Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (7): 1205-1214.doi: 10.3724/SP.J.1006.2021.01074
• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Next Articles
GENG La1, HUANG Ye-Chang2, LI Meng-Di1, XIE Shang-Geng1, YE Ling-Zhen1,3,*(), ZHANG Guo-Ping1
[1] | Havrlentová M, Kraic J. Content of β-D-glucan in cereal grains. J Food Nutr Res-Slov, 2006,45:97-103. |
[2] | Zhang G, Chen J, Wang J, Ding S. Cultivar and environmental effects on (1→3, 1→4) β-D-glucan and protein content in malting barley. J Cereal Sci, 2001,34:295-301. |
[3] | Jeroch H, Dänicke S. Barley in poultry feeding: a review. Worlds Poultry Ence J, 1995,51:271-291. |
[4] | Mcnab J M. Barley β-glucan: an antinutritional factor in poultry feeding. Nutr Res Rev, 1992,5:45-60. |
[5] |
Kerckhoffs D A J M, Hornstra G, Mensink R P. Cholesterol-lower ing effect of beta-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when beta-glucan is incorporated into bread and cookies. Am J Clin Nutr, 2003,78:221-227.
doi: 10.1093/ajcn/78.2.221 pmid: 12885701 |
[6] |
Pear J R, Kawagoe Y, Schreckengost W E, Delmer D P, Stalker D M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci USA, 1996,93:12637-12642.
doi: 10.1073/pnas.93.22.12637 pmid: 8901635 |
[7] |
Doblin M S, Pettolmo F A, Wilson S M, Campbell R, Burton R A, Fincher G B, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-D-glucan synthesis in transgenicarabidopsis. Proc Natl Acad Sci USA, 2009,106:5996-6001.
doi: 10.1073/pnas.0902019106 pmid: 19321749 |
[8] |
Burton A R. Cellulose synthase-like cslf genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science, 2006,311:1940-1942.
doi: 10.1126/science.1122975 pmid: 16574868 |
[9] |
Schreiber M, Wright F, Mackenzie K, Hedley P E, Schwerdt J G, Little A, Burton R A, Fincher G B, Marshall D, Waugh R, Halpin C. The barley genome sequence assembly reveals three additional members of the CslF( 1,3;1,4)-beta-glucan synthase gene family. PLoS One, 2014,9:e90888.
pmid: 24595438 |
[10] |
Burton R A, Collins H M, Kibble N A J, Smith J A, Shirley N J, Jobling S A, Henderson M, Singh R R, Pettolino F, Wilson S M, Bird A R, Topping D L, Bacic A, Fincher G B. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-D-glucans and alters their fine structure. Plant Biotechnol J, 2011,9:117-135.
doi: 10.1111/j.1467-7652.2010.00532.x pmid: 20497371 |
[11] |
Nemeth C, Freeman J, Jones H D, Sparks C, Pellny T K, Wilkinson M D, Dunwell J, Andersson A A M, åman P, Guillon F, Saulnier L, Mitchell R A C, Shewry P R. Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D-glucan in endosperm of wheat. Plant Physiol, 2010,152:1209-1218.
doi: 10.1104/pp.109.151712 pmid: 20089768 |
[12] |
Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor Appl Genet, 2017,130:1011-1029.
doi: 10.1007/s00122-017-2867-7 pmid: 28215025 |
[13] | Tadesse W, Ogbonnaya F C, Jighly A, Sanchez-Garcia M, Sohail Q, Rajaram S, Baum M. Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS One, 2015,10:e141339. |
[14] | Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010,42:961. |
[15] |
Houston K, McKim S M, Comadran J, Bonar N, Druka I, Uzrek N, Cirillo E, Guzy-Wrobelska J, Collins N C, Halpin C, Hansson M, Dockter C, Druka A, Waugh R. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence. Proc Natl Acad Sci USA, 2013,110:16675-16680.
doi: 10.1073/pnas.1311681110 pmid: 24065816 |
[16] |
Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R. Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet, 2012,44:1388-1392.
doi: 10.1038/ng.2447 pmid: 23160098 |
[17] |
Ramsay L, Comadran J, Druka A, Marshall D F, Waugh R. INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet, 2011,43:169-172.
