Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (7): 1215-1227.doi: 10.3724/SP.J.1006.2021.02057


Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.)

JIANG Jian-Hua1(), ZHANG Wu-Han2, DANG Xiao-Jing1, RONG Hui3, YE Qin3, HU Chang-Min1, ZHANG Ying1, HE Qiang2,*(), WANG De-Zheng1,*()   

  1. 1Institute of Rice Research, Anhui Academy of Agricultural Sciences / Rice Genetic Breeding Key Laboratory of Anhui Province, Hefei 230031, Anhui, China
    2State Key Laboratory of Hybrid Rice / Hunan Hybrid Rice Research Center, Changsha 410125, Hunan, China
    3Anhui Science and Technology University, Fengyang 233100, Anhui, China
  • Received:2020-08-18 Accepted:2020-12-01 Online:2021-07-12 Published:2020-12-31
  • Contact: HE Qiang,WANG De-Zheng E-mail:peanutlabjjh@163.com;heqiang@hhrrc.ac.cn;wdzhengqin@163.com
  • Supported by:
    This study was supported by the Open Research Fund of National Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center)(2018KF01);the Program of Rice Genetic Breeding Key Laboratory of Anhui Province(SDKF-201904);the National Natural Science Foundation of China(31601374)


Rice stigma traits are important traits that affects the yield of male sterile lines and hybrid rice seed production. To provide genetic information for the creation of thermo-sensitive genic male sterile lines with long stigmas and high exsertion rates in rice, we investigated the correlation among four stigma traits of 7001S (japonica photoperiod-thermo-sensitive genic male sterile line with short stigma length and low exsertion rate, P1), Zitai S (indica thermo-sensitive genic male sterile line with long stigma length and high exsertion rate, P2), and F1, F2 (350 lines), and F2:3 (320 lines) from the cross P1 × P2. Coefficients of linear correlation in stigma traits were calculated, and genetic patterns were analyzed by mixed major-gene plus polygene inheritance models. The results showed that there were extremely significant linear positive correlations among four stigma traits. The correlation coefficients were between 0.262 and 0.895. Genetic analysis revealed that stigma length (STL), style length (SYL), the sum of stigma, and style length (TSSL) were controlled by two major genes plus polygenes. The two major genes expressed additive-dominant-epistatic effects, but they expressed equal additive effects and equal dominant effects of TSSL in F2 population. The epistatic effect was dominant in STL, SYL, and TSSL in F2 and F2:3. Percentage of exserted stigma (PES) was controlled by two major genes plus polygenes with additive-dominant-epistatic effect in F2. However, PES was controlled by one major gene with additive-dominant effect plus polygenes in F2:3. The additive effect was dominant of PES in F2 and F2:3. Four stigma traits were mainly governed by major genes.

Key words: rice (Oryza sativa L.), genic male sterile line, stigma trait, major gene plus polygene model, genetic analysis

Fig. 1

Phnotypes of plants and panicles between 7001S and Zitai S"

Fig. 2

Phenotypes of pistils and the stigmas in rice A: stigma morphology of 7001S and Zitai S; B: names of rice pistil parts defined in this study; C: phenotypes of single, dual, and no stigma exsertion in a spikelet; D: phenotype of exserted stigma in Zitai S. STL: stigma length; SYL: style length; TSSL: the sum of stigma and style length."

