Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1372-1388.doi: 10.3724/SP.J.1006.2022.12031


Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis

TIAN Tian(), CHEN Li-Juan, HE Hua-Qin*()   

  1. College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2021-04-28 Accepted:2021-10-19 Online:2022-06-12 Published:2021-11-12
  • Contact: HE Hua-Qin E-mail:Tiantian_hbfzcs@126.com;hehuaqinfafu@126.com
  • Supported by:
    National Natural Science Foundation of China(81502091)


Magnaporthe oryzae seriously devastates rice production, and resistant cultivars can lose resistance within a few years due to the pathogenic variability of M. oryzae. Therefore, it is essential to explore continuously novel blast-resistance genes for breeding broad-spectrum resistance cultivars. In this study, firstly, 50 Meta-QTLs (including at least 2 original QTLs) were identified on 12 chromosomes by meta-analysis of blast-resistance 783 QTLs from 43 literatures. The average interval distance was 0.87 Mb in these Meta-QTLs, which contained a total of 4718 interval genes. Subsequently, based on integrated analysis of blast-resistance Meta-QTLs and RNA-seq, the result identified 2193 common genes which were not only located on blast-resistance Meta-QTLs, but also significantly differentially expressed in response to the M. oryzae. Among them, 22 cloned genes had been reported to be involved in defense responses to M. oryzae and other stresses. Furthermore, 99 resistance gene analogues (RGA) and 112 transcription factors (TF) were screened out from the above common genes, which were utilized to construct gene co-expression networks (GCEN). Based on the Top 20 of the connection degrees, hub genes were identified in the GCEN. Among them, OsJAMyb, bsr-d1, and OsWRKY76 had been reported to be against rice blast, and OsSPL9 was related to resistance to rice stripe virus. The left hub genes were considered as important potential resistance genes which need further functional verification to prepare for breeding broad-spectrum resistance rice cultivars.

Key words: rice (Oryza sativa L.), blast resistance, meta-analysis, RNA-seq, candidate gene

Table 1

Summary of QTLs information related to rice blast resistance"

Population type
Number of population
Mapping method
Number of QTLs
Moreberekan×Co39 RILs 281 IM 22 Wang et al., 1994[28]
IR64×Azucena DH 114 IM 13 Bagali et al., 2000[4]
Nipponbare×Owarihatamochi F2 146 IM 4 Fukuoka et al., 2001[29]
Zhong 156×Gumei 2 RILs 146 CIM 2 Fan et al., 2001[30]
Kahei×Koshihikari F2 241 SMA 2 Miyamoto et al., 2001[31]
Khao Dawk Mali 105×CT9993 RILs 141 SIM, CIM 6 Sirithunya et al., 2002[32]
Lemont×Teqing RILs 284 IM 11 Tabien et al., 2002[33]
Norin 29×Chubu 32 F2 149 IM 1 Zenbayashi et al., 2002[34]
Lemont×Teqing RILs 292 IM 14 Loan et al., 2003[35]
Zhenshan 97×Minghui 63 RILs 241 CIM 12 Chen et al., 2003[36]
IR64×Azucena DH 105 CIM 9 Sallaud et al., 2003[37]
Bala×Azucena RILs 205 CIM 29 Talukder et al., 2004[38]
Bala×Azucena RILs 100 CIM 12 Talukder et al., 2005[39]
ZYQ8×JX17 DH 127 SMA 77 Xu et al., 2004[40]
Zhong 156×Gumei 2 RILs 304 MIM 21 Wu et al., 2005[6]
URN12×Koshihikari F2 136 IM 2 Sato et al., 2006[41]
Population type
Number of population
Mapping method
Number of QTLs
Llanos 5×Fanny RILs 120 IM, CIM 37 Lopez et al., 2006[42]
KDML105×JHN RILs 587 SIM, sCIM 14 Noenplab et al., 2006[43]
Bala×Azucena Nd No CIM 83 Ballini et al., 2008[44]
Suweon 365×Chucheong RILs 190 CIM 54 Cho et al., 2008[45]
Heikezijing×Suyunuo RILs 166 CIM 44 Shi et al., 2010[46]
IR64×Azucena DH 111 CIM 4 Kongprakhon et al., 2010[47]
Lemont×Jasmine 85 RILs 227 CIM 9 Jia et al., 2011[48]
Way Rarem×Oryzica Llanos 5 BILs 123 IM 16 Lestari et al., 2011[49]
TAM×KHZ F2:3 192 CIM 7 Sabouri et al., 2011[50]
IR68835×KDML105 BILs 83 SMA 19 Korinsak et al., 2011[51]
TY×CO39 RILs 363 CIM 22 Wang et al., 2012[52]
MR219×IRGC105491 BILs 261 CIM 9 Rahim et al., 2012[53]
BILs 63 13
MWG×EW8 DH 96 CIM 3 Yang et al., 2012[54]
Pongsu seribu 2×Mahsuri F3 296 IM, CIM 40 Ashkani et al., 2013a[55]
Pongsu seribu 2×Mahsuri F3 188 SMA, IM, CIM 13 Ashkani et al., 2013b[56]
Bodao×Suyunuo RILs 155 CIM 13 Huan et al., 2014[57]
IT×Koshihikari F3 124 CIM 1 Mizobuchi et al., 2014[58]
R287×Ximaxian BILs 299 CIM 29 Liu et al., 2015[59]
GV×VN F2 114 SIM 2 Urso et al., 2016[5]
landraces Landraces 276 SMA 31 Wu et al., 2016[60]
Heikezijing×Suyunuo RILs 162 ICIM 2 Fang et al., 2016[61]
Danteshwari×Dagaddeshi RILs 122 CIM 14 Mandal et al., 2017[62]
Nekken 2×Hokuriku 193 F3 243 CIM 9 Nagaoka et al., 2017[63]
Heikezijing×Suyunuo RILs 162 ICIM 5 He et al., 2017[64]
Cybonnet×Saber RILs 243 ICIM 22 Chen et al., 2018[65]
Bodao×Suyunuo RILs 212 ICIM 2 Fang et al., 2019[66]
Jin 23B×CR071 BILs 239 CIM 16 Jiang et al., 2020[67]
Jin 23B×Qinggu'ai 3 237 13

Fig. 1

“Consensus” QTL map related to blast resistance in rice and the meta-analysis result Ruler scale represents physical distance in mega base (mega base, Mb); the bars represent the chromosomes, and molecular markers are located on the right of chromosomes; the original QTLs are positioned on the right of molecular markers in the “consensus” map; fragments with blue color represent confidence intervals of Meta-QTLs in the chromosomes."

