Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1037-1050.doi: 10.3724/SP.J.1006.2022.12062

• REVIEWS •     Next Articles

Contents and compositions of amino acids in rice grains and their regulation: a review

YANG Jian-Chang*(), LI Chao-Qing, JIANG Yi   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-07-26 Accepted:2021-11-20 Online:2022-05-12 Published:2021-12-07
  • Contact: YANG Jian-Chang E-mail:jcyang@yzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32071943);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);Top Talent Supporting Program of Yangzhou University(2015-01)


Amino acids in cereal grains are important nutrients for both human and animals. Increasing the content of amino acids in the rice grain, especially lysine and other essential amino acids, plays a very important role in improving the nutritional standard of people in the countries with rice as staple food. This paper reviewed some research progresses in the contents and compositions of amino acids in the mature grain of rice and their distribution in the different parts of a grain, the synthesis and metabolism of amino acids in the grain, the role of plant hormones in regulating the synthesis and metabolism of on amino acids, and the effects of environmental factors and cultivation practices on the contents and compositions of amino acids in the grain, and discussed the existing problems and key points for future research. It merits further investigating the temporal (at different filling stages) and spatial (at different parts of a grain) distribution characteristics of the contents and compositions of amino acids in a grain during the filling, their physiological and biochemical mechanism, and cultivation regulation and its principle. Such a study is expected to gain new insight into the mechanism in the formation and distributions of amino acids in a rice grain, and explore a new way to increase the contents of amino acids, especially essential amino acids such as lysine, in milled rice.

Key words: rice, amino acids, spatiotemporal distribution, physiological mechanism, cultivation regulation

Fig. 1

Amino acid metabolic pathway of aspartate family in higher plants GS: glutamine synthetase; GOGAT: glutamate synthase; AST: aspartate transaminase; AS: asparagine synthetase; ASN: asparaginase; AK: aspartate kinase; HSDH: homoserine dehydrogenase; DHDPS: dihydropicolinate synthase; HK: homoserine kinase; TS: threonine synthase; CS: cysthationine ɤ-synthase; TD: threonine dehydratase; DHDPR: dihydropicolinate reductase; DAPD: diaminopimelate decarboxylase; LKR: Lysine α-ketoglutarate reductase; SDH: Saccharopine dehydrogenase. The figure is adapted from the references of [42], [43], and [44]."

Table 1

Comparison of protein and amino acid contents in the milled rice at maturity and hormone levels in the kernel at grain filling stage between non-transgenic rice (Nipponbare-WT) and transgenic rice (Nipponbare-GS1)"

Contents of proteins, amino acids, and hormones 2
日本晴-WT (对照)
Nipponbare-wide type (control)
日本晴-GS1 1
Nipponbare-GS1 1
蛋白质 Protein [g (100 g DW)-1] 7.14 9.23**
17种氨基酸 TAA [mg (g DW)-2] 71.5 85.7**
赖氨酸含量 Lys [mg (g DW)-1] 3.19 4.06*
玉米素+玉米核苷 Z+ZR [nmol (g DW)-1] 0.78 0.83ns
吲哚-3-乙酸 IAA [nmol (g DW)-1] 0.58 0.59ns
赤霉素 GA1+GA4 [nmol (g DW)-1] 0.64 0.67ns
脱落酸 ABA [nmol (g DW)-1] 1.13 1.45*
1-氨基环丙烷-1-羧酸 ACC [nmol (g DW)-1] 57.6 58.4ns
乙烯释放速率 Ethlene [nmol (g DW h)-1] 1.59 1.61ns
24-表油菜素内酯 24-EBL [pmol (g DW)-1] 12.8 18.8**
28-高油菜素内酯 28-HBL [pmol (g DW)-1] 15.9 20.4**

Table 2

Effects of chemical regulators on the activity of aspartate kinase (AK) during grain filling and the contents of 17 amino acids (TAA) and lysine (Lys) in milled rice at maturity (AK activity: nmol mg-1 protein h-1; contents of amino acids: mg g-1 DW) 1"

扬稻6号(籼稻) Yangdao 6 (indica) 武运粳24号(粳稻) Wuyunjing 24 (japonica)
AK activity 3
TAA content
Lys content
AK activity 3
TAA content
Lys content
清水Water (control) 26.3 70.8 3.11 27.2 72.5 3.39
10 µmol L-1 ZR 27.9ns 71.1ns 3.13ns 27.7ns 72.9ns 3.41ns
10 µmol L-1 IAA 27.4ns 70.6ns 3.12ns 26.9ns 71.3ns 3.32ns
10 µmol L-1 GA3 25.7ns 69.5ns 3.08ns 26.3ns 70.6ns 3.29ns
10 µmol L-1 ACC 25.5ns 69.7ns 2.97ns 25.8ns 70.4ns 3.32ns
10 µmol L-1 ABA 32.3* 75.5* 3.56* 31.4* 75.9* 3.75*
10 µmol L-1 24-EBL 33.7* 77.6* 3.76* 32.3* 77.3* 3.93*
50 µmol L-1 ZR 27.2ns 71.5ns 3.10ns 27.5ns 72.6ns 3.38ns
50 µmol L-1 IAA 26.5ns 71.4ns 3.12ns 27.1ns 72.2ns 3.27ns
50 µmol L-1 GA3 25.1ns 70.7ns 3.05ns 26.4ns 71.1ns 3.33ns
50 µmol L-1 ACC 24.9* 68.8ns 2.92ns 25.4ns 69.5ns 3.14ns
50 µmol L-1 ABA 22.2* 63.3* 2.55* 21.6* 64.8* 2.73*
50 µmol L-1 24-EBL 32.5* 77.8* 3.78* 33.5* 77.5* 3.95*
10 µmol L-1 ABA+10 µmol L-1 24-EBL 36.1** 85.4** 4.25** 37.9** 86.5** 4.35**
50 µmol L-1 ABA+10 µmol L-1 24-EBL 25.4ns 70.6ns 2.86ns 26.8ns 71.3ns 3.17ns
50 µmol L-1 ABA+50 µmol L-1 24-EBL 26.0ns 71.5ns 3.09ns 27.2ns 72.7ns 3.22ns

Fig. 2

Contents of lysine (A), eight essential amino acids (B), and total non-essential amino acids (C) in milled rice of japonica rice varieties in different years Different lowercase letters above the columns indicate significant difference at the 0.05 probability level. Data in the figure were adapted from the reference [64]."