Table 1

Characteristics of stigma related-traits in F2 and F2:3 populations of 7001S/Zitai S"

亲本Parent F1 F2/F2:3群体 F2/F2:3 population
7001S 紫泰S
Zitai S
均值 ± 标准差
Mean ± SD
变异系数CV (%) 遗传力
H2 (%)
偏度值Skewness 峰度值
E1 0.867 1.808 1.438 0.993-2.079 1.468 ± 0.226 15.40 78.71 0.088 -0.467
E2 0.915 1.737 1.303 0.752-1.880 1.180 ± 0.221 18.71 86.09 0.807 0.334
E1 0.780 1.134 0.825 0.441-1.402 0.793 ± 0.162 20.43 93.44 0.559 0.138
E2 0.721 1.207 0.953 0.554-1.399 0.862 ± 0.170 19.78 95.30 0.853 0.298
E1 1.648 2.941 2.263 1.524-3.116 2.261 ± 0.323 14.29 86.42 0.055 -0.269
E2 1.636 2.943 2.256 1.464-3.100 2.042 ± 0.337 16.49 96.72 0.202 0.169
E1 19.60 63.33 48.35 2.16-79.59 31.73 ± 17.43 54.94 80.23 0.547 -0.178
E2 14.82 58.09 43.32 2.83-74.34 35.85 ± 16.33 45.55 90.16 0.143 -0.792

Table 2

Joint analysis of variance for four stigma traits of 7001S, Zitai S, and F1"

Source of variation
F0.05 F0.01
STL (mm)
基因型间Genotypes 2 12.44 6.22 833.66** 3.10 4.85
环境间Environments 1 0.07 0.07 8.98** 3.95 6.93
基因型×环境互作Genotype × Environment 2 0.14 0.07 9.22** 3.10 4.85
SYL (mm)
基因型间Genotypes 2 2.92 1.46 727.96** 3.10 4.85
环境间Environments 1 0.05 0.05 26.65** 3.95 6.93
基因型×环境互作Genotype × Environment 2 0.15 0.07 36.98** 3.10 4.85
TSSL (mm)
基因型间Genotypes 2 27.06 13.53 1512.51** 3.10 4.85
环境间Environments 1 0 0 0.08 3.95 6.93
基因型×环境互作Genotype × Environment 2 0 0 0.04 3.10 4.85
PES (%)
基因型间Genotypes 2 19,545.70 9772.85 265.44** 3.17 5.03
环境间Environments 1 377.86 377.86 10.26** 4.02 7.13
基因型×环境互作Genotype × Environment 2 0.52 0.26 0.01 3.17 5.03

Fig. 3

Phenotypic evaluations of four stigma related-traits in E1 and E2 of 7001S and Zitai S Abbreviations are the same as those given in Table 1."

Table 3

MLV and AIC values of candidate models calculated with IECM method for four stigma traits"

Candidate model
Max. log likelihood value
AIC value
Test of goodness-of-fit a
E1 F2 MX1-AD-ADI 69.20 -122.40 0/0/2/0/0
MX2-ADI-ADI 72.90 -121.90 0/0/2/0/0
MX2-ADI-AD 72.70 -127.50 0/0/2/0/0
MX2-AD-AD 66.60 -123.20 0/1/1/1/1
E2 F2:3 PG-ADI 227.00 -442.00 0/0/1/1/0
MX1-AD-ADI 236.50 -457.00 0/0/1/0/0
MX2-ADI-ADI 238.60 -453.10 0/0/1/1/0
MX2-ADI-AD 238.40 -458.80 0/0/1/0/0
E1 F2 2MG-ADI 118.90 -217.80 1/1/1/2/0
MX1-AD-ADI 118.40 -222.80 0/0/1/0/0
MX2-ADI-AD 121.70 -217.40 0/0/1/0/0
MX2-AD-AD 106.20 -194.40 3/2/2/3/0
E2 F2:3 2MG-ADI 220.90 -421.90 0/0/2/0/0
2MG-AD 210.90 -409.80 2/2/2/2/0
MX1-AD-ADI 220.80 -427.60 0/0/1/0/0
MX2-ADI-AD 219.10 -412.20 0/0/0/0/0
E1 F2 MX2-AD-AD -60.20 130.39 0/0/1/0/0
MX2-A-AD -62.25 130.50 0/0/1/0/0
MX2-EAED-AD -64.11 132.22 0/0/1/0/0
MX2-EEAD-AD -65.47 134.94 0/0/1/0/0
E2 F2:3 2MG-ADI 18.46 -16.92 0/0/0/1/0
MX1-AD-ADI 9.54 -5.08 0/0/0/0/0
MX2-ADI-AD 5.01 15.98 0/0/0/0/0
MX2-EAED-AD -3.10 18.20 3/3/1/3/0
E1 F2 2MG-ADI -1627.49 3276.98 1/1/0/1/0
MX1-AD-ADI -1631.22 3278.44 0/0/0/0/0
MX2-ADI-ADI -1620.71 3265.42 0/0/0/0/0
MX2-ADI-AD -1619.79 3257.57 0/0/0/0/0
E2 F2:3 2MG-AD -1482.84 2977.69 0/0/1/0/0
MX1-AD-ADI -1482.98 2979.95 0/0/1/0/0
MX1-A-AD -1483.46 2976.92 0/0/1/0/0
MX1-EAD-AD -1484.77 2979.55 0/0/1/0/0

