GAPDH-F CACGGCCACTGGAAGCA 内参基因
Reference gene
GAPDH-R TCCTCAG GGTTCCTGATGCC
eEF-1α-F TTTCACACTTGGAGTGAAGCAGAT 内参基因
Reference gene
eEF-1α-R GACTTCCTTCACAATCTCATCATAA
SCMV-CP-F TACAGAGAGACACACAGCTG SCMV检测
Detection of SCMV
SCMV-CP-R ACGCTACACCAGAAGACACT

Fig. 1

Three-dimensional structure of ScUBL5 protein based on SWISS-MODEL ScUBL5 (MN167908) is from Saccharum spp. hybrid; SbUBL5 (XP_002448973.1) is from Sorghum bicolor; OsUBL5 (XP_015619383.1) is from Oryza sativa; AtUBL5 (NP_176030.1) is from Arabidopsis thaliana."

Fig. 2

The deduced amino acid sequence of ScUBL5 Oryza sativa: OsUBL5 (XP_015619383.1); Saccharum: ScUBL5 (QHD26889.1); Brachypodium distachyon: BdUBL5 (XP_003578938.1); Sorghum bicolor: SbUBL5 (XP_002448973.1); Arabidopsis thaliana: AtUBL5 (NP_199045.1); Nicotiana tabacum: NtUBL5 (XP_ 016510251.1); Triticum aestivum: TaUBL5 (AJA91631.1)."

Fig. 3

Phylogenetic analysis UBL5 proteins from different plant species"

Fig. 4

Subcellular localization of ScUBL5 fused with YFP in the epidermal cells of N. benthamiana Bar: 25 μm."

Fig. 5

BiFC assays for protein-protein interaction between ScUBL5 and SCMV-6K2 A: the C-terminal half of YFP was fused to the C-terminus of ScUBL5 to generate ScUBL5-YC, while the N-terminus half of YFP was fused to the N-terminus of SCMV-6K2 to generate 6K2-YN; B: the N-terminus half of YFP was fused to the N-terminus of ScUBL5 to generate ScUBL5-YN, while the C-terminal half of YFP was fused to the C-terminal of SCMV-6K2 to generate 6K2-YC. Plasmids combination of 6K2-YN plus ScUBL5-YC (A), ScUBL5-YN plus 6K2-YC (B) were individually co-injected into N. benthamiana leaves for transient expression. The fluorescent signal was monitored by confocal microscopy at 48 h post infiltration. Bar: 25 μm."

Fig. 6

Expression profile of ScUBL5 in different sugarcane tissues LR: leaf roll; +1 L: +1 leaf; +7 leaf; +3 I: +3 internode; +8 I: +8 internode; R: root. The error bars represent the standard error of each treating group (n = 3). Bars superscripted by different lowercase letters are significantly different at P < 0.05."

Fig. 7

Expression profile of ScUBL5 under the infection of SCMV The error bars represent the standard error of each treating group (n = 3). Bars superscripted by different lowercase letters are significantly different at P < 0.05."