Fig. 3

Effects of nitrogen application rates on the contents of lysine (A), eight essential amino acids (B), and total non- essential amino acids (C) in milled rice The 0N, 180N, and 360 N indicate the nitrogen (N) application rate at 0, 180, and 360 kg hm-2, respectively. YFJ-8, NJ-9108, and YY-2640 represent rice varieties of Yangfujing 8, Nanjing 9108, and Yongyou 2640, respectively. Different lowercase letters above the columns indicate significant difference at the 0.05 probability level. Data in the figure were adapted from the reference [88]."

Fig. 4

Effects of irrigation regimes on the contents of lysine (A), eight essential amino acids (B), and total non-essential amino acids (C) in milled rice FI: flood irrigation; AWD: alternate wetting and drying irrigation; YY-2640: Yongyou 2640; HD-5: Huaidao 5. Different lowercase letters above the columns indicate significant difference at the 0.05 probability level. Data in the figure were adapted from the reference [97]."

[1] Albarracin M, Dyner L, Giacomino M S, Weisstaub A, Zuleta A, Drago S R. Modification of nutritional properties of whole rice flours (Oryza sativa L.) by soaking, germination, and extrusion. J Food Biochem, 2019, 43:e12854.
[2] Shivakumar N, Kashyap S, Kishore S, Varkey A, Devi S, Preston T, Jahoor F, Sheshshayee M S, Kurpad A V. Protein-quality evaluation of complementary foods in Indian children. Am J Clin Nutrit, 2019, 109:1319-1327.
[3] Zhang Y, Xu D, Hebelstrup K H, Yang D L, Cai J, Wang X, Zhou Q, Cao W X, Dai T B, Jiang D. Nitrogen topdressing timing modifies free amino acids profiles and storage protein gene expression in wheat grain. BMC Plant Biol, 2018, 18:353.
doi: 10.1186/s12870-018-1563-3
[4] 杨晴晴. 高赖氨酸转基因水稻的营养评价及代谢关联研究. 扬州大学博士学位论文, 江苏扬州, 2016.
Yang Q Q. Nutritional Assessment and Metabolic Connection Analysis of Transgenic Rice with High Free Lysine. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu,China, 2016 (in Chinese with English abstract).
[5] Mir N A, Riar C S, Singh S. Nutritional constituents of pseudo cereals and their potential use in food systems: a review. Trends Food Sci Technol, 2018, 75:170-180.
doi: 10.1016/j.tifs.2018.03.016
[6] Wong H W, Liu Q, Sun S S M. Biofortification of rice with lysine using endogenous histones. Plant Mol Biol, 2015, 87:235-248.
doi: 10.1007/s11103-014-0272-z pmid: 25512028
[7] Kamara J S, Konishi S, Sasanuma T, Abe T. Variation in free amino acid profile among some rice (Oryza sativa L.) cultivars. Breed Sci, 2010, 60:46-54.
doi: 10.1270/jsbbs.60.46
[8] Yang Q Q, Wu H Y, Li Q F, Duan R X, Zhang C Q, Sun S S M, Liu Q Q. Characterization of agronomy, grain physicochemical quality, and nutritional property of high-lysine 35R transgenic rice with simultaneous modification of lysine biosynthesis and catabolism. J Agric Food Chemist, 2017, 65:4296-4304.
[9] Huang M, Zhang H D, Zhao C R, Chen G H, Zou Y B. Physiological processes contributing to the difference in grain amino acid content between two hybrid rice (Oryza sativa L.) cultivars. Phyton(Buenos Aires), 2019, 88:101-107.
doi: 10.32604/phyton.2019.06694
[10] Mitsuda H. Toward solutions for food crisis in the 21st century—from basic research to development of innovative food technologies. Proc Jpn Acad Ser B-Phys Biol Sci, 1999, 75:246-253.
doi: 10.2183/pjab.75.246
[11] Long X H, Liu Q Q, Chan M L, Wang Q, Sun S S M. Metabolic engineering and profiling of rice with increased lysine. Plant Biotect J, 2013, 11:490-501.
[12] Yang Q Q, Zhang C Q, Chan M L, Zhao D S, Chen J Z, Wang Q, Li Q F, Yu H X, Gu M H, Sun S S M. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot, 2016, 67:4285-4296.
doi: 10.1093/jxb/erw209
[13] Schmidt D, Rizzi V, Gaziola S A, Medici L O, Vincze E, Kozak M, Lea P J, Azevedo R A. Lysine metabolism in antisense C-hordein barley grains. Plant Physiol Biochem, 2015, 87:73-83.
doi: 10.1016/j.plaphy.2014.12.017
[14] 王红梅, 刘巧泉, 顾铭洪. 稻米蛋白营养品质及其遗传改良. 植物生理学通讯, 2007, 43:391-396.
Wang H M, Liu Q Q, Gu M H. The nutritional quality of rice proteins and its genetic improvement. Plant Physiol Commun, 2007, 43:391-396 (in Chinese).
[15] Juliano B O. Rice: Chemistry and Technology. American Association of Cereal Chemists. USA: Inc St Paul Minn, 1985. pp 1-174.