Fig. 4

Frequency distribution, fitted mixed distribution and its component distribution for four stigma related-traits of F2 (E1) and F2:3 (E1) population in the cross 7001S/Zitai S"

Table 4

Genetic parameters of four stigma traits"

Genetic parameter
柱头长度STL 花柱长度SYL 柱花总长度TSSL 柱头外露率PES
E1 E2 E1 E2 E1 E2 E1 E2
一阶参数Univalent parameter
da 0.18 0.06 0.12 0.05 -0.28 0.06 -22.32 15.99
db 0.05 0.01 -0.02 -0.01 -0.03 -7.61
ha 0.13 0.11 -0.19 0.13 0.50 -2.71 -4.31
hb 0.06 0.30 -0.12 0.12 0.19 -1.63
i -0.05 0.13 0.12 0.05 -0.14 7.56
jab 0.17 0.18 0.02 0.07 -0.19 1.59
jba -0.01 -0.03 0.08 0.25 0.32 -2.04
l -0.25 0.22 0.15 0.28 1.44 -0.71
[d] -0.70 -0.47 -0.28 -0.28 -0.06 -0.68
[h] 0.10 -0.53 0.15 -0.50 -0.08 -2.29
二阶参数Bivalent parameter
σ2p 0.051 0.049 0.026 0.029 0.104 0.113 304.86 266.70
σ2mg 0.040 0.045 0.020 0.030 0.080 0.110 271.96 189.71
σ2pg 0.000 0.000 0.006 0.000 0.010 0.000 8.42 52.40
h2mg (%) 81.81 92.86 71.64 93.00 76.02 97.09 89.21 71.13
h2pg (%) 0.00 0.00 22.21 0.00 10.99 0.00 2.76 19.65

Table 5

Correlation coefficients of four stigma traits"

性状 Trait 柱头长度 STL 花柱长度 SYL 柱花总长度 TSSL 柱头外露率 PES
柱头长度 STL 0.472** 0.885** 0.281**
花柱长度 SYL 0.369** 0.760** 0.306**
柱花总长度 TSSL 0.895** 0.816** 0.339**
柱头外露率 PES 0.352** 0.262** 0.377**

Fig. 5

Scattered dot of TSSL and PES in F2 (A) and F2:3 (B) population of 7001S/Zitai S"