Table 2

Meta-analysis of blast-resistant QTLs in rice"

Meta-QTL 染色体
Flanking markers
95% CI (Mb)
Map distance (Mb)
Original QTLs
Interval gene
Published blast-resistance gene
Metaq1-2 1 UMC32-RM243 7.34-7.97 0.63 3 89 Pi27(t)[68]
Metaq1-4 1 OSR3-C2340 34.03-34.47 0.44 3 51
Metaq2-1 2 C149-RM174 5.91-7.01 1.10 3 143
Metaq2-2 2 RG25-RZ401 21.77-24.047 2.28 4 295
Metaq2-3 2 RZ58-RM6 28.69-29.58 0.89 2 124
Metaq2-5 2 RM482-RZ213 35.27-35.37 0.10 2 20 Pi25(t)[37], Pi-tq5[69], Pi-b[70]
Metaq3-1 3 RM1332-RG409 2.45-3.50 1.04 2 182
Metaq3-2 3 RM1338-RM232 8.39-9.76 1.37 2 210
Metaq3-3 3 RM15080-RM15111 15.40-15.69 0.30 2 41
Metaq3-4 3 RM411-RM487 21.43-22.02 0.59 4 52
Metaq3-5 3 RM5626-ud3001344 24.86-25.04 0.18 7 15
Metaq4-1 4 RM1359-G271 19.86-20.17 0.31 6 48
Metaq4-2 4 RM1136-CT206 25.04-25.36 0.32 5 16
Metaq4-4 4 G264-RG214 31.34-31.66 0.32 5 51 Pi39(t)[71], Pi46(t)[72]
Metaq4-5 4 RM124-RM280 34.74-34.99 0.25 2 34
Metaq5-1 5 RM122-RM2010 0.31-0.49 0.18 3 132
Metaq5-2 5 RM574-RM437 3.45-3.88 0.43 3 51
Metaq5-3 5 wd5001198-wd5001344 10.36-10.86 0.50 2 13
Metaq5-4 5 R2289-RM161 18.96-20.90 1.95 2 220
Metaq5-5 5 C43-RM3476 22.26-23.91 1.64 7 229
Metaq6-1 6 RZ2-C226A 3.36-3.54 0.17 3 24
Metaq6-2 6 RZ144-RZ667 6.72-6.93 0.21 6 30
Metaq6-3 6 RM19779-RM527 9.31-9.86 0.55 9 30 Pi40(t)[73], Pi26[6], Pi59(t)[74]
Metaq6-6 6 RZ242-RG653 28.96-29.03 0.06 4 15 Pi-tq1[69]
Metaq7-1 7 ud7000014-RG773 0.31-4.05 3.74 2 458
Metaq7-2 7 RM180-L538T7 5.74-7.74 2.00 5 158
Metaq7-3 7 RM5481-RM11 16.20-19.26 3.06 4 225
Metaq7-4 7 RM182-RZ626 21.51-23.11 1.60 4 208
Metaq7-5 7 R1789-C507 26.53-26.71 0.18 8 26
Metaq8-1 8 RM25-ud8000289 4.38-4.65 0.27 2 34
Metaq8-2 8 RM310-RM547 5.12-5.59 0.48 9 67 Pi42(t)[75]
Metaq8-3 8 ud8000924-RM44 14.78-16.57 1.79 6 89
Metaq8-4 8 RM7049-ud8001357 20.81-21.03 0.21 9 24
Metaq9-1 9 R1687-C1454 8.35-9.63 1.28 4 62 Pi15[76]
Metaq9-2 9 R1751-RM434 14.36-15.66 1.30 5 154
Metaq9-3 9 RM108-CT6 19.30-20.17 0.87 5 150
Metaq9-4 9 RM1553-RM24777 21.00-22.05 1.04 10 168
Metaq10-1 10 RM7217-R2174 4.64-5.50 0.86 5 53
Metaq10-2 10 G1125-RM8207 7.35-9.81 2.46 2 114
Meta-QTL 染色体
Flanking markers
95% CI (Mb)
Map distance (Mb)
Original QTLs
Interval gene
Published blast-resistance gene
Metaq10-5 10 RG561-RM228 21.78-22.24 0.47 2 95
Metaq11-1 11 RM26198-RM552 4.42-4.84 0.42 7 36
Metaq11-4 11 RM6680-RM2596 18.62-19.97 1.35 5 110 Pi38[77], Pi34[78], Pi7(t)[28],
Metaq11-5 11 RM27088-RM2191 23.77-24.66 0.89 4 73 Pi47[79]
Metaq11-6 11 RM224-L190 27.67-28.24 0.56 9 49 Pik[80], Pik-p[81], Pi44(t)[82], Pi-1(t)[83], Pi1[84], Pik-m[85], Pi49[86], Pi-hk1[87], Pi43(t)[75]
Metaq12-1 12 RZ816-RM491 2.43-3.58 1.16 6 143
Metaq12-2 12 G1391-ud12000339 5.81-6.14 0.33 4 14 Pi-tq6[69], Pi6(t)[88]
Metaq12-3 12 RM101-ud12000566 8.83-9.23 0.40 4 16
Metaq12-4 12 C625-ud12000700 11.06-11.32 0.26 13 23 Pi-42(t)[75], Pi58(t)[74]
Metaq12-5 12 RM27982-RM7102 12.63-13.21 0.58 3 27 Pi48[79]
Metaq12-6 12 RM309-RM3326 21.45-21.74 0.29 9 27

Fig. 2

Volcano plot of differentially expressed genes in the blast-resistance cultivar Pi_gm under Guy11 infection"

Fig. 3

Integrating analysis of blast-resistant Meta-QTL and RNA-seq in rice A: common genes from blast-resistant Meta-QTL and RNA-seq in rice; B: types of common RGA genes of blast-resistant Meta-QTLs, and RNA-Seq; C: types of common TF genes of blast-resistant Meta-QTLs and RNA-Seq."