[16] WHO. Energy and protein requirements. In: WHO Technology Report Series, 522. Geneva: World Health Organization, 1973.
[17] 王根庆. 不同稻类品种蛋白质和氨基酸含量差异的研究. 华北农学报, 1991, 6(2):7-12.
Wang G Q. A study on differences between grain protein and amino acid content in different rice varieties. Acta Agric Boreali-Sin, 1991, 6(2):7-12 (in Chinese with English abstract).
[18] Kaur P, Pal P, Virdi A S, Singh N, Mahajan G. Protein and starch characteristics of milled rice from different cultivars affected by transplantation date. J Food Sci Technol, 2016, 53:3186-3196.
doi: 10.1007/s13197-016-2293-x
[19] 韩展誉, 吴春艳, 许艳秋, 黄福灯, 熊义勤, 管弦悦, 周庐建, 潘刚, 程方民. 不同施氮水平下灌浆期高温对水稻贮藏蛋白积累及其合成代谢影响. 中国农业科学, 2021, 54:1439-1454.
Han Z Y, Wu C Y, Xu Y Q, Huang F D, Xiong Y Q, Guan X Y, Zhou L J, Pan G, Cheng F M. Effects of high-temperature at filling stage on grain storage protein accumulation and its biosynthesis metabolism for rice plants under different nitrogen application levels. Sci Agric Sin, 2021, 54:1439-1454 (in Chinese with English abstract).
[20] 路凯, 赵庆勇, 周丽慧, 赵春芳, 张亚东, 王才林. 稻米蛋白质含量与食味品质的关系及其影响因素研究进展. 江苏农业学报, 2020, 36:1305-1311.
Lu K, Zhao Q Y, Zhou L H, Zhao C F, Zhang Y D, Wang C L. Research progress on the relationship between rice protein content and eating quality and the influence factors. Jiangsu J Agric Sci, 2020, 36:1305-1311 (in Chinese with English abstract).
[21] Gan L, Huang B S, Song Z J, Zhang Y C, Zhang Y J, Chen S, Tong L Q, Wei Z S, Yu L X, Luo, X B, Zhang X H, Cai D T, He Y C. Unique glutelin expression patterns and seed endosperm structure facilitate glutelin accumulation in polyploid rice seed. Rice, 2021, 14:61.
doi: 10.1186/s12284-021-00500-0 pmid: 34224013
[22] Santos K F D N, Silveira R D D, Martin-Didonet C C G, Brondani C. Storage protein profile and amino acid content in wild rice Oryza glumaepatula. Pesquisa Agropecuaria Brasileira, 2013, 48:66-72.
[23] Ishimaru T, Parween S, Saito Y, Shigemitsu T, Yamakawa H, Nakazono M, Masumura T, Nishizawa N K, Kondo M, Sreenivasulu N. Laser microdissection-based tissue-specific transcriptome analysis reveals a novel regulatory network of genes involved in heat-induced grain chalk in rice endosperm. Plant Cell Physiol, 2019, 60:626-642.
doi: 10.1093/pcp/pcy233 pmid: 30517758
[24] Hagen S R, Frost B, Augustin J. Precolumn phenylisothiocyanate derivatization and liquid chromatography of amino acids in food. J Assoc Official Analyt Chem, 1989, 72:912-916.
[25] Kawakatsu T, Takaiwa F. Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain. Plant Cell Physiol, 2010, 51:1964-1974.
doi: 10.1093/pcp/pcq164 pmid: 21037241
[26] Tran T U, Suzuki K, Okadome H, Ikezaki H, Homma S, Ohtsubo K. Detection of changes in taste of japonica and indica brown and milled rice(Oryza sativa L.) during storage using physicochemical analyses and a taste sensing system. J Agric Food Chem, 2005, 53:1108-1118.
doi: 10.1021/jf049064+
[27] Tran T U, Suzuki K, Okadome H, Homma S, Ohtsubo K. Analysis of the tastes of brown rice and milled rice with different milling yields using a taste sensing. Food Chem, 2004, 88:557-566.
doi: 10.1016/j.foodchem.2004.02.007
[28] 金红, 吴晓蕾, 宋斌斌, 李慧茹, 张欣, 王松文. 不同食味水稻品种中与氮代谢相关酶活性的比较研究. 广东农业科学, 2015, 14(7):27-30.
Jin H, Wu X L, Song B B, Li H R, Zhang X, Wang S W. Comparative study on activities of enzymes related to nitrogen metabolism in rice cultivars with different eating tastes. Guangdong Agric Sci, 2015, 14(7):27-30 (in Chinese with English abstract).
[29] Nagato K. Differences in grain weight of spikelets located at different positions within a rice panicle. Jpn J Crop Sci, 1941, 13:156-169 (in Japanese).
doi: 10.1626/jcs.13.156
[30] Mohapatra P K, Patel R, Sahu S K. Time of flowering affects grain quality and spikelet partitioning within the rice panicle. Australian J Plant Physiol, 1993, 20:231-242.
[31] 杨建昌. 禾谷类作物弱势粒的充实. 见: “10000个科学难题”农业科学编委会, 10000个科学难题, 农业科学卷. 北京: 科学出版社, 2011. pp 120-122.
Yang J C. The Filling of Inferior Caryopses in Cereals. In: The Editorial Board of 10000 Selected Problems in Agricultural Sciences eds. 10000 Selected Problems in Science. Beijing: Science Press, 2011. pp 120-122(in Chinese).
[32] Mohapatra P K, Panigrahi R, Turner N C. Physiology of spikelet development on the rice panicle: is manipulation of apical dominance crucial for grain yield improvement? Adv Agron, 2011, 110:333-359.
