Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (2): 320-331.doi: 10.3724/SP.J.1006.2022.02045

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Advantages of small grain male sterile lines in seed production for a new combination Zhuoliangyou 141 through the mixed-sowing manner

ZHOU Jie-Qiang1(), ZHANG Gui-Lian1,2, DENG Hua-Bing1,2, MING Xing-Quan1, LEI Bin1, LI Fan1, TANG Wen-Bang1,2,*()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance, Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2020-07-02 Accepted:2021-06-16 Online:2022-02-12 Published:2021-07-21
  • Contact: TANG Wen-Bang E-mail:crackzjq@163.com;tangwenbang@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100303);the Major Scientific and Technological Special of Hunan Province(2018NK1020);the Key Research and Development Program of Hunan Province(2017NK2013)

Abstract:

Traditional hybrid breeding is backward, low benefit, and high cost, which restricts the promotion and application in hybrid rice. However, Small Grain TMS lines are easy to be mechanically separated after mixed-sowing and mixed-harvesting. Their application will promote the realization of complete Mechanization of Hybrid Rice Seed Production, leading to the reduction of cost and the improvement of seed production efficiency. In this study, we investigated the agronomic characteristics and outcrossing rates suitable for Mechanization of Hybrid Rice Seed Production, using the Small Grain male sterile line Zhuo 201S, Large Grain restorer line R141, and their combination Zhuoliangyou 141 as materials for mixed-sowing and large-scale seed production practice. The results demonstrated that compared with the control TMS C815S, Zhuo 201S plants were shorter, exhibiting longer and more erect ear, fewer glume opening, lower percentage of panicle enclosure and germination on ears. Moreover, Zhuo 201S plants were resistant to smut disease but sensitive to “920” treatment and had weak seed-shattering characteristic. However, R141 plants were tall and insensitive to environmental temperature with large amount of pollen and a long florescence. Both Zhuo 201S and R141 had good outcrossing characteristics. The grain thickness of Zhuo 201S and R141 was 1.71 mm and 2.23 mm, respectively. The 1000-grain weight of Zhuo 201S and R141 was 14.00 g and 28.20 g, respectively. Due to the significant difference in grain sizes, the hybrid F1 seeds could be easily separated with the male parent seeds through a special sieve with narrow and long apertures. The percentage of male parent seeds mixed in hybrid seeds was 0 while the hybrid seed loss rate was 2.31%, suggesting that the seed purity met the standards for Mechanization of Hybrid Rice Seed Production. Compared with the traditional seed production mode, the basic seedling of male parent was reduced by 85%, the capacity of female parent was increased by 20%, the seed production yield was increased by 21.37%, and the comprehensive benefit of seed production was increased by 31.4%. Zhuoliangyou 141 was endowed with the advantages suitable for mechanized production by mix-sowing, with excellently agronomic traits and outcrossing properties along with huge difference in grain size from its parents. Therefore, the whole process of Zhuoliangyou 141 mechanized seed production had a broad application prospect.

Key words: rice, small grain sterile line, Zhuoliangyou 141, mixed sowing seed production, advantage

Table 1

Outcrossing characteristics of male parent R141"

材料
Material
株高
PLH
(cm)
穗长
PAH
(cm)
单株穗数 PPP 每穗粒数
TGPP
单穗花期
FPPA
(d)
单株花期
FPPL
(d)
始花时间 ST 盛花时间 FLT 花粉密度
PD
(×104 m-2)
R141 115.7±2.4 a 28.30±1.8 a 9.2±0.8 b 209.4±10.4 a 6.0±0.7 a 10.0±1.1 a 10:50 11:05 108.0±8.9 a
华占Huazhan 109.4±2.1 b 23.90±1.2 b 10.6±0.7 a 162.3±8.7 b 4.0±0.5 b 6.0±0.6 b 10:15 11:40 80.2±7.3 b

Fig. 1

Relationship between pollen quantity and temperature in restorer lines"

Fig. 2

Dynamic variations of Zhuo 201S at heading and flowering stages"

Fig. 3

Dynamic variations of Zhuo 201S at different flowering time"

Table 2

Stigma size and exsertion rate of Zhuo 201S"

