Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 781-790.doi: 10.3724/SP.J.1006.2022.12026

• REVIEW •     Next Articles

Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response

CHEN Yue(), SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li*()   

  1. Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2021-04-14 Accepted:2021-08-20 Online:2022-04-12 Published:2021-08-30
  • Contact: SUN Xiao-Li E-mail:18104516702@163.com;csmbl2016@126.com
  • Supported by:
    Innovative Research Program for Graduates of Heilongjiang Bayi Agricultural University(YJSCX2021-Y41);National Natural Science Foundation of China(31971826);Central Support Fund for Reform and Development of Local Universities and Talent Cultivation, and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Heilongjiang Province


AP2/ERF (APETALA2/ethylene responsive factor) is a family of plant specific transcription factors that are widely involved in various biological processes including plant growth and development and stress responses. Rice is an important food crop in China, but it is severely affected by multiple adverse environmental factors during growth period. It has been found that AP2/ERF transcription factors play important roles in stress response in rice. In this paper, we reviewed the classification and structure architecture of rice AP2/ERF transcription factors and summarized the function and molecular mechanism of different AP2/ERF subfamilies in rice response to disease, drought, saline, and low temperature stresses. This study provides a reference for further interpretation of the molecular network of rice AP2/ERFs-mediated regulatory network in stress responses and their application potential for stress resistance improvement of rice cultivars.

Key words: rice, transcription factors, AP2/ERF, stress response

Table 1

Classification of AP2/ERF family transcription factors in Arabidopsis [7,8]"

Sakuma等[8] Sakuma et al. [8] Nakano等[7] Nakano et al. [7]

AP2 subfamily
17 AP2家族
AP2 family
Two AP2 domains
14 2个AP2结构域
Two AP2 domains
One AP2 domain
3 1个AP2结构域
One AP2 domain
DREB, ERF subfamily
121 ERF家族
ERF family
DREB subfamily
A (1-6) 56 I-IV 57
ERF subfamily
B (1-6) 65 V-X 58
VI-L and Xb-L 7
AL079349 1 At4g13040 1
RAV subfamily
6 RAV家族
RAV family
合计Total 145 合计Total 147

Fig. 1

Conserved domains of AP2/ERF transcription factors in plants[9]"

Table 2

Classification of the AP2/ERF transcription factor family in rice[10]"

Domain architecture
Binding cis-element
AP2 2个AP2结构域
Two AP2 domains
Ia 10
Ib 11
Ic 6
RAV 1个AP2结构域 One AP2 domain
1个B3结构域 One B3 domain
II 5
ERF 1个AP2结构域
One AP2 domain
IIIb 32
IIIc 16
One AP2 domain
IVb 6
IVc 16
IVd 24
Soloist 1个AP2/ERF结构域
One AP2/ERF domain
Soloist 2
合计Total 170

Table 3

Rice AP2/ERF transcription factors involved in stress responses"