[1] Glickman M H, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 2002,82:373-428.
[2] Pickart C M. Back to the future with ubiquitin. Cell, 2004,116:181-190.
[3] Downes B, Vierstra R D. Post-translational regulation in plants employing a diverse set of polypeptide tags. Biochem Soc Trans, 2005,33:393-399.
[4] 张孝廉, 张吉顺, 邹颉, 赵杰宏, 任学良. 蛋白泛素化和类泛素化修饰在植物开花时间调控中的作用. 浙江大学学报(农业与生命科学版), 2015,41:371-384.
Zhang X L, Zhang J H, Zou J, Zhao J H, Ren X L. Function of protein ubiquitination and SUMOylation in regulating flowering time of plants. J Zhejiang Univ(Agric Life Sci), 2015,41:371-384 (in Chinese with English abstract).
[5] Su T, Yang M, Wang P, Zhao Y, Ma C. Interplay between the ubiquitin proteasome system and ubiquitin-mediated autophagy in plants. Cells, 2020,9:2219.
[6] Chen B, Lin L, Lu Y, Peng J, Zheng H, Yang Q, Rao S, Wu G, Li J, Chen Z, Song B, Chen J, Yan F. Ubiquitin-Like protein 5 interacts with the silencing suppressor p3 of Rice stripe virus and mediates its degradation through the 26S proteasome pathway. PLoS Pathog, 2020,16:e1008780.
[7] 魏文毅, 孙毅, 曹诚, 常智杰, 陈策实, 陈佺, 程金科, 冯仁田, 高大明, 胡荣贵, 贾立军, 姜天霞, 金建平, 李汇华, 李卫, 刘翠华, 刘萱, 马蕾娜, 缪时英, 饶枫, 商瑜, 宋质银, 万勇, 王恒彬, 王平, 王占新, 吴缅, 吴乔, 谢旗, 谢松波, 谢志平, 徐平, 许执恒, 杨波, 阳成伟, 应美丹, 张宏冰, 张令强, 赵永超, 周军, 朱军, 王琳芳, 张宏, 王琛, 邱小波. 类泛素蛋白及其中文命名. 科学通报, 2018,63:2564-2569.
Wei W Y, Sun Y, Cao C, Chang Z J, Chen C S, Chen Q, Cheng J K, Feng R T, Gao D M, Hu R G, Jia L J, Jiang T X, Jin J P, Li H H, Li W, Liu C H, Liu X, Ma L N, Miao S Y, Rao F, Shang Y, Song Z Y, Wan Y, Wang H B, Wang P, Wang Z X, Wu M, Wu Q, Xie Q, Xie S B, Xie Z P, Xu P, Xu Z H, Yang B, Yang C W, Ying M D, Zhang H B, Zhang L Q, Zhao Y C, Zhou J, Zhu J, Wang L F, Zhang H, Wang C, Qiu X B. Ubiquitin-like proteins and their Chinese nomenclatures. Chin Sci Bull, 2018,63:2564-2569 (in Chinese with English abstract).
[8] Mishra S K, Ammon T, Popowicz G M, Krajewski M, Nagel R J, Ares M Jr, Holak T A, Jentsch S. Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature, 2011,474:173-178.
[9] 商书交, 周燕, 娄兴亮, 高述民, 范春霞. UBL5基因的结构与功能研究. 北京林业大学学报, 2010,32(5):172-176.
Shang S J, Zhou Y, Lou X L, Gao S M, Fan C X. UBL5 gene and its product structure and function. J Beijing For Univ, 2010,32(5):172-176 (in Chinese with English abstract).
[10] Yashiroda H, Tanaka K. Hub1 is an essential ubiquitin-like protein without functioning as a typical modifier in fission yeast. Genes Cells, 2004,9:1189-1197.
[11] Park H J, Kim W Y, Park H C, Lee S Y, Bohnert H J, Yun D J. SUMO and SUMOylation in plants. Mol Cells, 2011,32:305-316.
[12] Cheng X, Xiong R, Li Y, Li F, Zhou X, Wang A. Sumoylation of Turnip mosaic virus RNA polymerase promotes viral infection by counteracting the host NPR1-mediated immune response. Plant Cell, 2017,29:508-525.
[13] Morrell R, Sadanandom A. Dealing with stress: a review of plant SUMO proteases. Front Plant Sci, 2019,10:1122.
[14] Patel M, Milla-Lewis S, Zhang W, Templeton K, Reynolds W C, Richardson K, Biswas M, Zuleta M C, Dewey R E, Qu R, Sathish P. Overexpression of ubiquitin-like LpHUB1 gene confers drought tolerance in perennial ryegrass. Plant Biotechnol J, 2015,13:689-699.
[15] Feng H, Wang Q, Zhao X, Han L, Wang X, Kang Z. TaULP5 contributes to the compatible interaction of adult plant resistance wheat seedlings-stripe rust pathogen. Physiol Mol Plant Pathol, 2016,96:29-35.
[16] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8):147-152.