[1] 袁隆平. 发展杂交水稻保障粮食安全. 第一届中国杂交水稻大会论文集. 湖南长沙, 2010. pp 1-2.
Yuan L P. Developing hybrid rice to ensure food security. In: Collection of the 1st Chinese Hybrid Rice Conference. Changsha, Hunan, China, 2010. pp 1-2(in Chinese).
[2] Huang X H, Han B. Rice domestication occurred through single origin and multiple introgressions. Nat Plants, 2016,2:16207.
[3] Qian Q, Guo L B, Smith S M, Li J Y. Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev, 2016,3:283-294.
[4] Xia Y M, Tang N, Hu Y Y, Li D, Li S C, Bu X L, Yu M L, Qi S W, Yang Y S, Zhu H J, Cao C Y, Li P, Yuan L P, Cao M L. A method for mechanized hybrid rice seed production using female sterile rice. Rice, 2019,12:39.
pmid: 31140005
[5] 刘文炳. 三系杂交水稻超高产制种配套组装技术. 第一届中国杂交水稻大会论文集. 湖南长沙, 2010. pp 465-468.
Liu W B. Packaging techniques for super-high-yield seed production of hybrid rice. In: Collection of the 1st Chinese Hybrid Rice Conference. Changsha, Hunan, China, 2010. pp 465-468(in Chinese).
[6] 舒志芬, 陈勇, 刘钊, 袁露, 熊朝, 张海清. 5个水稻光温敏核不育系柱头特性与异交结实率的关系. 作物研究, 2015,29:343-347.
Shu Z F, Chen Y, Liu Z, Yuan L, Xiong C, Zhang H Q. Correlation between outcrossing characteristics and stigma feature of 5 PTGMS lines. Crop Res, 2015,29:343-347 (in Chinese with English abstract).
[7] 田大成, 黄三奎, 段永国, 王友红. 水稻不育系花时和受粉时间与异交结实率的关系. 杂交水稻, 2004,19(3):50-54.
Tian D C, Huang S K, Duan Y G, Wang Y H. The relationship between flowering and pollination time and outcrossing rate of male sterile lines in hybrid rice seed production. Hybrid Rice, 2004,19(3):50-54 (in Chinese with English abstract).
[8] 代贵金, 华泽田, 蔡伟, 王妍, 张忠旭, 王大为. 激素在杂交粳稻制种中的应用研究. 杂交水稻, 1999,14(增刊):15-20.
Dai G J, Hua Z T, Cai W, Wang Y, Zhang Z X, Wang D W. Application of plant growth substances in the seed production of japonica hybrid rice. Hybrid Rice, 1999,14(S):15-20 (in Chinese).
[9] 田大成, 张素英, 秦春林. 提高柱头外露率是杂交稻制种稳产高产的关键措施. 四川农业科技, 1990, ( 2):16-18.
Tian D C, Zhang S Y, Qin C L. Increasing stigma exsertion rate is a key measure for hybrid rice seed production. Sichuan Agric Sci Tech, 1990, ( 2):16-18 (in Chinese).
[10] 李庆荣. 柱头外露率的环境变异及其在异交结实中的作用. 种子科技, 1995, ( 2):32-33.
Li Q R. Environmental variation of stigma exsertion rate and its role in outcrossing. Seed Tech, 1995, ( 2):32-33 (in Chinese).
[11] 杨保汉. 不育系柱头外露率及其结实率研究. 杂交水稻, 1997,12(1):13-15.
Yang B H. Studies on stigma exsertion rate and outcrossing rate of CMS lines in rice. Hybrid Rice, 1997,12(1):13-15 (in Chinese with English abstract).
[12] Miyata M, Yamamoto T, Komori T, Nitta N. Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor Appl Genet, 2007,114:539-548.
doi: 10.1007/s00122-006-0454-4 pmid: 17131105
[13] Virmani S S, Athwal D S. Genetic variability in floral characteristics influencing outcrossing in Oryza sativa L. Crop Sci, 1973,13:66-67.
[14] Takano-Kai N, Doi K, Yoshimura A,. GS3 participates in stigma exsertion as well as seed length in rice. Breed Sci, 2011, 61: 244-250.
[15] 刘强明. 水稻异交相关性状的QTL遗传剖析与柱头长度QTL qSTL3.1的精细定位. 南京农业大学博士学位论文, 江苏南京, 2015.