Fig. 4

Co-expression network of RGA and TF in response to rice blast stress A: co-expression network of up-regulated RGA and TF in response to rice blast stress; B: co-expression network of down-regulated RGA and TF in response to rice blast stress. The balls in the graph indicate resistance gene analogues (RGA), and the arrow shapes represent transcription factors. Different colors represent different connection degree values. From green to red, the connection degree value is increasingly greater, which indicate that the connection function is growingly stronger in networks."

Table 3

Hub genes of connection degree Top 20 in the up-regulated gene co-expression networks"

Meta-QTL Degree值
Degree score
Gene ID
Gene symbol
log2(Fold Change)
Function annotation
Metaq2-3 73 Os02g0700300 OsDLN66 10.04 MYB family transcription factor
Metaq9-2 73 Os09g0417600 OsWRKY76 9.10 WRKY76
Metaq3-4 73 Os03g0437200 bsr-d1 8.88 ZOS3-12-C2H2 zinc finger protein
Metaq5-4 73 Os05g0418800 NAC87 8.23 No apical meristem protein
Metaq5-1 73 Os05g0121600 RSR1 8.14 AP2 domain containing protein
Meta-QTL Degree值
Degree score
Gene ID
Gene symbol
log2(Fold Change)
Function annotation
Metaq11-6 73 Os11g0686250 OsWRKY41 8.11 WRKY63
Metaq11-6 73 Os11g0684000 OsJAMyb 7.54 MYB family transcription factor
Metaq8-1 73 Os08g0179400 OsbHLH070 7.49 Expressed protein
Metaq2-2 73 Os02g0603600 OsbHLH110 5.58 Helix-loop-helix DNA-binding domain containing protein
Metaq5-4 73 Os05g0421600 OsNAC52 5.27 No apical meristem protein
Metaq11-6 73 Os11g0685700 OsWRKY61 4.67 WRKY61
Metaq2-2 73 Os02g0606200 OsBBX4 4.62 B-box zinc finger family protein
Metaq7-1 73 Os07g0111400 OsWRKY29 4.57 WRKY29
Metaq2-1 73 Os02g0221100 OsbHLH029 4.29 Helix-loop-helix DNA-binding domain containing protein
Metaq7-1 73 Os07g0119300 4.09 MYB family transcription factor
Metaq2-2 73 Os02g0610500 OsCOL4 3.56 CCT/B-box zinc finger protein
Metaq1-2 73 Os01g0236700 OsNLP3 3.46 NIN
Metaq7-4 73 Os07g0568300 OsTZF6 2.68 Zinc finger family protein
Metaq7-3 73 Os07g0484700 2.07 MYB family transcription factor
Metaq5-4 73 Os05g0408200 OsSPL9 1.94 OsSPL9-SBP-box gene family member

Table 4

Hub genes of connection degree Top 20 in the down-regulated gene coexpression network"

Meta-QTL Degree值
Degree score
Gene ID
Gene symbol
log2(Fold Change)
Function annotation
Metaq9-1 56 Os09g0326100 -6.34 Receptor-like protein kinase 5 precursor
Metaq7-1 56 Os07g0106000 -2.85 Ser/thr protein phosphatase family protein
Metaq12-1 56 Os12g0149700 -4.77 Protein kinase
Metaq7-2 55 Os07g0211400 OsKAPP -1.54 Protein kinase-associated protein phosphatase
Metaq10-5 55 Os10g0561500 OsRLCK307 -1.89 Protein kinase family protein
Metaq7-1 55 Os07g0116900 -1.71 NB-ARC domain containing protein
Metaq5-4 55 Os05g0406800 -3.82 Receptor-like protein kinase precursor
Meta-QTL Degree值
Degree score
Gene ID
Gene symbol
log2(Fold Change)
Function annotation
Metaq4-5 55 Os04g0685900 OsRLCK174 -1.88 Receptor protein kinase TMK1 precursor
Metaq5-5 55 Os05g0478300 -5.79 Receptor-like protein kinase 2 precursor
Metaq7-1 55 Os07g0134200 OsRLCK222 -3.21 Receptor protein kinase CLAVATA1 precursor
Metaq5-5 55 Os05g0467000 OsCDPK16 -2.41 CAMK_CAMK_like.29-CAMK includes calcium/ calmodulin dependent protein kinases
Metaq5-5 55 Os05g0480400 -1.89 Inactive receptor kinase At2g26730 precursor
Metaq2-1 55 Os02g0215900 OsGIRL1 -3.52 Receptor kinase
Metaq7-3 55 Os07g0501800 -4.16 Leucine-rich repeat family protein
Metaq6-1 55 Os06g0170100 OsWAK63 -8.85 OsWAK63-OsWAK receptor-like protein kinase
Metaq7-1 55 Os07g0145400 OsGHR1 -10.94 Leucine-rich repeat family protein
Metaq7-5 55 Os07g0641200 OsCDPK30 -3.12 CAMK_CAMK_like.36-CAMK includes calcium/ calmodulin depedent protein kinases
Metaq5-5 55 Os05g0466900 -1.91 Protein kinase family protein
Metaq4-2 55 Os04g0506100 -2.90 Receptor-like protein kinase precursor
Metaq2-1 54 Os02g0212900 OsRLCK66 -2.77 Cysteine-rich receptor-like protein kinase 35 precursor

Table 5

Twenty-two cloned genes conferring resistance to rice blast"