Liu Y Q, Li Y P, Liang W H, Song Q D, Qin X L, Ye L. Current status and development of the abroad sugarcane industry. World Agric, 2015, ( 8):147-152 (in Chinese with English abstract).
[17] 王明强, 李文凤, 黄应昆, 王晓燕, 卢文洁, 罗志明. 我国大陆蔗区发生的甘蔗病毒病及防控对策. 中国糖料, 2010, ( 4):55-58.
Wang M Q, Li W F, Huang Y K, Wang X Y, Lu W J, Luo Z M. Occurrence and controlling strategies on sugarcane viral diseases in Chinese mainland. Sugar Crops China, 2010, ( 4):55-58 (in Chinese with English abstract).
[18] 翁卓, 黄寒. 中国制糖产业竞争力对比与政策建议——基于对巴西、印度、泰国考察的比较. 甘蔗糖业, 2015, ( 4):65-72.
Weng Z, Huang H. Comparative analysis on China’s sugar industry competitiveness: based on the comparison of Brazil, India and Thailand sugar industry. Sugar Canesugar, 2015, ( 4):65-72 (in Chinese with English abstract).
[19] 刘晓雪, 王新超. 2017/18榨季中国食糖生产形势分析与2018/19榨季展望. 农业展望, 2018,14(11):40-46.
Liu X X, Wang X C. Domestic sugar production situation in 2017/18 crushing season and its prospect for 2018/19 crushing season. Outlook Agric, 2018,14(11):40-46 (in Chinese with English abstract).
[20] 周丰静, 黄诚华, 李正文, 商显坤, 黄伟华, 潘雪红, 魏吉利, 林善海. 广西蔗区甘蔗花叶病病毒种群分析. 南方农业学报, 2015,46:609-613.
Zhou F J, Huang C H, Li Z W, Shang X S, Huang W H, Pan X H, Wei J L, Lin S H. Analysis of the virus population causing Sugarcane mosaic virus disease in sugarcane growing area of Guangxi. J Southern Agric, 2015,46:609-613 (in Chinese with English abstract).
[21] 周国辉, 许东林, 沈万宽. 甘蔗重要病害研究及防治策略. 甘蔗糖业, 2005, ( 1):11-16.
Zhou G H, Xu D L, Shen W K. On sugarcane major diseases and their controlling. Sugar Canesugar, 2005, ( 1):11-16 (in Chinese with English abstract).
[22] Shukla D D, Frenkel M J, McKern N M, Ward C W, Jilka J, Tosic M, Ford R E. Confirmation that the Sugarcane mosaic virus subgroup consists of four distinct Potyviruses by using peptide profiles of coat proteins. Arch Virol, 1992,5:363-373.
[23] Shukla D D, Tosic M, Jilka J, Ford R E, Toler R W, Mac L. Taxonomy of potyviruses infecting maize, sorghum, and sugarcane in Australia and the United States as determined by reactivities of polyclonal antibodies directed towards virus-specific N-termini of coat proteins. Phytopathology, 1989,79:223-229.
[24] Ward C W, Shukla D D. Taxonomy of potyviruses: current problems and some solutions. Intervirology, 1991,32:269-296.
[25] Putra L K, Kristini A, Achadian E M, Damayanti T A. Sugarcane streak mosaic virus in Indonesia: distribution, characterisation, yield losses and management approaches. Sugar Tech, 2014,16:392-399.
[26] Li W F, He Z, Li S F, Huang Y K, Zhang Z X, Jiang D M, Wang X Y, Luo Z M. Molecular characterization of a new strain of Sugarcane streak mosaic virus(SCSMV). Arch Virol, 2011,156:2101-2104.
[27] Xu D L, Zhou G H, Xie Y J, Mock R, Li R. Complete nucleotide sequence and taxonomy of Sugarcane streak mosaic virus, member of a novel genus in the family Potyviridae. Virus Genes, 2010,40:432-439.
[28] 李文凤, 单红丽, 张荣跃, 王晓燕, 罗志明, 尹炯, 仓晓燕, 李婕, 黄应昆. 我国新育成甘蔗品种(系)对甘蔗线条花叶病毒和高粱花叶病毒的抗性评价. 植物病理学报, 2018,48:389-394.
Li W F, Shan H L, Zhang R Y, Wang X Y, Luo Z M, Yin J, Cang X Y, Li J, Huang Y K. Screening for resistance to Sugarcane streak mosaic virus and Sorghum mosaic virus in new elite sugarcane varieties/clones from China. Acta Phytopathol Sin, 2018,48:389-394 (in Chinese with English abstract).
[29] 冯小艳, 王文治, 沈林波, 冯翠莲, 张树珍. 甘蔗线条花叶病毒研究进展. 生物技术通报, 2017,33(7):22-28.
Feng X Y, Wang W Z, Shen L B, Feng C L, Zhang S Z. Research advances on Sugarcane streak mosaic virus. Biotechnol Bull, 2017,33(7):22-28 (in Chinese with English abstract).
[30] Wu L, Zu X, Wang S, Chen Y. Sugarcane mosaic virus—long history but still a threat to industry. Crop Prot, 2012,42:74-78.