[33] Ishimaru T, Hirose T, Matsuda T, Goto A, Takahashi K, Sasaki H, Terao T, Ishii R, Ohsugi R, Yamagishi T. Expression patterns of genes encoding carbohydrate-metabolizing enzymes and their relationship to grain filling in rice (Oryza sativa L.): comparison of caryopses located at different positions in a panicle. Plant Cell Physiol, 2005, 46:620-628.
pmid: 15701658
[34] Chen T T, Xu G W, Wang Z Q, Zhang H, Yang J C, Zhang J H. Expression of proteins in superior and inferior spikelets of rice during grain filling under different irrigation regimes. Proteomics, 2016, 16:102-121.
doi: 10.1002/pmic.201500070
[35] Zhang Z X, Zhao H, Huang F L, Long J F, Song G, Lin W X. The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice (Oryza sativa L.). Plant J, 2019, 99:344-358.
[36] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018, 63:2932-2943.
Yang J C, Zhang J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin Sci Bull, 2018, 63:2932-2943 (in Chinese with English abstract).
[37] 周琴, 姜东, 戴廷波, 荆奇, 曹卫星. 谷氨酰胺供应水平对离体培养小麦穗籽粒淀粉和蛋白质及其组分含量的影响. 植物学通报 2005, 22:549-554.
Zhou Q, Jiang D, Dai T B, Jing Q, Cao W X. Effect of glutamine on content of starch, protein and protein components in grains of in vitro-cultured wheat spikes. Chin Bull Bot, 2005, 22:549-554 (in Chinese with English abstract).
[38] 周丽慧, 张昌泉, 刘巧泉, 顾铭洪. 具不同蛋白质含量水稻品种中天冬酰胺合成酶基因的表达. 基因组学与应用生物学, 2009, 28:39-45.
Zhou L H, Zhang C Q, Liu Q Q, Gu M H. Expression characteristics of asparagine synthetase gene among rice varieties with different seed storage protein content. Genom Appl Biol, 2009, 28:39-45 (in Chinese with English abstract).
[39] 曹珍珍, 张其芳, 韦克苏, 杨卫丽, 刘光快, 程方民. 水稻籽粒氮代谢几个关键酶对花后高温胁迫的响应及其与贮藏蛋白积累关系. 作物学报, 2012, 38:99-106.
Cao Z Z, Zhang Q F, Wei K S, Yang W L, Liu G K, Cheng F M. Response of some key enzyme activities involved in nitrogen metabolism to high temperature at filling stage and its relation to storage protein accumulation in rice grain. Acta Agron Sin, 2012, 38:99-106 (in Chinese with English abstract).
[40] 梁成刚, 张青, 李敬, 熊丹, 许光利, 汪燕, 刘泉, 黄鹏, 李天. 水稻灌浆期高温对天冬氨酸代谢酶活性及其家族氨基酸含量的影响. 中国水稻科学, 2013, 27:71-76.
Liang C G, Zhang Q, Li J, Xiong D, Wang Y, Liu Q, Huang P, Li T. Effect of high temperature on aspartate metabolism enzyme activities and aspartate-family amino acids contents at rice grain-filling stage. Chin J Rice Sci, 2013, 27:71-76 (in Chinese with English abstract).
[41] 韦克苏. 花后高温对水稻胚乳淀粉合成与蛋白积累的影响机制. 浙江大学博士学位论文, 浙江杭州, 2012.
Wei K S. Effect of High Temperature on Starch Synthesis and Protein Accumulation in Rice Endosperm at Filling Stage. PhD Dissertation of Zhejiang University, Hangzhou, Zhejiang, China, 2012 (in Chinese with English abstract).
[42] Azevedo R A, Lancien M, Lea P J. The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids, 2006, 30:143-162.
pmid: 16525757
[43] Azevedo R A, Lea P J. Lysine metabolism in higher plants. Amino Acids, 2001, 20:261-279.
pmid: 11354603
[44] Tang G L, Zhu X H, Gakiere B, Levanony H, Kahana A, Galili G. The bifunctional LKR/SDH locus of plants also encodes a highly active monofunctional lysine-ketoglutarate reductase using a polyadenylation signal located within an intron. Plant Physiol, 2002, 130:147-154.
[45] Zhang W Y, Sheng J Y, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Yang J C, Zhang J H. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biol, 2019, 19:409.
doi: 10.1186/s12870-019-2025-2
[46] Gu J F, Li Z K, Mao Y Q, Struik P C, Zhang H, Liu L J, Wang Z Q, Yang J C. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci, 2018, 274:320-331.
doi: 10.1016/j.plantsci.2018.06.010
[47] Wang Z Q, Xu Y J, Chen T T, Zhang H, Yang J C, Zhang J H. Abscisic acid and the key enzymes and genes in sucrose-to-starch conversion in rice spikelets in response to soil drying during grain filling. Planta, 2015, 175:47-55.
[48] Forestan C, Meda S, Varotto S. ZmPlN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol, 2010, 152:1373-1390.
doi: 10.1104/pp.109.150193
[49] Fath A, Bethke P C, Belligni M V, Spiegel Y N, Jones R L. Signalling in the cereal aleurone: hormones, reactive oxygen and cell death. New Phytol, 2001, 151:99-107.
doi: 10.1046/j.1469-8137.2001.00153.x