Binding cis-element
Stresses involved in
ERF OsEREBP1 GCC-box 正调控水稻抗病性和耐旱性
Positive regulation of disease resistance and drought tolerance in rice
OsERF83 GCC-box 正调控水稻抗病性
Positive regulation of disease resistance in rice
OsAP2/ERF152 正调控水稻抗病性
Positive regulation of disease resistance in rice
OsERF922 负调控水稻抗病性和耐盐性
Negative regulation of disease resistance and salt tolerance in rice
OsEBP89 GCC-box 负调控水稻耐旱性
Negative regulation of drought tolerance in rice
OsERF3/OsAP37 GCC-box 负调控水稻耐旱性
Negative regulation of drought tolerance in rice
OsDERF1 GCC-box 负调控水稻耐旱性
Negative regulation of drought tolerance in rice
OsERF109 GCC-box/DRE/CRT 负调控水稻耐旱性
Negative regulation of drought tolerance in rice
OsERF48 正调控水稻耐旱性
Positive regulation of drought tolerance in rice
OsERF71 正调控水稻耐旱性
Positive regulation of drought tolerance in rice
OsERF101 正调控水稻耐旱性
Positive regulation of drought tolerance in rice
OsSERF1 正调控水稻耐盐性
Positive regulation of salt tolerance in rice
OsAP23 GCC-box 负调控水稻耐盐性
Negative regulation of salt tolerance in rice
Positive regulation of cold tolerance in rice
OsDREB1B DRE/CRT 正调控水稻耐冷性
Positive regulation of cold tolerance in rice
OsDREB1D DRE/CRT/LTRE 正调控拟南芥耐冷和耐盐性
Positive regulation of cold and salt tolerance in Arabidopsis
OsDREB1E DRE/CRT 受冷胁迫和干旱诱导
Induced by cold and drought stress
OsDREB1F DRE/CRT 正调控水稻耐盐、耐旱和耐冷性
Positive regulation of salt, drought and cold tolerance in rice
OsDREB1G DRE/CRT 正调控水稻耐冷性
Positive regulation of cold tolerance in rice
OsDREB2A DRE/CRT 正调控水稻耐盐和耐旱性
Positive regulation of salt and drought tolerance in rice
Binding cis-element
Stresses involved in
DREB OsDREB2B DRE/CRT 受干旱、盐和冷胁迫诱导
Induced by drought, salt and cold stress
OsDREB2C 受干旱和盐胁迫诱导
Induced by drought and salt stress
OsDREB6 DRE/CRT 正调控水稻耐冷性
Positive regulation of cold tolerance in rice
ARAG1 DRE/CRT 正调控水稻耐旱性
Positive regulation of drought tolerance in rice
OsAP21 正调控拟南芥耐旱和耐盐性
Positive regulation of drought and salt tolerance in Arabidopsis
RAV OsRAV2 GT-1 正调控水稻耐盐性
Positive regulation of salt tolerance in rice
[1] 杨淑华, 巩志忠, 郭岩, 龚继明, 郑绍建, 林荣呈, 杨洪全, 毛龙, 秦峰, 罗利军, 张天真, 储成才, 赖锦盛, 晁代印, 关雪莹, 彭佳师, 黄朝峰, 蒋才富, 王瑜, 杨永青, 施怡婷, 丁杨林, 马亮, 种康. 中国植物应答环境变化研究的过去与未来. 中国科学: 生命科学, 2019, 49:1457-1478.
Yang S H, Gong Z Z, Guo Y, Gong J M, Zheng S J, Lin R C, Yang H Q, Mao L, Qin F, Luo L J, Zhang T Z, Chu C C, Lai J S, Chao D Y, Guan X Y, Peng J S, Huang C F, Jiang C F, Wang Y, Yang Y G, Shi Y T, Ding Y L, Ma L, Chong K. The past and future of research on plant response to environmental changes in China. Sci Sin (Vitae), 2019, 49:1457-1478 (in Chinese with English abstract).
[2] Banerjee A, Roychoudhury A. Differential regulation of defence pathways in aromatic and non-aromatic indica rice cultivars towards fluoride toxicity. Plant Cell Rep, 2019, 38:1217-1233.
doi: 10.1007/s00299-019-02438-6 pmid: 31175394
[3] Zhong Y Q, Chen J J. Ameliorative effects of lanthanum (III) on copper (II) stressed rice (Oryza sativa) and its molecular mechanism revealed by transcriptome profiling. Plant Physiol Biochem, 2020, 152:184-193.
doi: 10.1016/j.plaphy.2020.05.004
[4] Tsubasa S J, Ling Y. ERF gene clusters: working together to regulate metabolism. Trends Plant Sci, 2021, 26:23-32.
doi: 10.1016/j.tplants.2020.07.015 pmid: 32883605
[5] Feng K, Hou X L, Xing G M, Liu J X, Duan A Q, Xu Z S, Li M Y, Zhuang J, Xiong A S. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol, 2020, 40:750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044
[6] Jofuku K D, Boer B G W D, Okamuro M J K. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6:1211-1225.
pmid: 7919989
[7] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140:411-432.
doi: 10.1104/pp.105.073783
[8] Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi S K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290:998-1009.
doi: 10.1006/bbrc.2001.6299
[9] Allen M D, Yamasaki K, Ohme T M, Tateno M, Suzuki M. A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J, 1998, 17:5484-5496.
pmid: 9736626