材料
Material
长度
Length
(mm)
宽度
Width
(mm)
面积
Area
(mm2)
体积
Volume
(mm3)
双边外露率
Bilateral
exposure rate (%)
单边外露率
Unilateral
exposure rate (%)
总外露率
Total
exposure rate
(%)
卓201S Zhuo 201S 1.21±0.12 b 0.40±0.01 b 0.49±0.03 b 0.15±0.01 b 53.56±1.33 a 34.08±1.03 a 87.64±1.96 a
C815S (CK) 1.25±0.08 a 0.46±0.02 a 0.57±0.02 a 0.20±0.01 a 55.40±1.46 b 29.60±0.87 b 85.00±1.24 b

Table 3

Stigma vigour of Zhuo 201S (%)"

材料
Material
8月11日
Aug. 11
8月12日
Aug. 12
8月13日
Aug. 13
8月14日
Aug. 14
8月15日
Aug. 15
8月16日
Aug. 16
8月17日
Aug. 17
8月18日
Aug. 18
活力系数
VC
卓201S Zhuo 201S 73.1±1.7 a 60.1±1.3 a 52.7±0.8 a 47.0±0.4 a 39.8±0.4 a 12.0±0.4 a 10.0±0.4 a 8.8±0.4 a 2.2±0.1 a
C815S (CK) 68.6±1.9 b 48.9±1.1 b 30.0±0.6 b 21.0±0.6 b 11.2±0.4 b 7.9±0.4 b 3.7±0.4 b 0 b 1.5±0.1 b

Table 4

Agronomic traits of R141 and Zhuo 201S"

材料
Material
株高
PLH (cm)
穗长
PL (cm)
穗形
PT
包颈粒率
RWG (%)
经济系数
EC
卓201S Zhuo 201S 60.5±1.9 a 27.6±0.6 a 直立 Erect 5.1±0.5 b 48.7±0.1 a
C815S 68.3±2.1 b 24.2±0.4 b 弯曲 Bend 15.7±0.8 a 40.6±0.2 b
R141 115.7±2.4 a 28.3±0.8 a 弯曲 Bend 44.9±0.2 b
华占 Huazhan 109.4±2.1 b 23.9±0.2 b 弯曲 Bend 47.2±0.3 a
卓201S Zhuo 201S 22.4±1.6 a 0.1±0 b 0 b 0.2±0.1 b 较难落粒Not easy shattering
C815S 19.7±1.2 b 12.9±1.1 a 23.9±2.2 a 2.7±0.1 a 易落粒 Easy shattering
R141 35.6±2.4 a
华占 Huazhan 28.7±1.9 b

Table 5

Grain traits of R141 and Zhuo 201S"

品系
Line
材料
Material
粒长
Grain length (mm)
粒厚
Grain width (mm)
长宽比
Length-width ratio
千粒重
1000-grain weight (g)
恢复系
Restorer line
R141 6.61±0.13 a 2.23±0.03 a 3.04±0.04 b 28.22±0.62 a
华占 Huazhan 6.54±0.21 a 2.01±0.04 b 3.42±0.03 a 23.64±0.43 b
不育系
Sterile line
卓201S Zhuo 201S 5.82±0.11 a 1.71±0.04 b 3.32±0.03 a 14.01±0.33 b
C815S 5.63±0.16 a 1.96±0.02 a 2.95±0.03 b 23.42±0.56 a

Fig. 4

Basic seedlings of Zhuo 201S and R141 under different seed production modes"

Fig. 5

Dynamic variations of pollen density of R141 under different seed production modes"

Table 6

Comparison of yield characters of different seed production modes"

制种模式
SPM
单株有效穗
EPP
有效穗
EP (m2)
每穗总粒数
TGP
结实率
SSR (%)
千粒重
GW (g)
理论产量
TY (kg hm-2)
实际产量
AY (kg hm-2)
混播制种MSP 7.33±1.17 b 409.30±1.33 a 149.10±10.21 b 51.60±78 b 14.50±06 a 6843.00±12.45 a 5785.50±04.03 a
传统制种TSP 13.47±1.49 a 272.60±3.12 b 168.50±12.36 a 53.90±25 a 14.50±08 a 5383.50±96.23 b 4603.50±79.65 b