Liu Q M. QTL Dissection of Out-crossing Related Traits and Fine Mapping of a Stigma Length QTL qSTL3.1 in Rice (Oryza sativa L.). PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract).
[16] Zhou H, Li P, Xie W, Hussain S, Li Y, Xia D, Zhao H, Sun S, Chen J, Ye H, Hou J, Zhao D, Gao G, Zhang Q, Wang G, Lian X, Xiao J, Yu S, Li X, He Y. Genome-wide association analyses reveal the genetic basis of stigma exsertion in rice. Mol Plant, 2017,10:634-644.
doi: 10.1016/j.molp.2017.01.001 pmid: 28110091
[17] Dang X, Liu E, Liang Y, Liu Q, Breria C M, Hong D. QTL detection and elite alleles mining for stigma traits in Oryza sativa by association mapping. Front Plant Sci, 2016,7:1188.
pmid: 27555858
[18] Liu Y, Zhang A, Wang F, Kong D, Li M, Bi J, Zhang F, Wang J, Luo X, Pan Z, Yu X, Liu G, Luo L. Fine mapping a quantitative trait locus, qSER-7, that controls stigma exsertion rate in rice(Oryza sativa L.). Rice, 2019,12:46.
doi: 10.1186/s12284-019-0304-z pmid: 31289958
[19] Xiong L X, Liu K D, Dai X K, Xu C G, Zhang Q. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet, 1999,98:243-251.
[20] 李威, 圣忠华, 朱子亮, 魏祥进, 石磊, 邬亚文, 唐绍清, 王建龙, 胡培松. 粳稻柱头外露率QTL定位. 中国水稻科学, 2017,31:23-30.
Li W, Sheng Z H, Zhu Z L, Wei X J, Shi L, Wu Y W, Tang S Q, Wang J L, Hu P S. QTL mapping of japonica rice stigma exsertion rate. Chin J Rice Sci, 2017,31:23-30 (in Chinese with English abstract).
[21] Bakti C, Tanaka J. Detection of dominant QTLs for stigma exsertion ratio in rice derived from Oryza rufipogon accession ‘W0120’. Breed Sci, 2019,69:143-150.
pmid: 31086492
[22] Uga Y, Fukuta Y, Cai H W, Iwata H, Ohsawa R, Morishima H, Fujimura T. Mapping QTLs influencing rice floral morphology using recombinant inbred lines derived from a cross between Oryza sativa L. and Oryza rufifipogon Griff. Theor Appl Genet, 2003,107:218-226.
doi: 10.1007/s00122-003-1227-y pmid: 12845437
[23] Yu X Q, Mei H W, Luo L J, Liu G L, Zou G H, Hu S P, Li M S, Wu J H. Dissection of additive, epistatic effect and Q × E interaction of quantitative trait loci influencing stigma exsertion under water stress in rice. Acta Genet Sin, 2006,33:542-550.
[24] Hu S P, Zhou Y, Zhang L, Zhu X D, Wang Z G, Li L, Luo L J, Zhou Q M. QTL analysis of floral traits of rice (Oryza sativa L.) under well-watered and drought stress conditions. Genes Genom, 2009,31:173-181.
[25] Li P B, Feng F C, Zhang Q L, Chao Y, Gao G J, He Y Q. Genetic mapping and validation of quantitative trait loci for stigma exsertion rate in rice. Mol Breed, 2014,34:2131-2138.
[26] 尹成, 李平波, 高冠军, 张庆路, 罗利军, 何予卿. 水稻柱头外露率QTL定位. 分子植物育种, 2014,12:43-49.
Yin C, Li P B, Gao G J, Zhang Q L, Luo L J, He Y Q. QTL analysis of percentage of exserted stigma in rice. Mol Plant Breed, 2014,12:43-49 (in Chinese with English abstract).
[27] Rahman M H, Yu P, Zhang Y X, Sun L P, Wu W X, Shen X H, Zhan X D, Chen D B, Cao L Y, Cheng S H. Quantitative trait loci mapping of the stigma exertion rate and spikelet number per panicle in rice( Oryza sativa L.). Genet Mol Res, 2016, 15: gmr15048432.