[50] Todaka D, Zhao Y, Yoshida T, Kudo M, Kidokoro S, Mizoi J, Kodaira, K S, Takebayashi Y, Kojima M, Sakakibara, H, Toyooka K, Sato M, Fernie A R, Shinozaki K, Yamaguchi-Shinozaki K. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J, 2017, 90:61-78.
doi: 10.1111/tpj.2017.90.issue-1
[51] Chanclud E, Kisiala A, Emery N R J, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel J B. Cytokinin production by the rice blast fungus is alpha pivotal requirement for full virulence. PLoS Pathogens, 2016, 12:e1005457.
[52] Sun L, Di D W, Li G J, Kronzucker H J, Shi W M. Spatio- temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress. J Plant Physiol, 2017, 212:94-104.
doi: 10.1016/j.jplph.2017.02.006
[53] Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiss H H, Sreenivasulu N. Down- regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. J Exp Bot, 2017, 68:4595-4612.
doi: 10.1093/jxb/erx266
[54] 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系. 中国农业科学, 2011, 44:36-46.
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci Agric Sin, 2011, 44:36-46 (in Chinese with English abstract).
[55] Xu Y J, Jian C Q, Li K, Tian Y F, Zhang W Y, Zhu K Y, Wang Z Q, Yang J C. Role of polyamines in filling grains in regulating amino acid synthesis in milled rice. Food Energy Secur, 2021, 10:e306.
[56] 何光华, 谢戎, 郑家奎, 袁祚廉, 左永树, 杨正林, 袁玲, 邵启明, 黄彬茹. 水稻籽粒游离氨基酸含量及其产量的种子和母体遗传效应分析. 生物数学学报, 1995, 10(4):71-77.
He G H, Xie R, Zheng J K, Yuan Z L, Zuo Y S, Yang Z L, Yuan L, Shao Q M, Huang L R. Analysis of seed and maternal genetic effects for free amino acid content and it’s yield of grain in rice. J Biomathem, 1995, 10(4):71-77 (in Chinese with English abstract).
[57] 徐振华, 曲莹, 刘海英, 朱立楠, 张忠臣, 金正勋. 粳稻超亲变异系籽粒谷氨酰胺合成酶基因表达特性及序列变异分析. 中国水稻科学, 2016, 30:304-312.
Xu Z H, Qu Y, Liu H Y, Zhu L N, Zhang Z C, Jin Z X. Expression characteristics and sequence variation analysis of glutamine synthetase gene in grain of japonica rice with transgressive variation. Chin J Rice Sci, 2016, 30:304-312 (in Chinese with English abstract).
[58] Wu J G, Shi C H, Zhang X M, Katsura T. Genetic and genotype × environment interaction effects for the content of seven essential amino acids in indica rice. J Genet, 2004, 83:171-178.
pmid: 15536256
[59] Yang Q Q, Zhao D S, Zhang C Q, Wu H Y, Li Q F, Gu M H, Sun S S M, Liu Q Q. A connection between lysine and serotonin metabolism in rice endosperm. Plant Physiol, 2018, 176:1965-1980.
doi: 10.1104/pp.17.01283
[60] Liu X, Zhang C C, Wang X R, Liu Q Q, Yuan D Y, Pan G, Sun S S M, Du J M. Development of high-lysine rice via endosperm- specific expression of a foreign LYSINE RICH PROTEIN gene. BMC Plant Biol, 2016, 16:147.
doi: 10.1186/s12870-016-0837-x
[61] Yang Q Q, Yu W H, Wu H Y, Zhang C Q, Sun S S M, Liu Q Q. Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase. Plant Biotech J, 2020, 19:490-501.
doi: 10.1111/pbi.v19.3
[62] Bicar E H, Woodman-Clikeman W, Sangtong V, Joan M. Peterson J M, Yang S S, Michael Lee M, Scott M P. Transgenic maize endosperm containing a milk protein has improved amino acid balance. Transgenic Res, 2008, 17:59-71.
pmid: 17387628
[63] Yu J, Peng P, Zhang X, Zhao Q, Zhy D, Sun X, Liu J, Ao G. Seed-specific expression of a lysine rich protein sb401 gene significantly increases both lysine and total protein content in maize seeds. Mol Breed, 2004, 14:1-7.
doi: 10.1023/B:MOLB.0000037990.23718.d6
[64] Zhang H, Yu C, Hou D P, Liu H L, Zhang H T, Tao R R, Cai H, Gu J F, Liu L J, Zhang Z J, Wang Z Q, Yang J C. Changes in mineral elements and starch quality of grains during the improvement of japonica rice cultivars. J Sci Food Agric, 2018, 98:122-133.
doi: 10.1002/jsfa.8446
[65] Wahid A, Gelani S, Ashraf M, Foolad M R. Heat tolerance in plants: an overview. Environ Exp Bot, 2007, 61:199-223.
doi: 10.1016/j.envexpbot.2007.05.011
[66] 段骅, 杨建昌. 高温对水稻的影响及其机制的研究进展. 中国水稻科学, 2012, 26:394-400.
Duan H, Yang J C. Research advances in the effect of high temperature on rice and its mechanism. Chin J Rice Sci, 2012, 26:394-400 (in Chinese with English abstract).
[67] Das S, Krishnan P, Nayak M, Ramakrishnan B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot, 2014, 101:36-46.
doi: 10.1016/j.envexpbot.2014.01.004
[68] Huang L Y, Sun Y, Peng S B, Wang F. Genotypic differences of japonica rice responding to high temperature in China. Agron J, 2016, 108:626-636.