Table 7

Comparison of benefit between mechanized mixed sowing seed production (MSP) and traditional seed production (TSP)"

制种模式
SPM
种植方式
PM
辅助授粉
APM
收割方式
HM
母本容量
MC
异交率
AOR
(%)
平均产量
AY
(kg hm-2)
综合效益
CBOSP
(Yuan hm-2)
增益
TAB
传统制种TSP 移栽Transplanting 需要Yes 父母本分收
Parents separate harvesting
74.40±3.21 a 3382.50±96.33 b 67,650
机械化制种MSP 父母本机械混合直播
Parent-mixed direct seeding
无需No 机械混收
Mechanical harvesting
增加20.00%
Increased by 20.00%
70.30±2.98 b 4105.50±106.76 a 82,110 1464
Yuan hm-2
增加效益TAB 4500
Yuan hm-2
1500
Yuan hm-2
1500
Yuan hm-2
14,460 Yuan 31.40%

Table 8

Practice of mixed sowing seed production in Zhuoliangyou 141"

年份
Year
地点
Place
有效穗
EP
每穗总粒数
SNPP
结实率
SSR (%)
千粒重
GW (g)
理论产量
TY (kg hm-2)
实际产量
AY (kg hm-2)
2018 三亚Sanya 5492.2±252.3 152.4±10.5 70.6±6.5 13.9±0.6 5473.5±304.1 5073.3±268.4
2019 长沙Changsha 5217.8±289.4 152.4±9.4 55.3±5.8 14.1±0.4 4133.7±248.4 3574.1±200.5
2019 怀化Huaihua 4257.0±205.3 155.4±11.4 72.3±6.2 13.8±0.6 4398.1±268.3 3658.1±197.4

Fig. 6

Practice of mechanized mixed sowing seed production A: field picture of seedling stage of hybrid seed production for Zhuoliangyou 141 with mixed and direct seeding way; B: field picture at booting stage of hybrid seed production for Zhuoliangyou 141 with mixed and direct seeding way; C: field picture at full heading stage of hybrid seed production for Zhuoliangyou 141 with mixed and direct seeding way; D: field picture at mature stage of hybrid seed production for Zhuoliangyou 141 with mixed and direct seeding way; E: comparison of grain types between Zhuo 201S and the restorer line R141, the grains with red arrow shows R141 seed, the 1000-grain weight of Zhuo 201S is 14.10 g, the grain thickness of Zhuo 201S is 1.71 mm, the 1000-grain weight of R141 is 27.80 g, the grain thickness of R141 is 2.32 mm; E: the long and narrow mesh sieve used in sorting machine; F: seeds of hybrid rice Zhuoliangyou 141 (left) and restorer line R141 (right) after sorting."

Fig. 1

SField picture of Zhuoliangyou 141"

Table 1

SPerformance of Zhuoliangyou 141 in 2017 and 2018 national regional test"