[10] Rashid M, He G Y, Yang G X, Hussain J, Xu Y. AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evol Bioinform Online, 2012, 8:321-355.
[11] Souad E O, Jaimie S, Ashraf A, Adam C, Hélène L, Han S Y, Bernard B, Serge L, Brian M. Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol, 2010, 74:313-326.
doi: 10.1007/s11103-010-9674-8
[12] Nijat I, Mahira N, Wu T, Barry G R. Factors involved in root formation in Medicago truncatula. J Exp Bot, 2007, 58:439-451.
pmid: 17158109
[13] Aukerman M J, Hajime S. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell, 2003, 15:2730-2741.
pmid: 14555699
[14] Jack K O, Brian C, Raimundo V, Marc V M, Diane J. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins inArabidopsis. Proc Natl Acad Sci USA, 94:7076-7081.
[15] Hu Y X, Wang Y H, Liu X F, Li J Y. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res, 2004, 14:8-15.
doi: 10.1038/sj.cr.7290197
[16] Li C W, Su R C, Cheng C P, Sanjaya, You S J,, Hsieh T H,. Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol, 2011, 156:213-27.
doi: 10.1104/pp.111.174268
[17] Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33:751-763.
pmid: 12609047
[18] Sharoni A M, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol, 2011, 52:344-360.
doi: 10.1093/pcp/pcq196 pmid: 21169347
[19] Moon S J, Min M K, Kim J A, Kim D Y, Sun Y I, Ryun K T, Byun M O, Kim B G. Ectopic expression of OsDREB1G, a member of the OsDREB1 subfamily, confers cold stress tolerance in rice. Front Plant Sci, 2019, 10:297.
doi: 10.3389/fpls.2019.00297
[20] Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucl Acids Res, 1999, 27:470-478.
doi: 10.1093/nar/27.2.470
[21] Sun Z M, Zhou M L, Wang D, Tang Y X, Lin M, Wu Y M. Overexpression of the Lotus corniculatus soloist gene LcAP2/ERF107 enhances tolerance to salt stress. Protein Pept Lett, 2016, 23:442-449.
doi: 10.2174/0929866523666160322152914
[22] Kagaya Y, Tsukaho H. Arabidopsis transcription factors, RAV1 and RAV2, are regulated by touch-related stimuli in a dose- dependent and biphasic manner. Genes Genet Syst, 2009, 84:95-99.
doi: 10.1266/ggs.84.95
[23] Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors. Biol Chem, 1998, 379:633-646.
pmid: 9687012
[24] 王友华. 水稻ERF转录激活子DRF2调控叶表蜡质合成. 中国农业科学院硕士学位论文, 北京, 2010.
Wang Y H. Rice ERF Transcriptional Activator DRF2 Regulates Wax Biosynthesis in Leaf Surface. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing,China, 2010 (in Chinese with English abstract).
[25] Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 2001, 13:1959-1968.
pmid: 11487705
[26] Aayan M, Sadravi M, Abdollahi M. Reactions of six cultivars of rice (Oryza sativa L.) to three fungal diseases. Archives of Phytopathology and Plant Protection, 2018, 51:879-888.
doi: 10.1080/03235408.2018.1518798
[27] 王军, 赵婕宇, 许扬, 范方军, 朱金燕, 李文奇, 王芳权, 费云燕, 仲维功, 杨杰. 水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用. 作物学报, 2018, 44:1612-1620.
Wang J, Zhao Y J, Xu Y, Fan F J, Zhu J Y, Li W Q, Wang F Q, Fei Y Y, Zhong W G, Yang J. Development and application of functional markers for rice blast resistance gene Bsr-d1 in rice. Acta Agron Sin, 2018, 44:1612-1620 (in Chinese with English abstract).
[28] 郑凯丽, 纪志远, 郝巍, 唐永超, 韦叶娜, 胡运高, 赵开军, 王春连. 水稻白叶枯病感病相关基因Xig1的分子鉴定及抗病资源创制. 作物学报, 2020, 46:1332-1339.
doi: 10.3724/SP.J.1006.2020.02013
Zheng K L, Ji Z Y, Hao W, Tang Y C, Wei Y N, Hu Y G, Zhao K J, Wang C L. Molecular identification of rice bacterial blight susceptible gene Xig1 and creation of disease resistant resources. Acta Agron Sin, 2020, 46:1332-1339 (in Chinese with English abstract).
[29] Mizoi J, Shinozaki K, Yamaguchi S K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 2012, 1819:86-96.
[30] Jisha V, Dampanaboina L, Vadassery J, Mithöfer A, Kappara S, Ramanan R. Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS One, 2015, 10:e0127831.
[31] Tezuka D, Kawamata A, Kato H, Saburi W, Mor H, Imai R. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. Plant Physiol Biochem, 2019, 135:263-271.
doi: 10.1016/j.plaphy.2018.12.017