Meta-QTL 基因ID
Gene IDs
Published genes
log2(Fold Change)
Differential exprssion
Resistance to stress
Metaq3-1 Os03g0160100 OsEDR1 2.29 上调Up-regulation Blast[101]; Xoo[95]
Metaq3-2 Os03g0277000 OsGDI3 2.19 上调Up-regulation Disease resistance[102,103]
Metaq3-3 Os03g0390200 OsSAPK1 3.01 上调Up-regulation Xoo[104]
Metaq3-4 Os03g0437200 Bsr-d1 8.88 上调Up-regulation Blast[97]
Metaq5-1 Os05g0110900 OsRLCK176 1.90 上调Up-regulation Xoo[105]; Chitin[106]
Metaq5-4 Os05g0408200 OsSPL9 1.94 上调Up-regulation RDV[100]
Metaq7-1 Os07g0129200 OsPR1a 6.48 上调Up-regulation Pathogen infection[107]
Metaq7-2 Os07g0217600 CYP71Z2 14.17 上调Up-regulation Xoo[108]
Metaq7-3 Os07g0471300 OsAGO18 3.43 上调Up-regulation Virus[109]
Metaq7-3 Os07g0492000 OsNDPK1 2.42 上调Up-regulation Bacterial pathogens[110]
Metaq7-3 Os07g0500300 OsGAP 3.55 上调Up-regulation ABA[111]
Metaq7-4 Os07g0545800 CIGR1 1.56 上调Up-regulation Blast and gibberellin[112]
Metaq7-4 Os07g0569100 OsREM4.1 2.22 上调Up-regulation ABA[113]
Metaq9-2 Os09g0417600 OsWRKY76 9.10 上调Up-regulation Blast[99]
Metaq9-2 Os09g0417800 OsWRKY62 9.46 上调Up-regulation Xoo[114]
Metaq10-5 Os10g0564500 OsSAPK3 4.85 上调Up-regulation Xoo[104]
Metaq11-1 Os11g0195500 OsPAD4 2.02 上调Up-regulation Xoo[115]
Metaq11-6 Os11g0684000 OsJAMyb 7.54 上调Up-regulation Blast[98]
Metaq5-1 Os05g0111300 OsMT2b -4.24 下调Down-regulation ROS[116]
Metaq7-1 Os07g0152000 OsTCP21 -1.92 下调Down-regulation RRSV[117]
Metaq9-3 Os09g0513000 OsBIANK1 -2.12 下调Down-regulation Blast[118]
Metaq9-4 Os09g0544800 OsRacGEF1 -3.50 下调Down-regulation Blast[25]
[1] Deng Y W, Zhai K, Xie Z, Yang D Y, Zhu X D, Liu J Z, X W. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355: 962-965.
doi: 10.1126/science.aai8898
[2] Sharma T R, Madhav M S, Singh B K, Shanker P, Jana T K, Dalal V. High resolution mapping, cloning and molecular characterization of the Pi-k(h) gene of rice, which confers resistance to Magnaporthe grisea. Mol Genet Genom, 2005, 274: 569-578.
doi: 10.1007/s00438-005-0035-2
[3] Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M R, Kulkarni R, Xu J R, Pan H Q. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434: 980-986.
doi: 10.1038/nature03449
[4] Bagali P G, Hittalmani S, Shashidhar S Y, Shashidhar H E. Identification of DNA markers linked to partial resistance for blast disease in rice across four locations. In: Tharreau D, Lebrun M H, Talbot N J, Notteghem J L, eds. Advances in Rice Blast Research. Dordrecht: Springer Netherlands, 2000. pp 34-42.
[5] Urso S, Desiderio F, Biselli C, Bagnaresi P, Crispino L, Piffanelli P, Abbruscato P, Assenza F, Guarnieri G, Cattivelli L. Genetic analysis of durable resistance to Magnaporthe oryzae in the rice accession Gigante Vercelli identified two blast resistance loci. Mol Genet Genom, 2016, 291: 17-32.
doi: 10.1007/s00438-015-1085-8
[6] Wu J L, Fan Y Y, Li D B, Zheng K L, Leung H, Zhuang J Y. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet, 2005, 111: 50-56.
pmid: 15856160
[7] Swamy B P M, Vikram P, Dixit S, Ahmed H U, Kumar A. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics, 2011, 12: 319-337.
doi: 10.1186/1471-2164-12-319
[8] Islam M S, Ontoy J, Subudhi P K. Meta-analysis of quantitative trait loci associated with seedling-stage salt tolerance in rice (Oryza sativa L.). Plants, 2019, 8: 33-50.
doi: 10.3390/plants8020033
[9] Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000, 155: 463-473.
doi: 10.1093/genetics/155.1.463 pmid: 10790417
[10] Yin Z G, Qi H D, Chen Q S, Zhang Z G, Jiang H W, Zhu R S, Hu Z B, Wu X X, Li C D, Zhang Y. Soybean plant height QTL mapping and meta-analysis for mining candidate genes. Plant Breed, 2017, 136: 688-698.
doi: 10.1111/pbr.2017.136.issue-5
[11] Courtois B, Ahmadi N, Khowaja F S, Price A H, Rami J, Frouin J, Hamelin C, Ruiz M. Rice root genetic architecture: meta-analysis from a drought QTL database. Rice, 2009, 2: 115-128.
doi: 10.1007/s12284-009-9028-9
[12] Wang B H, Ebbole D J, Wang Z H. The arms race between Magnaporthe oryzae and rice: diversity and interaction of Avr and R genes. J Integr Agric, 2017, 16: 2746-2760.
doi: 10.1016/S2095-3119(17)61746-5
[13] Priyanka J, Singh P K, Kapoor R, Khanna A, Solanke A U, Krishnan S G, Singh A K, Sharma V, Sharma T R. Understanding host-pathogen interactions with expression profiling of NILs carrying rice-blast resistance Pi9 gene. Front Plant Sci, 2017, 8: 93-113.
doi: 10.3389/fpls.2017.00093 pmid: 28280498
[14] Kong W, Zhang C, Qiang Y, Zhong H, Zhao G, Li Y. Integrated RNA-Seq analysis and Meta-QTLs mapping provide insights into cold stress response in rice seedling roots. Int J Mol Sci, 2020, 21: 4615-4628.
doi: 10.3390/ijms21134615
[15] Delfino P, Zenoni S, Imanifard Z, Tornielli G B, Bellin D. Selection of candidate genes controlling version time in grapevine through integration of Meta-QTL and transcriptomic data. BMC Genom, 2019, 20: 739-757.
doi: 10.1186/s12864-019-6124-0
[16] Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64.
pmid: 10417726
[17] Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 2007, 10: 366-371.
doi: 10.1016/j.pbi.2007.04.020
[18] Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet, 1997, 27: 125-132.
pmid: 9145551
[19] Guo B, Sleper D A, Lu P, Shannon J G, Nguyen H, Arelli P R. QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci, 2006, 46: 595-602.
doi: 10.2135/cropsci2005.04-0036-2