doi: 10.2134/agronj2015.0507
[69] 梁成刚, 陈利平, 汪燕, 刘佳, 许光利, 李天. 高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响. 中国水稻科学, 2010, 24:398-402.
Liang C G, Chen L P, Wang Y, Liu J, Xu G L, Li T. Effects of high temperature on key enzyme activities of nitrogen metabolism and protein content during rice grain filling. Chin J Rice Sci, 2010, 24:398-402 (in Chinese with English abstract).
[70] 许光利, 刘佳, 梁成刚, 汪燕, 丁春邦, 李天. 灌浆结实期弱光对水稻籽粒氮代谢酶及蛋白质含量的影响. 浙江大学学报(农业与生命科学版), 2016, 42:53-62.
Xu G L, Liu J, Liang C G, Wang Y, Ding C B, Li T. Changes of nitrogen metabolism enzyme activities and protein content in response to low light during the seed filling stage in rice. J Zhejiang Univ (Agric Life Sci Edn), 2016, 42:53-62 (in Chinese with English abstract).
[71] Liang C G, Liu J, Wang Y, Xiong D, Ding C B, Li T. Low light during grain filling stage deteriorates rice cooking quality, but not nutritional value. Rice Sci, 2015, 22:197-206.
doi: 10.1016/j.rsci.2015.04.003
[72] Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol, 2010, 51:795-809.
doi: 10.1093/pcp/pcq034
[73] 韩展誉, 管弦悦, 赵倩, 吴春艳, 黄福灯, 潘刚, 程方民. 灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响. 作物学报, 2020, 46:1087-1098.
doi: 10.3724/SP.J.1006.2020.92062
Han Z Y, Guan X Y, Zhao Q, Wu C Y, Huang F D, Pan G, Cheng F M. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains. Acta Agron Sin, 2020, 46:1087-1098 (in Chinese with English abstract).
[74] Huang M, Zhang H, Zhao C, Chen G H, Zou Y B. Amino acid content in rice grains is affected by high temperature during the early grain-filling period. Sci Rep, 2019, 9:2700.
doi: 10.1038/s41598-019-38883-2 pmid: 30804353
[75] 汤利, 周米平, 马振江, 刘波. 钾肥对稻米蛋白质组分和氨基酸含量的影响. 吉林农业大学学报, 1994, 16(增刊1):121-124.
Tang L, Zhou M P, Ma Z J, Liu B. Effects of potash on grain protein components and amino acid contents of rice. J Jilin Agric Univ, 1994, 16(S1):121-124 (in Chinese with English abstract).
[76] Liu Q H, Zhou X B, Sun Z W. Application of silicon fertilizer affects nutritional quality of rice. Chilean J Agric Res, 2017, 77:163-170.
doi: 10.4067/S0718-58392017000200163
[77] Zou Z H, Deng G Q, Peng X M, Xie H K, Li X, Peng L, Zhang Z Y. Effects of exogenous amino acids application on nitrogen accumulation, yield and grain quality in rice. Intern J Agric Biol, 2018, 20:2053-2058.
[78] 彭辉辉, 刘强, 荣湘民, 彭建伟, 谢桂先, 张玉平, 陈煦, 石其伟. 不同栽培法对水稻谷草转氨酶与天冬氨酸激酶活性的影响. 湖南农业大学学报(自然科学版), 2005, 31:233-237.
Peng H H, Liu Q, Rong X M, Peng J W, Xie G X, Zhang Y P, Chen X, Shi Q W. Effects of different cultural methods on activities of GOT and AK of rice. J Hunan Agric Univ, 2005, 31:233-237 (in Chinese with English abstract).
[79] 荣湘民, 谢桂先, 刘强, 彭建伟, 朱红梅. 不同栽培法对高蛋白饲料稻籽粒氨基酸含量的影响. 中国农业气象, 2007, 28:149-153.
Rong X M, Xie G X, Liu Q, Peng J W, Zhu H M. Influence of different cultivation methods on amino acid content of high protein forage rice grains. Chin J Agrometeorol, 2007, 28:149-153 (in Chinese with English abstract).
[80] Huang M, Zhao C, Zou Y. Increased grain amino acid content in rice with earthworm castings. Appl Sci, 2019, 9:1090.
doi: 10.3390/app9061090
[81] 罗兰芳, 郑圣先, 廖育林, 聂军, 谢坚, 向艳文. 控释氮肥对杂交水稻糙米蛋白质品质和氮代谢关键酶活性的影响. 中国水稻科学, 2007, 21:403-410.
Luo L F, Zheng S X, Liao Y L, Nie J, Xie J, Xiang Y W. Effect of controlled release nitrogen fertilizer on protein quality of brown rice and key enzyme activity involved in nitrogen metabolism in hybrid rice. Chin J Rice Sci, 2007, 21:403-410 (in Chinese with English abstract).
[82] 戴平安, 郑圣先, 李学斌, 聂军, 易国英, 袁迪仁, 黄科延. 穗肥氮施用比例对两系杂交水稻氮素吸收、籽粒氨基酸含量和产量的影响. 中国水稻科学, 2006, 20:79-83.
Dai P A, Zheng S X, Li X B, Nie J, Yi G Y, Yuan D R, Huang K Y. Effect of proportion of nitrogen fertilizer for promoting panicle development on nitrogen uptake, grain amino acid contents and grain yield of two-line hybrid rice. Chin J Rice Sci, 2006, 20:79-83 (in Chinese with English abstract).
[83] 张志兴, 陈军, 李忠, 李兆伟, 黄锦文, 陈婷, 方长旬, 陈鸿飞, 林文雄. 水稻籽粒灌浆过程中蛋白质表达特性及其对氮肥运筹的响应. 生态学报, 2012, 32:3209-3224.
Zhang Z X, Chen J, Li Z, Li Z W, Huang J W, Chen T, Fang C X, Chen H F, Lin W X. Protein expression characteristics and their response to nitrogen application during grain-filling stage of rice (Oryza sativa L.). Acta Ecol Sin, 2012, 32:3209-3224 (in Chinese with English abstract).