[28] Yan W G, Li Y, Agrama H A, Luo D G, Gao F Y, Lu X J, Ren G J. Association mapping of stigma and spikelet characteristics in rice ( Oryza sativa L.). Mol Breed, 2009,24:277-292.
pmid: 20234878
[29] Zhang K, Zhang Y, Wu W, Zhan X, BakrAnis G, Rahman M H, Hong Y, Riaz A, Zhu A, Cao Y, Sun L, Yang Z, Yang Q, Cao L, Cheng S. qSE7 is a major quantitative trait locus (QTL) influencing stigma exsertion rate in rice(Oryza sativa L.). Sci Rep, 2018,8:14523.
doi: 10.1038/s41598-018-32629-2 pmid: 30266907
[30] Rahman M H, Zhang Y, Zhang K, Rahman M S, Barman H N, Riaz A, Chen Y, Wu W, Zhan X, Cao L, Cheng S. Genetic dissection of the major quantitative trait locus (qSE11), and its validation as the major influence on the rate of stigma exsertion in rice( Oryza sativa L.). Front Plant Sci, 2017,8:1818.
doi: 10.3389/fpls.2017.01818 pmid: 29163563
[31] Uga Y, Siangliw M, Nagamine T, Ohsawa R, Fujimura T, Fukuta Y. Comparative mapping of QTLs determining glume, pistil and stamen sizes in cultivated rice ( Oryza sativa L.). Plant Breed, 2010,129:657-669.
[32] Marathi B, Ramos J, Hechanova S L, Oane R H, Jena K K. SNP genotyping and characterization of pistil traits revealing a distinct phylogenetic relationship among the species of Oryza. Euphytica, 2015,201:131-148.
[33] 陈兰, 张红, 张启武, 江建华, 王洋, 陈杰丽, 洪德林. 水稻6个异交相关性状的SSR关联分析. 南京农业大学学报, 2012,35(2):1-9.
Chen L, Zhang H, Zhang Q W, Jiang J H, Wang Y, Chen J L, Hong D L. Association analysis of six outcrossing related traits in rice ( Oryza sativa L.) with SSR markers. J Nanjing Agric Univ, 2012,35(2):1-9 (in Chinese with English abstract).
[34] Liu Q, Qin J, Li T, Liu E, Fan D, Edzesi W M, Liu J, Jiang J, Liu X, Xiao L, Liu L, Hong D. Fine mapping and candidate gene analysis of qSTL3, a stigma length-conditioning locus in rice(Oryza sativa L.). PLoS One, 2015,10:e0127938.
doi: 10.1371/journal.pone.0127938 pmid: 26030903
[35] 李成荃, 许克农, 王守海, 罗彦长, 王德正. 粳型水稻光敏核不育系7001S的育性与利用研究. 安徽农业科学, 1994,22(1):11-15.
Li C Q, Xu K L, Wang S H, Luo Y C, Wang D Z. Study on the fertility of japonica PGMR 7001S and its utilization. J Anhui Agric Sci, 1994,22(1):11-15 (in Chinese with English abstract).
[36] 张启武, 江建华, 姚瑾, 洪德林. 穞稻与粳稻恢复系C堡籽粒灌浆速率的特征及遗传分析. 作物学报, 2009,35:1229-1235.
Zhang Q W, Jiang J H, Yao J, Hong D L. Characterization and genetic analysis of grain filling rate of Ludao and restorer line C-bao injaponica rice(Oryza sativa L.). Acta Agron Sin, 2009,35:1229-1235 (in Chinese with English abstract).
[37] 汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会, 成洪涛, 付丽, 刘佳. 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016,42:1103-1111.
Wang W X, Hu Q, Mei D S, Li Y C, Zhou R J, Wang H, Cheng H T, Fu L, Liu J. Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2016,42:1103-1111 (in Chinese with English abstract).
[38] 梁慧珍, 余永亮, 许兰杰, 杨红旗, 董薇, 谭政伟, 李磊, 裴新涌, 刘新梅. 大豆α-生育酚的遗传与QTL分析. 中国农业科学, 2019,52:11-20.
Liang H Z, Yu Y L, Xu L J, Yang H Q, Dong W, Tan Z W, Li L, Pei X Y, Liu X M. Inheritance and QTL mapping for α-tocopherol in soybean. Sci Agric Sin, 2019,52:11-20 (in Chinese with English abstract).