[31] Xu D L, Park J W, Mirkov T E, Zhou G H. Viruses causing mosaic disease in sugarcane and their genetic diversity in southern China. Arch Virol, 2008,153:1031-1039.
[32] 郑艳茹, 翟玉山, 邓宇晴, 成伟, 程光远, 杨永庆, 徐景升. 甘蔗花叶病毒(SCMV)种群结构分析. 福建农林大学学报(自然科学版), 2016,45(2):135-140.
Zheng Y R, Zhai Y S, Deng Y Q, Cheng W, Cheng G Y, Yang Y Q, Xu J S. The population structure of Sugarcane mosaic virus (SCMV). J Fujian Agric For Univ(Nat Sci Edn), 2016,45(2):135-140 (in Chinese with English abstract).
[33] 翟玉山, 彭磊, 杨永庆, 邓宇晴, 程光远, 郑艳茹, 徐景升. 甘蔗条纹花叶病毒HC-Pro、P3N-PIPO、CP和VPg基因酵母双杂交诱饵表达载体的构建及自激活检测. 华北农学报, 2016,31(1):83-89.
Zhai Y S, Peng L, Yang Y Q, Deng Y Q, Cheng G Y, Zheng Y R, Xu J S. Construction and self-activated detection of the baits of HC-Pro, P3N-PIPO, CP and VPg from Sugarcane streak mosaic virus for yeast two hybrid system. Acta Agric Boreali-Sin, 2016,31(1):83-89 (in Chinese with English abstract).
[34] Dong M, Cheng G Y, Peng L, Xu Q, Yang Y Q, Xu J S. Transcriptome analysis of sugarcane response to the infection by Sugarcane streak mosaic virus(SCSMV). Trop Plant Biol, 2017,10:45-55.
[35] Zhai Y S, Deng Y Q, Cheng G Y, Peng L, Zheng Y R, Yang Y, Xu J S. Sugarcane elongin C is involved in infection by sugarcane mosaic disease pathogens. Biochem Biophys Res Commun, 2015,466:312-318.
[36] 李文凤, 丁铭, 方琦, 黄应昆, 张仲凯, 董家红, 苏晓霞, 李婷婷. 云南甘蔗花叶病病原的初步鉴定. 中国糖料, 2006, (2):4-7.
Li W F, Ding M, Fang Q, Huang Y K, Zhang Z K, Dong J H, Su X X, Li T T. Preliminary identification of sugarcane mosaic pathogeny in Yunnan. Sugar Crops China, 2006, (2):4-7 (in Chinese with English abstract).
[37] Filloux D, Fernandez E, Comstock J C, Mollov D, Roumagnac P, Rott P. Viral metagenomic-based screening of sugarcane from florida reveals occurrence of six sugarcane-infecting viruses and high prevalence of Sugarcane yellow leaf virus. Plant Dis, 2018,102:2317-2323.
[38] Akbar S, Yao W, Yu K, Qin L, Ruan M, Powell C A, Chen B, Zhang M. Photosynthetic characterization and expression profiles of sugarcane infected by Sugarcane mosaic virus(SCMV). Photosynth Res, 2020. doi. org/10.1007/s11120-019-00706-w.
[39] Yahaya A, Dangora D B, Kumar P L, Alegbejo M D, Gregg L, Alabi O J. Prevalence and genome characterization of field isolates of Sugarcane mosaic virus(SCMV) in Nigeria. Plant Dis, 2019,103:818-824.
[40] Bernardi F. Potyvirus proteins: a wealth of functions. Virus Res, 2001,74:157-175.
[41] Olspert A, Carr J P, Firth A E. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res, 2016,44:7618-7629.
[42] Olspert A, Chung B Y, Atkins J F, Carr J P, Firth A E. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. Sci Rep, 2015,16:995-1004.
[43] Cheng G Y, Dong M, Xu Q, Peng L, Yang Z T, Wei T Y, Xu J S. Dissecting the molecular mechanism of the subcellular localization and cell-to-cell movement of the Sugarcane mosaic virus P3N- PIPO. Sci Rep, 2017,7:9868.
[44] Riechmann J L, Laín S, García J A. Highlights and prospects of potyvirus molecular biology. J Gen Virol, 1992,73:1-16.
[45] Chung B Y, Miller W A, Atkins J F, Firth A E. An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA, 2008,105:5897-5902.
[46] Cheng G Y, Yang Z T, Zhang H, Zhang J S, Xu J S. Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg. New Phytol, 2019,225:2122-2139.
[47] Cabanillas D, Jiang J, Movahed N, Germain H, Yamaji Y, Zheng H, Laliberté J. Turnip mosaic virus Uses the SNARE protein VTI11 in an unconventional route for replication vesicle trafficking. Plant Cell, 2018,30:2594-2615.