[84] 赵艳玲. 中期氮肥调控影响水稻产量及稻米品质的生理机制. 南京农业大学博士学位论文, 江苏南京, 2014.
Zhao Y L. Effect of Nitrogen on Rice Yield and Quality and Its Physiological Mechanism. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2014 (in Chinese with English abstract).
[85] Zhao Y L, Xi M, Zhang X C, Lin Z M, Ding C Q, Tang S, Liu Z H, Wang S H, Ding Y F. Nitrogen effect on amino acid composition in leaf and grain of japonica rice during grain filling stage. J Cereal Sci, 2015, 64:29-33.
doi: 10.1016/j.jcs.2015.03.011
[86] Zhang X C, Lei J C, Zheng D Y, Liu Z H, Li G H, Wang S H, Ding Y F. Amino acid composition of leaf, grain and bracts of japonica rice(Oryza sativa ssp. japonica) and its response to nitrogen. Plant Growth Regul, 2017, 82:1-9.
doi: 10.1007/s10725-016-0232-5
[87] Cao F B, Fu M M, Wang R F, Cheng W D, Zhang G P, Wu F B. Genotypic-dependent effects of N fertilizer, glutathione, silicon, zinc, and selenium on proteomic profiles, amino acids contents, and quality of rice genotypes with contrasting grain Cd accumulation. Funct Integr Genomics, 2017, 17:387-397.
doi: 10.1007/s10142-016-0540-x
[88] 申勇. 不同粳稻品种稻米品质对施氮量的响应差异及其原因分析. 扬州大学硕士学位论文, 江苏扬州, 2021.
Shen Y. Difference in Response of Grain Quality to Nitrogen Application Rates among Japonica Rice Varieties and Its Causes. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2021 (in Chinese with English abstract).
[89] Ning H F, Qiao J F, Liu Z H, Lin Z M, Li G H, Wang S H, Ding Y F. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype. J Cereal Sci, 2010, 52:90-95.
doi: 10.1016/j.jcs.2010.03.009
[90] Liu Q H, Ma H, Lion X Q, Zhou X B, Zhao Q L. Effects of different types of fertilizers application on rice grain quality. Chilean J Agric Res, 2019, 79:202-209.
doi: 10.4067/S0718-58392019000200202
[91] 周婵婵, 黄元财, 贾宝艳, 王岩, 李瑞峰, 王术, 冯跃, Dou F G. 施氮量和灌溉方式的交互作用对东北粳稻稻米品质的影响. 中国水稻科学, 2019, 33:357-367.
Zhou C C, Huang Y C, Jia B Y, Wang Y, Li R F, Wang S, Feng Y, Dou F G. Effect of interaction between nitrogen rate and irrigation regime on grain quality of japonica rice in northeast China. Chin J Rice Sci, 2019, 33:357-367 (in Chinese with English abstract).
[92] Barnaby J Y, Rohila J S, Henry C G, Sicher R C, Reddy V R, McClung A M. Physiological and metabolic responses of rice to reduced soil moisture: relationship of water stress tolerance and grain production. Inter J Mol Sci, 2019, 20:1846.
doi: 10.3390/ijms20081846
[93] Zhang H, Hou D P, Peng X L, Ma B J, Shao S M, Jing W J, Gu J F, Liu L J, Wang Z Q, Liu Y Y, Yang J C. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. J Integr Agric, 2019, 18:2716-2731.
doi: 10.1016/S2095-3119(19)62836-4
[94] Zhang H, Zhang S F, Yang J C, Zhang J H, Wang Z Q. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron J, 2008, 100:726-734.
doi: 10.2134/agronj2007.0169
[95] 杨建昌, 张建华. 水稻高产节水灌溉. 北京: 科学出版社, 2019. pp 35-70.
Yang J C, Zhang J H. High-yielding and Water-saving Irrigation in Rice. Beijing: Science Press, 2019. pp 35-70(in Chinese).
[96] 蔡一霞, 王维, 朱庆森. 水分胁迫对水稻籽粒蛋白质积累及营养品质的影响. 植物生态学报, 2007, 31:536-543.
doi: 10.17521/cjpe.2007.0067
Cai Y X, Wang W, Zhu Q S. Effects of water stress on nutrient quality and accumulation of protein in rice grains. J Plant Ecol, 2007, 31:536-543 (in Chinese with English abstract).
[97] 陶进. 干湿交替灌溉对水稻农艺生理性状与米质的影响. 扬州大学硕士学位论文, 江苏扬州, 2017.
Tao J. Effects of Alternate Wetting and Drying Irrigation on Agronomic and Physiological Traits and Grain Quality of Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2017.
[98] Xu Y J, Gu D J, Li K, Zhang W Y, Zhang H, Wang Z Q, Yang J C. Response of grain quality to alternate wetting and moderate soil drying irrigation in rice. Crop Sci, 2019, 59:1261-1272.
doi: 10.2135/cropsci2018.11.0700
[99] Sathee L, Jha S K, Singh Rajput O S, Singh D, Kumar S, Kumar A. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. Plant Physiol Biochem, 2021, 165:161-172.
doi: 10.1016/j.plaphy.2021.05.013
[100] Sevanthi A M, Sinha S K, Sureshkumar V, Rani M, Saini M R, Kumari S, Kaushik M, Prakash C, Venkatesh K, Singh G P, Mohapatra T, Mandal P K. Integration of dual stress transcriptomes and major QTLs from a pair of genotypes contrasting for drought and chronic nitrogen starvation identifies key stress responsive genes in rice. Rice, 2021, 14:49.
doi: 10.1186/s12284-021-00487-8 pmid: 34089405