[20] Goldberg D, Victor J, Gardner E, Gardner D. Spike train analysis toolkit: enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 2009, 7: 165-178.
doi: 10.1007/s12021-009-9049-y pmid: 19475519
[21] Kroll K, Mokaram N, Pelletier A, Frankhouser D, Westphal M, Stump P, Stump C, Bundschuh R, Blachly J, Yan P. Quality control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014, 13: 7-14.
[22] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170
[23] Pertea M, Kim D, Pertea G, Leek J, Salzberg S. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650-1667.
doi: 10.1038/nprot.2016.095
[24] Liao Y, Smyth G, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2013, 30: 923-930.
doi: 10.1093/bioinformatics/btt656
[25] Akamatsu A, Wong H L, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y, Shimamoto K. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microb, 2013, 13: 465-476.
doi: 10.1016/j.chom.2013.03.007
[26] Smita S, Katiyar A, Lenka S K, Dalal M, Kumar A, Mahtha S K, Yadav G, Chinnusamy V, Pandey D M, Bansal K C. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis. Funct Integr Genom, 2020, 20: 29-49.
doi: 10.1007/s10142-019-00697-w
[27] Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol, 2014, 8: 11-15.
doi: 10.1186/1752-0509-8-11
[28] Wang G L, Mackill D J, Bonman J M, Mccouch S R, Champoux M C, Nelson R J. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994, 136: 1421-1434.
doi: 10.1093/genetics/136.4.1421 pmid: 7912216
[29] Fukuoka S, Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet, 2001, 103: 185-190.
doi: 10.1007/s001220100611
[30] 樊叶杨, 吴建利, 庄杰云, Leung H, 郑康乐. 应用候选基因定位水稻抗稻瘟病QTL. 中国水稻科学, 2001, 15: 253-256.
Fan Y Y, Wu J L, Zhuang J Y, Leung H, Zheng K L. Mapping of QTL for rice blast resistance by using candidate genes. Chin J Rice Sci, 2001, 15: 253-256 (in Chinese with English abstract).
[31] Miyamoto M, Yano M, Hirasawa H. Mapping of quantitative trait loci conferring blast field resistance in the Japanese upland rice variety Kahei. Breed Sci, 2001, 51: 257-261.
doi: 10.1270/jsbbs.51.257
[32] Sirithunya P, Tragoonrung S, Vanavichit A, Pain N, Vongsaprom C, Toojinda T. Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (Oryza sativa). DNA Res, 2002, 9: 79-88.
pmid: 12168952
[33] Tabien R, Li Z K, Paterson H, Marchetti A, Stansel W, Pinson S. Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet, 2002, 105: 313-324.
pmid: 12582534
[34] Zenbayashi K S, Ashizawa T, Tani T, Koizumi S. Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet, 2002, 104: 547-552.
pmid: 12582657
[35] Loan L C, Du P V, Li Z K. Identification of genes conferring resistance to some Philippine and Vietnamese races of blast. Omonrice, 2003, 11: 49-62.
[36] Chen H L, Wang S P, Xing Y Z, Xu C G, Hayes P M, Zhang Q F. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA, 2003, 100: 2544-2549.
doi: 10.1073/pnas.0437898100
[37] Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet, 2003, 106: 794-803.
pmid: 12647052
[38] Talukder Z I, Tharreau D, Price A H. Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytol, 2004, 162: 197-209.
doi: 10.1111/nph.2004.162.issue-1
[39] Talukder Z I, McDonald A J S, Price A H. Loci controlling partial resistance to rice blast do not show marked QTL × environment interaction when plant nitrogen status alters disease severity. New Phytol, 2005, 168: 455-464.
pmid: 16219084
[40] Xu J C, Wang J L, Ling Z Z, Zhu L H. Analysis of rice blast resistance genes by QTL mapping. Sci Bull, 2004, 49: 337-342.
doi: 10.1007/BF02900315
[41] Sato H, Takeuchi Y, Hirabayashi H, Nemoto H, Hirayama M, Kato H, Imbe T, Ando I. Mapping QTLs for field resistance to rice blast in the Japanese upland rice variety Norin12. Breed Sci, 2006, 56: 415-418.
doi: 10.1270/jsbbs.56.415
[42] Lopez-Gerena J. Mapping QTL Controlling Durable Resistance to Rice Blast in the Cultivar Oryza Llanos 5. PhD Dissertation of Kansas State University, Manhattan, USA, 2006.
[43] Noenplab A, Vanavichit A, Toojinda T, Sirithunya P, Tragoonrung S, Sriprakhon S, Vongsaprom C. QTL mapping for leaf and neck blast resistance in Khao DawkMalIL 105 and Jao Hom Nin recombinant inbred lines. Sci Asia, 2006, 32: 133-142.
doi: 10.2306/scienceasia1513-1874.2006.32.133
[44] Ballini E, Morel J, Droc G, Price A H, Courtois B, Notteghem J, Tharreau D. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact, 2008, 21: 859-868.
doi: 10.1094/MPMI-21-7-0859
[45] Cho Y C, Kwon S W, Suh J P, Kim J J, Lee J H, Roh J H, Oh M K, Kim M K, Ahn S N, Koh H J, Yang S J, Kim Y G. QTLs identification and confirmation of field resistance to leaf blast in temperate japonica rice (Oryza sativa L.). J Crop Sci Biotechnol, 2008, 11: 269-276.
[46] Shi X L, Wang J F, Bao Y M, Li P F, Xie L J, Huang J, Zhang H S. Identification of the quantitative trait loci in japonica rice landrace Heikezijing responsible for broad-spectrum resistance to rice blast. Phytopathology, 2010, 100: 822-829.
doi: 10.1094/PHYTO-100-8-0822
[47] Kongprakhon P, Cuestamarcos A, Hayes P M, Hongtrakul V, Sirithunya P, Toojinda T, Sangduen N. Four QTL in rice associated with broad spectrum resistance to blast isolates from rice and barley. J Phytopathol, 2010, 158: 125-131.
doi: 10.1111/jph.2009.158.issue-2
[48] Jia Y L, Liu G. Mapping quantitative trait loci for resistance to rice blast. Phytopathology, 2011, 101: 176-181.
doi: 10.1094/PHYTO-06-10-0151 pmid: 20879845