品种
Variety
产量
Yield (kg hm-2)
生育期
GP (d)
有效穗
EP
株高
PLH (cm)
穗长
PL (cm)
每穗总粒数
SNPP
结实率
SSR (%)
千粒重
GW (g)
稻米品质
Rice quality
卓两优141
Zhuoliangyou 141
9531 138.0 247.5 118.5 26.0 241.5 78.4 23.3 优质二级
The second class stand of fine quality rice
丰两优4号
Fengliangyou 4
9132 135.6 220.5 126.0 25.2 192.1 83.9 27.9 优质三级
The third class stand of fine quality rice
[1] Khush G S. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005,59:1-6.
[2] 袁隆平. 发展杂交水稻保障粮食安全. 科学新闻, 2014, ( 12):32-33.
Yuan L P. Develop hybrid rice to ensure food security. Sci News, 2014, ( 12):32-33 (in Chinese with English abstract).
[3] 彭少兵. 转型时期杂交水稻的困境与出路. 作物学报, 2016,42:313-319.
Peng S B. Dilemma and way-out of hybrid rice during the transition period in China. Acta Agron Sin, 2016,42:313-319 (in Chinese with English abstract).
[4] 李晏军. 中国杂交水稻技术发展研究(1964-2010). 南京农业大学博士学位论文, 江苏南京, 2010.
Li Y J. Study on the Development of Hybrid Rice Technology in China (1964-2010). PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2010 (in Chinese with English abstract).
[5] 许二波. 水稻小粒突变的基因定位及育种利用研究. 中国农业科学院硕士学位论文, 北京, 2015.
Xu E B. Study on Gene Location and Breeding Utilization of Rice Small Grain Mutation. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[6] 石萌萌. 杂交水稻发展推广面临新考验. 科技导报, 2014,32(27):9.
Shi M M. The new challenges of development and extension of hybrid rice. Sci Technol Rev, 2014,32(27):9 (in Chinese with English abstract).
[7] 刘延斌, 杨远柱, 刘建丰, 符辰建, 秦鹏, 胡小淳. 杂交水稻亲本混播机械化制种研究进展. 作物研究, 2012,26(1):85-87.
Liu Y B, Yang Y Z, Liu J F, Fu C J, Qin P, Hu X C. Research progress of mechanization production of hybrid rice seed through parents’ seeds mixed plant. Crop Res, 2012,26(1):85-87 (in Chinese with English abstract) .
[8] 唐文帮, 张桂莲, 邓化冰. 杂交水稻机械化制种的技术探索与实践. 中国水稻科学, 2020,34:95-103.
Tang W B, Zhang G L, Deng H B. Technology exploration and practice of hybrid rice mechanized seed production. Chin J Rice Sci, 2020,34:95-103 (in Chinese with English abstract).
[9] 吕直文, 郑济万, 卿明敬, 黄成文. 杂交水稻理想型机械化制种组合II优86. 杂交水稻, 1996,9(5):12-13.
Lyu Z W, Zheng J W, Qing M J, Huang C W. II You 86, a suitable hybrid rice for hybrid seed production mechanization. Hybrid Rice, 1996,9(5):12-13 (in Chinese with English abstract).
[10] 许二波, 王跃星, 倪深, 陈红旗, 朱旭东. 水稻隐性小粒基因在杂交稻种子机械分选上的应用研究. 中国稻米, 2015,21(3):8-11.
Xu E B, Wang Y X, Ni S, Chen H Q, Zhu X D. Application of small grain recessive gene in the mechanical sorting of hybrid rice seeds. China Rice, 2015,21(3):8-11 (in Chinese with English abstract).
[11] 余应弘. 小粒矮秆水稻在杂交水稻工程化制种中的应用基础研究. 湖南农业大学博士学位论文, 湖南长沙, 2010.
Yu Y H. Basic Research on the Application of Small Grain Dwarf Rice in Hybrid Rice Engineering Seed Production. PhD Dissertation of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract).
[12] 明兴权. 水稻小粒型两用核不育系卓201S应用研究. 湖南农业大学硕士学位论文, 湖南长沙, 2018.
Ming X Q. Study on the Application of Small Grain CMS Lines Zhuo 201S. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2008 (in Chinese with English abstract).
[13] 彭正明, 周逢明. 母本机械直播技术在杂交水稻集约化制种上的应用初探. 杂交水稻, 2000,15(6):27-32.
Peng Z M, Zhou F M. Application of the mechanized direct seeding technique in hybrid rice seed production. Hybrid Rice, 2000,15(6):27-32 (in Chinese with English abstract).
[14] 李青茂. 杂交水稻在美国实行机械化制种的要求和前景. 杂交水稻, 1990, ( 2):45-47.
Li Q M. The requirement for mechanization of hybrid rice seed production in USA and its prospects. Hybrid Rice, 1990, ( 2):45-47 (in Chinese with English abstract).