[48] Movahed N, Patarroyo C, Sun J, Vali H, Laliberté J F, Zheng H. Cytoplasmic inclusion of Turnip mosaic virus serves as a docking point for the intercellular movement of viral replication vesicles. Plant Physiol, 2017,175:1732-1744.
[49] Movahed N, Sun J, Vali H, Laliberté J, Zheng H. A host ER fusogen is recruited by Turnip mosaic virus for maturation of viral replication vesicles. Plant Physiol, 2019,179:507-518.
[50] Zhang H, Cheng G Y, Yang Z T, Wang T, Xu J S. Identification of sugarcane host factors interacting with the 6K2 protein of the Sugarcane mosaic virus. Int J Mol Sci, 2019,20:3867.
[51] Wilkinson C R, Dittmar G A, Ohi M D, Uetz P, Jones N, Finley D. Ubiquitin-like protein Hub1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. Curr Biol, 2004,14:2283-2288.
[52] Watanabe E, Mano S, Nishimura M, Yamada K. AtUBL5 regulates growth and development through pre-mRNA splicing in Arabidopsis thaliana. PLoS One, 2019,14:e0224795.
[53] 邓宇晴, 杨永庆, 翟玉山, 程光远, 彭磊, 郑艳茹, 林彦铨, 徐景升. 甘蔗花叶病毒福州分离物全基因组克隆及种群分析. 植物病理学报, 2016,46:775-782.
Deng Y Q, Yang Y Q, Zhai Y S, Cheng G Y, Peng L, Zheng Y R, Lin Y Q, Xu J S. Genome cloning of two Sugarcane mosaic virus isolates from Fuzhou and phylogenetic analysis of SCMV. Acta Phytopathol Sin, 2016,46:775-782 (in Chinese with English abstract).
[54] 张海, 刘淑娴, 杨宗桃, 王彤, 程光远, 商贺阳, 徐景升. 甘蔗PsbS亚基应答甘蔗花叶病毒侵染及其与6K2蛋白的互作研究. 作物学报, 2020,46:1722-1733.
Zhang H, Liu S X, Yang Z T, Wang T, Cheng G Y, Shang H Y, Xu J S. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein. Acta Agron Sin, 2020,46:1722-1733 (in Chinese with English abstract).
[55] 朱海龙, 程光远, 彭磊, 柴哲, 郭晋隆, 许莉萍, 徐景升. 甘蔗条纹花叶病毒P3蛋白与甘蔗Rubisco大亚基互作的研究. 西北植物学报, 2014,34:676-681.
Zhu H L, Cheng G Y, Peng L, Chai Z, Guo J L, Xu L P, Xu J S. Interaction between Sugarcane streak mosaic virus P3 and rubisco large subunit from sugarcane. Acta Bot Boreali-Occident Sin, 2014,34:676-681 (in Chinese with English abstract).
[56] Guo J, Ling H, Wu Q, Xu L, Que Y. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Sci Rep, 2014,4:7042.
[57] Ammon T, Mishra S K, Kowalska K, Popowicz G M, Holak T A, Jentsch S. The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells. J Mol Cell Biol, 2014,6:312-323.
[58] Correagalvis V, Poschmann G, Melzer M, Kai S, Jahns P. PsbS interactions involved in the activation of energy dissipation in Arabidopsis. Nat Plants, 2016,2:15225.
[59] Daskalakis V, Papadatos S. The photosystem II subunit S under stress. Biophy J, 2017,113:2364-2372.
[60] 翟玉山, 赵贺, 张海, 邓宇晴, 程光远, 杨宗桃, 王彤, 彭磊, 徐倩, 董萌, 徐景升. 甘蔗NAD(P)H脱氢酶复合体O亚基基因克隆及其甘蔗花叶病毒VPg互作研究. 作物学报, 2019,45:1478-1487.
Zhai Y S, Zhao H, Zhang H, Deng Y Q, Cheng G Y, Yang Z T, Wang T, Peng L, Dong M, Xu J S. Cloning of NAD(P)H complex O subunit gene and its interaction with VPg of Sugarcane mosaic virus. Acta Agron Sin, 2019,45:1478-1487 (in Chinese with English abstract).
[61] Hochstrasser M. Origin and function of ubiquitin-like proteins. Nature, 2009,458:422-429.
[62] Marino D, Peeters N, Rivas S. Ubiquitination during plant immune signaling. Plant Physiol, 2012,160:15-27.
[63] Alcaide-Loridan C, Jupin I. Ubiquitin and plant viruses, let’s play together. Plant Physiol, 2012,160:72-82.
[64] Dielen A S, Badaoui S, Candresse T, German-Retana S. The ubiquitin/26S proteasome system in plant-pathogen interactions: a never-ending hide-and-seek game. Mol Plant Pathol, 2010,11:293-308.