[49] Lestari P, Trijatmiko K R, Reflinur, Warsun A, Tasliah, Ona I, Cruz C V, Bustamam M. Mapping quantitative trait loci conferring blast resistance in upland indica rice (Oryza sativa L.). J Crop Sci Biotechnol, 2011, 14: 57-63.
doi: 10.1007/s12892-010-0030-y
[50] Sabouri H, Sabouri A, Jafarzadeh M R, Mollashahi M. Detection of QTLs controlling field blast resistance in rice (Oryza sativa L.). Plant Omics, 2011, 4: 1-5.
[51] Korinsak S, Sirithunya P, Meakwatanakarn P, Sarkarung S, Vanavichit A, Toojinda T. Changing allele frequencies associated with specific resistance genes to leaf blast in backcross introgression lines of Khao Dawk Mali 105 developed from a conventional selection program. Field Crops Res, 2011, 122: 32-39.
doi: 10.1016/j.fcr.2011.02.005
[52] Wang Y, Wang D, Deng X J, Liu J L, Sun P Y, Liu Y, Huang H M, Jiang N, Kang H X, Ning Y. Molecular mapping of the blast resistance genes Pi2-1 and Pi51(t) in the durably resistant rice ‘Tianjingyeshengdao’. Phytopathology, 2012, 102: 779-786.
doi: 10.1094/PHYTO-03-12-0042-R pmid: 22779744
[53] Rahim H A, Bhuiyan M A, Lim L S, Sabu K K, Saad A, Azhar M, R W. Identification of quantitative trait loci for blast resistance in BC2F3 and BC2F5 advanced backcross families of rice. Genet Mol Res, 2012, 11: 3277-3289.
doi: 10.4238/2012.September.12.11 pmid: 23079822
[54] Yang X L, Qi H X, Yin D S, Zeng F S, Zhang S, Yu D Z. Mapping QTLs for rice blast resistance in DH line derived from Muwanggu and E’wan 8. J Plant Pathol, 2012, 42: 600-607.
[55] Ashkani S, Rafii M Y, Rahim H A, Latif M A. Mapping of the quantitative trait locus (QTL) conferring partial resistance to rice leaf blast disease. Biotechnol Lett, 2013, 35: 799-810.
doi: 10.1007/s10529-012-1130-1 pmid: 23315158
[56] Ashkani S, Rafii M Y, Rahim H A, Latif M A. Genetic dissection of rice blast resistance by QTL mapping approach using an F3 population. Mol Biol Rep, 2013, 40: 2503-2515.
doi: 10.1007/s11033-012-2331-3 pmid: 23203411
[57] Huan J, Bao Y M, Wu Y Y, Zeng G Y, He W W, Dang L L, Wang J F, Zhang H S. Identification of quantitative trait loci conferring blast resistance in Bodao, a japonica rice landrace. Genet Mol Res, 2014, 13: 9756-9765.
doi: 10.4238/2014.November.27.3 pmid: 25501185
[58] Mizobuchi R, Sato H, Fukuoka S, Yamamoto S, Kawasakitanaka A, Fukuta Y. Mapping of a QTL for field resistance to blast (Pyricularia oryzae Cavara) in ingngoppor-tinawon, a rice (Oryza sativa L.) landrace from the Philippines. Jpn Agric Res Quart, 2014, 48: 425-431.
doi: 10.6090/jarq.48.425
[59] Liu J, Li Z, Gao C, Zhang Q L, He Y Q. QTL mapping for broad-spectrum resistance to blast of rice using an advanced backcross population. Mol Plant Breed, 2015, 13: 2155-2162.
[60] Wu Y Y, He J B, Li A H, Fang N Y, He W W, Dang L L, Zeng G Y, Huang J, Bao Y M, Zhang H S. Population structure analysis and association mapping of blast resistance in indica rice (Oryza sativa L.) landraces. Genet Mol Res, 2016, 15: 1-11.
[61] Fang N Y, Wang R S, He W W, Yin C F, Guan C H, Chen H, Huang J, Wang J F, Bao Y M, Zhang H S. QTL mapping of panicle blast resistance in japonica landrace Heikezijing and its application in rice breeding. Mol Breed, 2016, 12: 18-29.
[62] Mandal L, Verma S K, Kotasthane A, Verulkar S. Identification of quantitative trait loci for leaf blast resistance of rice (Oryza sativa L.). Biotechnol J, 2017, 19: 1-14.
doi: 10.1016/0168-1656(91)90071-3
[63] Nagaoka I, Sasahara H, Tabuchi H, Shigemune A, Matsushita K, Maeda H, Goto A, Fukuoka S, Ando T, Miura K. Quantitative trait loci analysis of blast resistance in Oryza sativa L. ‘Hokuriku 193’. Breed Sci, 2017, 67: 159-164.
doi: 10.1270/jsbbs.16099
[64] He W W, Fang N Y, Wang R S, Wu Y Y, Zeng G Y, Guan C H, Chen H, Huang J, Wang J F, Bao Y M. Fine mapping of a new race-specific blast resistance gene Pi-hk2 in japonica Heikezijing from Taihu region of China. Phytopathology, 2017, 107: 84-91.
doi: <空>
[65] Chen X L, Jia Y L, Jia M H, Shannon R M, Pinson S, Wang X Y, Wu B M. Functional interactions between major rice blast resistance genes, Pi-ta and Pi-b, and minor blast resistance QTLs. Phytopathology, 2018, 108: 1095-1103.
doi: 10.1094/PHYTO-02-18-0032-R
[66] Fang N Y, Wei X R, Shen L T, Yu Y, Li M Y, Yin C F, He W W, Guan C H, Chen H, Zhang H S. Fine mapping of a panicle blast resistance gene Pb-bd1 in japonica landrace Bodao and its application in rice breeding. Rice, 2019, 12: 18-30.
doi: 10.1186/s12284-019-0275-0
[67] Jiang H C, Feng Y T, Qiu L, Gao G J, Zhang Q L, He Y Q. Identification of blast resistance QTLs based on two advanced backcross populations in rice. Rice, 2020, 13: 31-32.
doi: 10.1186/s12284-020-00392-6
[68] Zhu M, Wang L, Pan Q. Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses. Phytopathology, 2004, 94: 515-519.
doi: 10.1094/PHYTO.2004.94.5.515
[69] Tabien R E, Li Z, Paterson A H, Marchetti M A, Stansel J W, Pinson S R M, Park W D. Mapping of four major rice blast resistance genes from Lemont and Teqing and evaluation of their combinatorial effect for field resistance. Theor Appl Genet, 2000, 101: 1215-1225.
doi: 10.1007/s001220051600
[70] Kwon S W, Cho Y C, Kim Y G, Suh J P, Jeung J U, Roh J H, Lee S K, Jeon J S, Yang S J, Lee Y T. Development of near-isogenic japonica rice lines with enhanced resistance to Magnaporthe grisea. Mol Cells, 2008, 25: 407-416.
[71] Terashima T, Fukuoka S, Saka N, Kudo S. Mapping of a blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breed, 2008, 127: 485-489.