[15] 傅亚萍, 朱正歌, 肖晗, 胡国成, 斯华敏, 于永红, 孙宗修. 抗除草剂基因导入培矮64S实现杂交水稻制种机械化的初步研究. 中国水稻科学, 2010,15:97-100.
Fu Y P, Zhu Z G, Xiao H, Hu G C, Si H M, Yu Y H, Sun Z X. Primary study on mechanization of seed production of hybrid rice by inducing Bar gene to Pei’ai 64S. Chin J Rice Sci, 2010,15:97-100 (in Chinese with English abstract).
[16] 张德文, 杨前进, 王士梅, 汪婉琳, 朱启升. 混制1号机械化混播制种生产技术. 中国农学通报, 2008,24(10):66-69.
Zhang D W, Yang Q J, Wang S M, Wang W L, Zhu Q S. The production technology of seeds by mechanize of Hunzhi No. 1. Chin Agric Sci Bull, 2008,24(10):66-69 (in Chinese with English abstract).
[17] 颜昌伟. 一种利用叶绿体转基因技术的机械化杂交稻制种方法: 20091004373. 2010-12-09.
Yan C W. A mechanized hybrid rice seed production method using chloroplast transgenic technology: 20091004373. [2010-12-09]. https://d.wanfangdata.com.cn/patent/ChJQYXRlbnROZXdTMjAyMTAxMDkSEENOMjAwOTEwMDQzNzM1LjEaCGplYnl0cHBq. (in Chinese)
[18] 朱启升. 杂交水稻混播制种技术研究进展. 作物研究, 2004,18(4):204-207.
Zhu Q S. Research progress on hybrid rice seed breeding by mixed planted. Crop Res, 2004,18(4):204-207 (in Chinese with English abstract).
[19] 张集文. 水稻苯达松敏感突变研究进展. 中国水稻科学, 2010,24:551-558.
Zhang J W. Progress on the study of the Bentazon sensitive mutants in rice. Chin J Rice Sci, 2010,24:551-558 (in Chinese with English abstract).
[20] 朱祯. 转基因水稻研发进展. 中国农业科技导报, 2010,12(2):9-16.
Zhu Z. Research progress and development of transgenic rice. J Agric Sci Technol, 2010,12(2):9-16 (in Chinese with English abstract).
[21] 高荣村, 路金根, 范国华, 徐美玲, 李金军. 一份水稻雌性全不育隐性突变体的基本特性. 浙江农业科学, 2007, ( 5):529-530.
Gao R C, Lu J G, Fan G H, Xu M L, Li J J. Basic characteristics of a recessive male and female sterile mutant of rice. J Zhejiang Agric Sci, 2007, ( 5):529-530 (in Chinese with English abstract).
[22] Chang Z Y, Chen Z F, Wang N, Xie G, Lu J W, Yan W, Zhou J L, Tang X Y, Deng X W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA, 2016,113:14145-14150.
[23] Xia Y M, Tang N, Hu Y Y, Li D, Li S C, Bu X L, Yu M L, Qi S W, Yang Y S, Zhu H J, Cao C Y, Li P, Yuan L P, Cao M L. A method for mechanized hybrid rice seed production using female sterile rice. Rice, 2019,12:39.
[24] 吴春珠, 程祖辛, 赵明富, 郑建华, 杨聚宝. 水稻雄性不育系博白A的抽穗期遗传分析. 安徽农学通报, 2005,11(6):55-57.
Wu C Z, Cheng Z X, Zhao M F, Zheng J H, Yang J B. Genetic analysis of heading stage of rice male sterile line Bobai A. Anhui Agric Sci Bull, 2005,11(6):55-57 (in Chinese with English abstract).
[25] 何立斌, 曹立勇, 钱前, 程式华. 稻壳颜色标记在杂交水稻制种中的应用初探. 浙江农业学报, 2001,13:357-360.
He L B, Cao L Y, Qian Q, Cheng S H. The prospects of hybrid rice seed production by using rice chaff colour marker. Acta Agric Zhejiangensis, 2001,13:357-360 (in Chinese with English abstract).
[26] 许可, 袁定阳, 谭炎宁, 段美娟. 适于混播制种的水稻隐性红颖资源RG-1的发现及其特征特性研究. 杂交水稻, 2018,33(4):17-21.
Xu K, Yuan D Y, Tan Y N, Duan M J. Discovery and characteristic investigation of a recessive red-glume germplasm RG-1 with applied potential in mixed sowing of hybrid rice seed production. Hybrid rice, 2018,33(4):17-21 (in Chinese with English abstract).
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[7] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[8] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[9] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[10] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[11] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[12] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[13] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[14] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!