[65] Verchot J. Plant virus infection and the ubiquitin proteasome machinery: arms race along the endoplasmic reticulum. Viruses, 2016,8:314.
[66] Reichel C, Beachy R N. Degradation of Tobacco mosaic virus movement protein by the 26S proteasome. J Virol, 2000,74:3330-3337.
[67] 张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, 周俭民. 植物免疫研究与抗病虫绿色防控: 进展、机遇与挑战. 中国科学: 生命科学, 2019,49:1479-1507.
Zhang J, Dong S M, Wang W, Zhao J H, Chen X W, Guo H S, He G C, He Z H, Kang Z S, Li Y, Peng Y L, Wang G L, Zhou X P, Wang Y C, Zhou J M. Research on plant immunity and green control of disease and insect resistance: progress, opportunities and challenge. Sci Sin Vitae, 2019,49:1479-1507 (in Chinese with English abstract).
[68] Hulsmans S, Rodriguez M, De Coninck B, Rolland F. The SnRK1 energy sensor in plant biotic interactions. Trends Plant Sci, 2016,21:648-661.
[69] Wei T, Zhang C, Hou X, Sanfaçon H, Wang A. The SNARE protein Syp71 is essential for Turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog, 2013,9:e1003378.
[70] Geng C, Yan Z Y, Cheng D J, Liu J, Tian Y P, Zhu C X, Wang H Y, Li X D. Tobacco vein banding mosaic virus 6K2 protein hijacks NbPsbO1 for virus replication. Sci Rep, 2017,7:43455.
[71] Mandadi K K, Scholthof K B. Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell, 2015,27:71-85.
[72] Wang A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu Rev Phytopathol, 2015,53:45-66.
[73] Wittmann S, Chatel H, Fortin M G, Laliberté J F. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology, 1997,234:84-92.
[74] 张海, 程光远, 杨宗桃, 刘淑娴, 商贺阳, 黄国强, 徐景升. 甘蔗PsbR亚基应答SCMV侵染及其与SCMV-6K2的互作研究. 作物学报, 2021,47:1522-1530.
Zhang H, Cheng G Y, Yang Z T, Liu S X, Shang H Y, Huang G Q, Xu J S. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2. Acta Agron Sin, 2021,47:1522-1530 (in Chinese with English abstract).
[75] 张海, 程光远, 杨宗桃, 王彤, 刘淑娴, 商贺阳, 赵贺, 徐景升. 甘蔗ScCRT1基因克隆及其应答SCMV侵染分子机制的研究. 作物学报, 2021,47:94-103.
Zhang H, Cheng G Y, Yang Z T, Wang T, Liu S X, Shang H Y, Zhao H, Xu J S. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection. Acta Agron Sin, 2021,47:94-103 (in Chinese with English abstract).
[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[5] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[6] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[7] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[8] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
[9] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection [J]. Acta Agronomica Sinica, 2021, 47(1): 94-103.
[10] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[11] LUO Jun,LIN Zhao-Li,LI Shi-Yan,QUE You-Xiong,ZHANG Cai-Fang,YANG Zai-Qi,YAO Kun-Cun,FENG Jing-Fang,CHEN Jian-Feng,ZHANG Hua. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field [J]. Acta Agronomica Sinica, 2020, 46(4): 596-613.
[12] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[13] ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein [J]. Acta Agronomica Sinica, 2020, 46(11): 1722-1733.
[14] GAO Shi-Wu,FU Zhi-Wei,CHEN Yun,LIN Zhao-Li,XU Li-Ping,GUO Jin-Long. Cloning and expression analysis of metallothionein family genes in response to heavy metal stress in sugarcane (Saccharum officinarum L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 166-178.
[15] SUN Ting-Ting,WANG Wen-Ju,LOU Wen-Yue,LIU Feng,ZHANG Xu,WANG Ling,CHEN Yu-Feng,QUE You-Xiong,XU Li-Ping,LI Da-Mei,SU Ya-Chun. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1 [J]. Acta Agronomica Sinica, 2019, 45(7): 1002-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!