doi: 10.1111/pbr.2008.127.issue-5
[72] Matsushita K, Yasuda N, Thinlay, Koizumi S, Ashizawa T, Sunohara Y, Iida S, Ideta O, Maeda H, Fujita Y. A novel blast resistance locus in a rice (Oryza sativa L.) cultivar, Chumroo, of Bhutan. Euphytica, 2011, 180: 273-280.
doi: 10.1007/s10681-011-0405-2
[73] Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 2007, 115: 1163-1177.
doi: 10.1007/s00122-007-0642-x pmid: 17909744
[74] Koide Y, Telebanco-Yanoria M J, Fukuta Y, Kobayashi N. Detection of novel blast resistance genes, Pi58(t) and Pi59(t), in a Myanmar rice landrace based on a standard differential system. Mol Breed, 2013, 32: 241-252.
doi: 10.1007/s11032-013-9865-5
[75] Lee S, Wamishe Y, Jia Y, Liu G, Jia M H. Identification of two major resistance genes against race IE-1k of Magnaporthe oryzae in the indica rice cultivar Zhe 733. Mol Breed, 2009, 24: 127-134.
doi: 10.1007/s11032-009-9276-9
[76] Lin F, Liu Y, Wang L, Liu X, Pan Q. A high-resolution map of the rice blast resistance gene Pi15 constructed by sequence-ready markers. Plant Breed, 2007, 126: 287-290.
doi: 10.1111/pbr.2007.126.issue-3
[77] Gowda M, Roy-Barman S, Chattoo B B. Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers. Plant Breed, 2006, 125: 596-599.
doi: 10.1111/pbr.2006.125.issue-6
[78] Zenbayashi S K, Fukuoka S, Katagiri S, Fujisawa M, Matsumoto T, Ashizawa T, Koizumi S. Genetic and physical mapping of the partial resistance gene, Pi34, to blast in rice. Phytopathology, 2007, 97: 598-602.
doi: 10.1094/PHYTO-97-5-0598 pmid: 18943579
[79] Huang H, Huang L, Feng G, Wang S, Wang Y, Liu J, Jiang N, Yan W, Xu L, Sun P, Li Z, Pan S, Liu X, Xiao Y, Liu E, Dai L, Wang G L. Molecular mapping of the new blast resistance genes Pi47 and Pi48 in the durably resistant local rice cultivar Xiangzi 3150. Phytopathology, 2011, 101: 620-626.
doi: 10.1094/PHYTO-08-10-0209
[80] Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet, 2006, 113: 251-260.
pmid: 16791691
[81] Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122: 1017-1128.
doi: 10.1007/s00122-010-1506-3 pmid: 21153625
[82] Chen D H, Viña d, Inukai M, Mackill T D J, Ronald P C, Nelson R J. Molecular mapping of the blast resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Theor Appl Genet, 1999, 98: 1046-1053.
doi: 10.1007/s001220051166
[83] Fuentes J L, Correa F J, Escobar F, Prado G, Aricapa G, Duque M C, Tohme J. Identification of microsatellite markers linked to the blast resistance gene Pi-1(t) in rice. Euphytica, 2008, 160: 295-304.
doi: 10.1007/s10681-007-9497-0
[84] Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125: 1047-1055.
doi: 10.1007/s00122-012-1894-7
[85] Li L Y, Wang L, Jing J X, Li Z Q, Lin F, Huang L F, Pan H Q. The Pikm gene, conferring stable resistance to isolates of Magnaporthe oryzae, was finely mapped in a crossover-cold region on rice chromosome 11. Mol Breed, 2007, 20: 179-188.
doi: 10.1007/s11032-007-9118-6
[86] Sun P, Liu J, Wang Y, Jiang N, Wang S, Dai Y, Gao J, Li Z, Pan S, Wang D. Molecular mapping of the blast resistance gene Pi49 in the durably resistant rice cultivar Mowanggu. Euphytica, 2013, 192: 45-54.
doi: 10.1007/s10681-012-0829-3
[87] 李培富, 史晓亮, 王建飞, 刘超, 张红生. 太湖流域粳稻地方品种黑壳子粳抗稻瘟病基因的分子定位. 中国水稻科学, 2007, 21: 579-584.
Li, P F, Shi, X L, Wang J F, Liu C, Zhang H S. Molecular mapping of rice blast resistance gene in a japonica landrace Heikezijing from the Taihu lake area, China. Chin J Rice Sci, 2007, 21: 579-584 (in Chinese with English abstract).
[88] Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald P C, Harrington S E. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251-1274.
doi: 10.1093/genetics/138.4.1251 pmid: 7896104
[89] Aglawe S B, Bangale U, Ramadevi S J, Balija V, Pal B V, Kumar S S, Kumar S P, Kumar S, Maddamshetty S P, Maganti S M. Identification of novel QTLs conferring field resistance for rice leaf and neck blast from an unique landrace of India. Gene Rep, 2017, 7: 35-42.
[90] Liu Y, Qi X, Gealy D R, Olsen K M, Caicedo A L, Jia Y. QTL analysis for resistance to blast disease in U.S. Weedy Rice. Mol Plant-Microbe Interact, 2015, 28: 834-844.
doi: 10.1094/MPMI-12-14-0386-R
[91] Wang Y J, Xu J, Deng D X, Ding H D, Bian Y L, Yin Z T, Wu Y R, Zhou B, Zhao Y. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta, 2016, 243: 459-471.
doi: 10.1007/s00425-015-2419-9
[92] Chen M S, Presting G G, Barbazuk W B, Goicoechea J L, Blackmon B P, Fang G C, Kim H, Frisch D, Yu Y, Sun S. An integrated physical and genetic map of the rice genome. Plant Cell, 2002, 14: 537-545.
doi: 10.1105/tpc.010485
[93] Qi Z M, Zhang Z G, Wang Z Y, Yu J Y, Qin H T, Mao X R, Jiang H W, Xin D W, Yin Z G, Zhu R S. Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development. Plant Cell Environ, 2018, 41: 2109-2127.
[94] An Y, Chen L, Li Y X, Li C, Shi Y, Song Y, Zhang D, Li Y, Wang T. Candidate loci for the kernel row number in maize revealed by a combination of transcriptome analysis and regional association mapping. BMC Plant Biol, 2019, 19: 201-212.
doi: 10.1186/s12870-019-1811-1
[95] Ma H G, Li J, Ma L, Wang P, Xue Y, Yin P, Xiao J, Wang S. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 2021, 14: 620-632.
doi: 10.1016/j.molp.2021.01.008
[96] Amorim L, Fonseca, da Fonseca Dos Santos R, Neto J, Guida-Santos M, Crovella S, Benko A M. Transcription factors involved in plant resistance to pathogens. Curr Protein Pept Sci, 2017, 18: 335-351.