[32] Pillai S E, Kumar C, Dasgupta M, Kumar B K, Vungarala S, Patel H K, Sonti R V. Ectopic expression of a cell-wall-degrading enzyme-induced OsAP2/ERF152 leads to resistance against bacterial and fungal infection in Arabidopsis. Phytopathology, 2020, 110:726-733.
doi: 10.1094/PHYTO-10-19-0395-R
[33] Wang F J, Wang C L, Liu P Q, Lei C L, Hao W, Gao Y, Liu Y G, Zhao K J. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One, 2016, 11:e0154027.
[34] Zhang Y, Li J, Chen S J, Ma X S, Wei H B, Chen C, Gao N N, Zou Y Q, Kong D Y, Li T F, Liu Z C, Yu S W, Luo L J. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol Genet Genom, 2020, 295:941-956.
doi: 10.1007/s00438-020-01669-7
[35] Belda-Palazón B, Adamo M, Valerio C, Ferreira L J, Confraria A, Reis-Barata D, Rodrigues A, Meyer C, Rodriguez P L, Baena-González E. A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth. Nat Plants, 2020, 6:1345-1353.
doi: 10.1038/s41477-020-00778-w pmid: 33077877
[36] Filipe O, De Vleesschauwer D, Haeck A, Demeestere K, Höfte M. The energy sensor OsSnRK1a confers broad-spectrum disease resistance in rice. Sci Rep, 2018, 8:3864.
doi: 10.1038/s41598-018-22101-6
[37] Zhang H, Zhang J, Quan R, Pan X, Wan L, Huang R. EAR motif mutation of rice OsERF3 alters the regulation of ethylene biosynthesis and drought tolerance. Planta, 2013, 237:1443-1451.
doi: 10.1007/s00425-013-1852-x
[38] Ramegowda V, Basu S, Krishnan A, Pereira A. Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol, 2014, 166:1634-1645.
doi: 10.1104/pp.114.248203
[39] Yaish M W, El-Kereamy A, Zhu T, Beatty P H, Good A G, Bi Y M, Rothstein S J. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet, 2010, 6:e1001098.
[40] Wan L Y, Zhang J F, Zhang H W, Zhang Z J, Quan R D, Zhou S R, Huang R F. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One, 2011, 6:e25216.
[41] Yu Y W, Yang D X, Zhou S R, Gu J T, Wang F R, Dong J G, Huang R F. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma, 2017, 254:401-408.
doi: 10.1007/s00709-016-0960-4
[42] Jung H, Chung P J, Park S H, Redillas M, Kim Y S, Suh J W, Kim J K. Overexpression of OsERF48 causes regulation of OsCML16, a calmodulin-like protein gene that enhances root growth and drought tolerance. Plant Biotechnol J, 2017, 15:1295-1308.
doi: 10.1111/pbi.2017.15.issue-10
[43] Lee D K, Jung H, Jang G, Jeong J S, Kim Y S, Ha S H, Do C Y, Kim J K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol, 2016, 172:575-588.
doi: 10.1104/pp.16.00379
[44] Ahn H, Jung I, Shin S J, Park J, Rhee S, Kim J K, Jung W, Kwon H B, Kim S. Transcriptional network analysis reveals drought resistance mechanisms of AP2/ERF transgenic rice. Front Plant Sci, 2017, 8:1044.
doi: 10.3389/fpls.2017.01044
[45] Jin Y, Pan W Y, Zheng X F, Cheng X, Liu M M, Ma H, Ge X C. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol Biol, 2018, 98:51-65.
doi: 10.1007/s11103-018-0762-5
[46] Schmidt R, Mieulet D, Hubberten H M, Obata T, Hoefgen R, Fernie A R, Fisahn J, San S B, Guiderdoni E, Schippers J H, Mueller-Roeber B. Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell, 2013, 25:2115-2131.
doi: 10.1105/tpc.113.113068
[47] Serra T S, Figueiredo D D, Cordeiro A M, Almeida D M, Tiago L, Isabel A A, Alvaro S, Lisete F, Bruno C M, Oliveira M M, Nelson J M. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Mol Biol, 2013, 82:439-455.
doi: 10.1007/s11103-013-0073-9
[48] Liu D, Chen X, Liu J, Ye J, Guo Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot, 2012, 63:3899-3911.
doi: 10.1093/jxb/ers079
[49] Zhuang J, Jiang H H, Wang F, Peng R H, Yao Q H, Xiong A S. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenic Arabidopsis. Plant Mol Biol Rep, 2013, 31:1336-1345.
doi: 10.1007/s11105-013-0610-3
[50] 徐学中, 汪婷, 万旺, 李思慧, 朱国辉. 水稻ABA生物合成基因OsNCED3响应干旱胁迫. 作物学报, 2018, 44:24-31.
Xu X Z, Wang T, Wan W, Li S H, Zhu G H. ABA biosynthesis gene OsNCED3 confers drought stress tolerance in rice. Acta Agron Sin, 2018, 44:24-31 (in Chinese with English abstract).
[51] Yu Y, Liu A L, Duan X B, Wang S T, Sun X L, Duan-mu H Z, Zhu D, Chen C, Cao L, Xiao J L, Li Q, Nisa Z U, Zhu Y M, Ding X D. GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis. Planta, 2016, 244:681-698.