[39] 翟英. 番茄果实色泽和色素含量的遗传特征. 分子植物育种, 2019,17:264-269.
Zhai Y. Genetic characteristics of color and pigment content in Tomato fruits. Mol Plant Breed, 2019,17:264-269 (in Chinese with English abstract).
[40] 解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 李俊, 王长有, 张宏, 陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析. 作物学报, 2020,46:365-384.
Xie S F, Ji W Q, Zhang Y Y, Zhang J J, Hu W G, Li J, Wang C Y, Zhang H, Chen C H. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat. Acta Agron Sin, 2020,46:365-384 (in Chinese with English abstract).
[41] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013,36(6):1-6.
Cao X W, Liu B, Zhang Y M. SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ, 2013,36(6):1-6 (in Chinese with English abstract).
[42] 盖钧镒. 试验统计方法. 北京: 中国农业出版社, 2000. pp 99-126, 157-189.
Gai J Y. Methods of Experiments and Statistics. Beijing: China Agriculture Press, 2000. pp 99- 126, 157-189(in Chinese).
[43] 吴爽, 江建华, 汤修竹, 王德正. 水稻温敏核不育系广茉S的异交特性研究. 杂交水稻, 2015,30(3):35-38.
Wu S, Jiang J H, Tang X J, Wang D Z. Studies on outcrossing characteristics of TGMS line Guangmo S in rice. Hybrid Rice, 2015,30(3):35-38 (in Chinese with English abstract).
[44] 王春娥, 盖钧镒, 傅三雄, 喻德跃, 陈受宜. 大豆豆腐和豆乳得率的遗传分析与QTL定位. 中国农业科学, 2008,41:1274-1282.
Wang C E, Gai J Y, Fu S X, Yu D Y, Chen S Y. Inheritance and QTL mapping of Tofu and soymilk output in soybean. Sci Agric Sin, 2008,41:1274-1282 (in Chinese with English abstract).
[45] Li T, Chen Y W. Genetics of stigma exsertion in rice. Rice Genet Newsl, 1985,2:84-85.
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[4] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
[5] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[6] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[7] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[8] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[9] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[10] WU Ran-Ran, LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin. Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean [J]. Acta Agronomica Sinica, 2021, 47(5): 860-868.
[11] JIANG Cheng-Gong, SHI Hui-Min, WANG Hong-Wu, LI Kun, HUANG Chang-Ling, LIU Zhi-Fang, WU Yu-Jin, LI Shu-Qiang, HU Xiao-Jiao, MA Qing. Phenotype analysis and gene mapping of small kernel 7 (smk7) mutant in maize [J]. Acta Agronomica Sinica, 2021, 47(2): 285-293.
[12] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[13] HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098.
[14] TIAN Shi-Ke, QIN Xin-Er, ZHANG Wen-Liang, DONG Xue, DAI Ming-Qiu, YUE Bing. Genetic analysis and characterization of male sterile mutant mi-ms-3 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1991-1996.
[15] MO Yi,SUN Zhi-Zhong,DING Jia,YU Dong,SUN Xue-Wu,SHENG Xia-Bing,TAN Yan-Ning,YUAN Gui-Long,YUAN Ding-Yang,DUAN Mei-Juan. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agronomica Sinica, 2019, 45(7): 1050-1058.
Full text



No Suggested Reading articles found!