doi: 10.2174/1389203717666160619185308
[97] Li W T, Zhu Z W, Chern M, Yin J J, Yang C, Ran L, Cheng M P, He M, Wang K, Wang J. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017, 170: 114-126.
doi: 10.1016/j.cell.2017.06.008
[98] Cao W, Chu R, Zhang Y, Luo J, Su Y, Liu J, Zhang H, Wang J, Bao Y. OsJAMyb, a R2R3-type MYB transcription factor enhanced blast resistance in transgenic rice. Physiol Mol Plant Pathol, 2015, 92: 154-160.
doi: 10.1016/j.pmpp.2015.04.008
[99] Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot, 2013, 64: 5085-5097.
doi: 10.1093/jxb/ert298 pmid: 24043853
[100] Yao S, Yang Z, Yang R, Huang Y, Guo G, Kong X, Lan Y, Zhou T, Wang H, Wang W, Cao X, Wu J, Li Y. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice. Mol Plant, 2019, 12: 1114-1122.
doi: 10.1016/j.molp.2019.04.010
[101] Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J E, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009, 28: 431-439.
doi: 10.1007/s10059-009-0161-5 pmid: 19904499
[102] Heo J B, Yi Y B, Bahk J D. Rice GDP dissociation inhibitor 3 inhibits OsMAPK2 activity through physical interaction. Biochem Biophys Res Commun, 2011, 414: 814-819.
doi: 10.1016/j.bbrc.2011.10.018
[103] Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759.
doi: 10.1105/tpc.008714
[104] Xu M R, Huang L Y, Zhang F, Zhu L H, Zhou Y L, Li Z K. Genome-wide phylogenetic analysis of stress-activated protein kinase genes in rice (OsSAPKs) and expression profiling in response to Xanthomonas oryzae pv. oryzicola infection. Plant Mol Biol, 2013, 31: 877-885.
doi: 10.1007/BF00019474
[105] Zhou X, Peng C, Zhu X, Yin J, Li W, He M, Wang J, Chern M, Yuan C, Wu W, Ma W, Qin P, Ma B, Wu X, Li S, Ronald P, Chen X. Four receptor-like cytoplasmic kinases regulate development and immunity in rice. Plant Cell Environ, 2015, 39: 1381-1392.
doi: 10.1111/pce.12696
[106] Ao Y, Li Z Q, Feng D R, Xiong F, Liu J, Li J F, Wang M L, Wang J F, Liu B, Wang H B. OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J, 2014, 80: 1072-1084.
doi: 10.1111/tpj.12710
[107] Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds. Mol Genet Genomics, 2008, 279: 415-427.
doi: 10.1007/s00438-008-0322-9 pmid: 18247056
[108] Li W, Wang F, Wang J, Fan F, Zhu J, Yang J, Liu F, Zhong W. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice. PLoS One, 2015, 10: e0119867.
doi: 10.1371/journal.pone.0119867
[109] Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L, Zheng H, Zhou Y, Zhang X, Cao X, Xie L, Wu Z, Liu Y. Viral-inducible argonaute 18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife, 2015, 4: e05733.
doi: 10.7554/eLife.05733
[110] Cho S, Shin S, Kim K, Kim Y, Eun M, Cho B. Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1 (OsNDPK1) in rice plants upon infection with bacterial pathogens. Mol Cells, 2004, 18: 390-395.
[111] Xu F, Tang J, Gao S, Cheng X, Du L, Chu C. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. Plant J, 2019, 100: 1036-1051.
doi: 10.1111/tpj.v100.5
[112] Day R B, Tanabe S, Koshioka M, Mitsui T, Itoh H, Ueguchi T M, Matsuoka M, Kaku H, Shibuya N, Minami E. Two rice GRAS family genes responsive to N-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells. Plant Mol Biol, 2004, 54: 261-272.
doi: 10.1023/B:PLAN.0000028792.72343.ee
[113] Gui J, Zheng S, Liu C, Shen J, Li J, Li L. OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev Cell, 2016, 38: 201-213.
doi: 10.1016/j.devcel.2016.06.011
[114] Peng Y, Bartley L, Chen X, Dardick C, Chern M, Ruan R, Canlas P, Ronald P. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant, 2008, 1: 446-458.
doi: 10.1093/mp/ssn024
[115] Ke Y, Liu H, Li X, Xiao J, Wang S. Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions. Plant J, 2014, 78: 619-631.
doi: 10.1111/tpj.12500
[116] Wong H L, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol, 2004, 135: 1447-1456.
doi: 10.1104/pp.103.036384
[117] Zhang C, Ding Z, Kang C W, Yang L, Li Y, Yang Z, Shi S, Liu X, Zhao S, Yang Z, Wang Y, Zheng L, Wei J, Zhen G D, Zhang A, Miao H, Liu Y, Wu Z, Wu J. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol Plant, 2016, 9: 1302-1314.
doi: S1674-2052(16)30127-7 pmid: 27381440
[118] Zhang X, Li D, Zhang H, Wang X, Zheng Z, Song F. Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses. Mol Biol Rep, 2010, 37: 653-660.
doi: 10.1007/s11033-009-9507-5
[1] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[4] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[5] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[6] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[7] ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471.
[8] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[9] CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123.
[10] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[11] ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133.
[12] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[13] LIU Chang, MENG Yun, LIU Jin-Dong, WANG Ya-Mei, Guoyou Ye. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(10): 2036-2044.
[14] LI Jing-Cai, WANG Qiang-Lin, SONG Wei-Wu, HUANG Wei, XIAO Gui-Lin, WU Cheng-Jin, GU Qin, SONG Bo-Tao. Association analysis of dormancy QTL in tetraploid potato via candidate gene markers [J]. Acta Agronomica Sinica, 2020, 46(9): 1380-1387.
[15] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
Full text



No Suggested Reading articles found!