[101] 李强, 任云, 邹勇, 刘静, 袁继超. 低氮胁迫下不同氮效率玉米品种的氮代谢与物质生产差异. 西北农业学报, 2021, 30:672-680.
Li Q, Ren Y, Zou Y, Liu J, Yuan J C. Differences in nitrogen metabolism and dry matter production between maize cultivars and different nitrogen efficiencies under low nitrogen stress. Acta Agric Boreali-Occident Sin, 2021, 30:672-680 (in Chinese with English abstract).
[102] 王军可, 王亚梁, 陈惠哲, 向镜, 张义凯, 朱德峰, 张玉屏. 灌浆初期高温影响水稻籽粒碳氮代谢的机制. 中国农业气象, 2020, 12:774-784.
Wang J K, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Zhu D F, Zhang Y P. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling. Chin J Agrom, 2020, 12:774-784 (in Chinese with English abstract).
[103] Kyung S J, Choe Y J L, Ha S, Sonn Y K, Lee J S. Effect of customized fertilizer application and soil properties on amino acids composition in rice grain. Korean J Soil Sci Fert, 2015, 48:464-468.
doi: 10.7745/KJSSF.2015.48.5.464
[104] 吴婷婷, 陈佳宝, 袁虎威, 郑炳松, 闫道良. 叶面喷施有机碳对铁皮石斛碳水化合物代谢及Fe、Zn含量的影响. 生态科学, 2021, 40(1):31-36.
Wu T T, Chen J B, Yuan H W, Zheng B S, Yan D L. Effects of foliar spraying organic carbon on carbohydrate metabolism and Fe, Zn content of Dendrobium officinale. Ecol Sci, 2021, 40(1):31-36 (in Chinese with English abstract).
[105] Lanza M G D B, dos Reis A R. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol Biochem, 2021, 164:27-43.
doi: 10.1016/j.plaphy.2021.04.026
[106] Carlisle A E, Lee N, Matthew-Onabanjo A N, Spears M E, Park S J, Youkana D, Doshi M B, Peppers A, Li R, Joseph A B, Smith M, Simin K, Zhu L J, Greer P L, Shaw L M, Kim D. Selenium detoxification is required for cancer-cell survival. Nature Metabol, 2020, 2:603-611.
doi: 10.1038/s42255-020-0224-7
[107] 方勇, 陈曦, 陈悦, 罗佩竹, 杨文建, 马宁, 辛志宏, 赵立艳, 胡秋辉. 外源硒对水稻籽粒营养品质和重金属含量的影响. 江苏农业学报, 2013, 29:760-765.
Fang Y, Chen X, Chen Y, Luo P Z, Yang W J, Ma N, Xin Z H, Zhao L Y, Hu Q H. Effects of exogenous selenium on nutritional quality and heavy metal content of rice grain. Jiangsu J Agric Sci, 2013, 29:760-765 (in Chinese with English abstract).
[108] 余侃, 黄思思, 龙小玲, 蔡端午, 刘金龙, 郑威, 程水源. 生物有机硒对稻米品质性状及硒吸收分配的影响. 食品科技, 2019, 44(11):168-173.
Yu K, Huang S S, Long X L, Cai D W, Liu J L, Zheng W, Cheng S Y. Effects of bioorganic selenium on rice quality characters and selenium absorption and distribution. Food Sci Technol, 2019, 44(11):168-173 (in Chinese with English abstract).
[109] 余侃, 肖秋水, 黄思思, 龙小玲, 蔡端午, 刘金龙, 郑威. 生物有机硒对不同水稻品种主要性状、重金属含量及硒吸收的影响. 南方农业学报, 2021, 52:1206-1214.
Yu K, Xiao Q S, Huang S S, Long X L, Cai D W, Liu J L, Zheng W. Effects of bioorganic selenium on main characters, heavy metal content and selenium absorption of different rice varieties. J Southern Agric, 2021, 52:1206-1214 (in Chinese with English abstract).
[110] Mallikarjuna Swamy B P, Marathi B, Ribeiro-Barros A I F, Ricachenevsky F K. Development of healthy and nutritious cereals: recent insights on molecular advances in breeding (Editorial). Front Genet, 2021, 12:635006.
doi: 10.3389/fgene.2021.635006 pmid: 33868374
[111] Wu K, Xu X, Zhong N, Huang H, Yu J, Ye Y, Wu Y, Fu X. The rational design of multiple molecular module-based assemblies for simultaneously improving rice yield and grain quality. J Genet Genom, 2018, 46:337-341.
[112] Zhang J, Zhang H, Botella J R, Zhu J. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol, 2018, 60:369-375.
doi: 10.1111/jipb.v60.5
[113] Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhang Y, Zhou D X. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res, 2021, 49:4613-4628.
doi: 10.1093/nar/gkab244
[114] Huang L, Li Q, Zhang C, Chu R, Gu Z, Tan H, Zhao D, Fan X, Liu Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotech J, 2020, 18:2164-2166.
doi: 10.1111/pbi.v18.11
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[7] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[8] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[9] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[10] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[11] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[12] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[13] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[14] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
[15] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
Full text



No Suggested Reading articles found!