doi: 10.1007/s00425-016-2532-4
[52] Yu Y, Duan X B, Ding X D, Chen C, Zhu D, Yin K D, Cao L, Song X W, Zhu P H, Li Q, Nisa Z U, Yu J Y, Du J Y, Song Y, Li H Q, Liu B D, Zhu Y M. A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. Plant Mol Biol, 2017, 94:509-530.
doi: 10.1007/s11103-017-0623-7
[53] Challam C, Ghosh T, Rai M, Tyagi W. Allele mining across DREB1A and DREB1B in diverse rice genotypes suggest a highly conserved pathway inducible by low temperature. J Genet, 2015, 94:231-238.
doi: 10.1007/s12041-015-0507-z
[54] Zhang Y, Chen C, Jin X F, Xiong A S, Peng R H, Hong Y H, Yao Q H, Chen J M. Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep, 2009, 42:486-492.
pmid: 19712584
[55] Mao D, Chen C. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. PLoS One, 2012, 7:e47275.
[56] Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol, 2008, 67:589-602.
doi: 10.1007/s11103-008-9340-6
[57] Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P. Over- expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008, 30:2191-2198.
doi: 10.1007/s10529-008-9811-5
[58] Dubouzet J G, Sakuma Y, Ito Y, Kasuga M, Dubouzet E G, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J, 2003, 33:751-763.
pmid: 12609047
[59] Herath V. Small family, big impact: in silico analysis of DREB2 transcription factor family in rice. Comput Biol Chem, 2016, 65:128-139.
doi: 10.1016/j.compbiolchem.2016.10.012
[60] Krishnaraj T, Sekar D, Subramanian S, Kulandaivelu K, Senguttuvan M, Villianur I H. Role of ethylene response transcription factor (ERF) and its regulation in response to stress encountered by plants. Plant Mol Biol Rep, 2015, 33:347-357.
doi: 10.1007/s11105-014-0799-9
[61] Agarwal M, Hao Y J, Kapoor A, Dong C H, Fu J H, Zheng X W, Zhu J K. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem, 2006, 281:37636-37645.
[62] He Y, Li Y, Cui L, Xie L, Zheng C, Zhou G, Zhou J, Xie X. Phytochrome B negatively affects cold tolerance by regulating OsDREB1 gene expression through phytochrome interacting factor-like protein OsPIL16 in rice. Front Plant Sci, 2016, 7:1963.
[63] Lee S C, Kim S H, Kim S R. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Exp Bot, 2013, 56:115-121.
[64] Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genom, 2010, 283:185-196.
doi: 10.1007/s00438-009-0506-y
[65] Ke Y G, Yang Z J, Yu S W, Li T F, Luo L J. Characterization of OsDREB6 responsive to osmotic and cold stresses in rice. Ceram Int, 2016, 42:9264-9269.
doi: 10.1016/j.ceramint.2016.03.034
[66] Cui M, Zhang W J, Zhang Q, Xu Z Q, Zhu Z G, Duan F P, Wu R. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem, 2011, 49:1384-1391.
doi: 10.1016/j.plaphy.2011.09.012
[67] Zhao L F, Hu Y B, Chong R, Wang T. ARAG1, an ABA-responsive DREB gene, plays a role in seed germination and drought tolerance of rice. Ann Bot, 2010, 105:401-409.
doi: 10.1093/aob/mcp303
[68] Jin X, Xue Y, Wang R, Xu R, Bian L, Zhu B, Han H, Peng R, Yao Q. Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep, 2013, 40:1743-1752.
doi: 10.1007/s11033-012-2228-1
[69] Kumar M, Lee S C, Kim J Y, Kim S J, Aye S S, Kim S R. Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice(Oryza sativa L.). J Exp Bot, 2014, 57:383-393.
[70] Mallikarjuna G, Mallikarjuna K, Reddy M K, Kaul T. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett, 2011, 33:1689-1697.
doi: 10.1007/s10529-011-0620-x pmid: 21528404
[71] Zhang X X, Tang Y J, Ma Q B, Yang C Y, Mu Y H, Suo H C, Luo L H, Hai N. OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One, 2017, 8:e83011.
[72] Duan Y B, Li J, Qin R Y, Xu R F, Li H, Yang Y C, Ma H, Li L, Wei P C, Yang J B. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol Biol, 2016, 90:49-62.
doi: 10.1007/s11103-015-0393-z
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[14] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[15] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
Full text



No Suggested Reading articles found!