doi: 10.1038/ng.745 pmid: 21217754 |
[18] |
Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington J M, Booth A, Shirley N, Burton R A, Fincher G B. A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genomics, 2014,15:907.
doi: 10.1186/1471-2164-15-907 pmid: 25326272 |
[19] | Narasimhalu P, Kong D, Choo T M, Ho K M, Ferguson T, Therrien M C, May K W, Jui P. Effects of environment and cultivar on total mixed-linkage β-glucan content in eastern and western Canadian barleys (Hordeum vulgare L.). Can J Plant Sci, 1995,75:371-376. |
[20] | Yalçin E, çelik S, Akar T, Sayim I, Köksel H. Effects of genotype and environment on β-glucan and dietary fiber contents of hull-less barleys grown in Turkey. Food Chem, 2007,101:171-176. |
[21] |
Houston K, Russell J, Schreiber M, Halpin C, Oakey H, Washington J M, Booth A, Shirley N, Burton R A, Fincher G B, Waugh R. A genome wide association scan for (1,3;1,4)-beta-glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genomics, 2014,15:907.
doi: 10.1186/1471-2164-15-907 pmid: 25326272 |
[22] | Mohammadi M, Endelman J B, Nair S, Chao S, Jones S S, Muehlbauer G J, Ullrich S E, Baik B, Wise M L, Smith K P. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and β-glucan in US barley breeding germplasm. Mol Breed, 2014,34:1229-1243. |
[23] |
Little A, Schwerdt J G, Shirley N J, Khor S F, Neumann K, O Donovan L A, Lahnstein J, Collins H M, Henderson M, Fincher G B. Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. Plant Physiol, 2018,177:1124-1141.
doi: 10.1104/pp.17.01718 pmid: 29780036 |
[24] | Garcia-Gimenez G, Russell J, Aubert M K, Fincher G B, Houston K. Barley grain (1,3;1,4)-β-glucan content: effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes. Sci Rep(UK), 2019,9:17250. |
[25] | Oziel A, Hayes P M, Chen F Q, Jones B. Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breed, 2010,115:43-51. |
[26] | Islamovic E, Obert D E, Oliver R E, Harrison S A, Ibrahim A, Marshall J M, Miclaus K J, Hu G, Jackson E W. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.). Mol Breed, 2013,31:15-25. |
[27] | Panozzo J F, Eckermann P J, Mather D E, Moody D B, Black C K, Collins H M, Barr A R, Lim P, Cullis B R. QTL analysis of malting quality traits in two barley populations. Aust J Agric Res, 2007,58:858-866. |
[28] | Hrmova M, Farkas V, Lahnstein J, Fincher G B. A barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans. J Biol Chem, 2007,282:1295112962. |
[29] |
Hrmova M, Banik M, Harvey A J, Garrett T P J, Fincher G B. Polysaccharide hydrolases in germinated barley and their role in the depolymerization of plant and fungal cell walls. Int J Biol Macromol, 1997,21:67-72.
doi: 10.1016/s0141-8130(97)00043-3 pmid: 9283018 |
[30] | Chen S C, Luchsinger W W. The mechanism of action of malt β-glucanases. VI. Hydrolysis of barley β-D-glucan by endo-β-glucanases from germinated barley. Arch Biochem Biophys, 1964,106:71-77. |
[31] | Hrmova M, Fincher G B. Dissecting the catalytic mechanism of a plant β-D-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Carbohyd Res, 2007,342:1613-1623. |
[1] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[2] | YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190. |
[3] | HE Jun-Yu, ZHONG Wei, CHEN Yun-Qiong, WANG Wei-Bin, XIONG Jing-Lei, JIANG Ya-Li, SHI Hui-Meng, CHEN Sheng-Wei. Analysis on the accumulation characteristics of seven flavonoids at grain development stage in barley [J]. Acta Agronomica Sinica, 2021, 47(8): 1624-1630. |
[4] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
[5] | LI Jie, FU Hui, YAO Xiao-Hua, WU Kun-Lun. Differentially expressed protein analysis of different drought tolerance hulless barley leaves [J]. Acta Agronomica Sinica, 2021, 47(7): 1248-1258. |
[6] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[7] | ZHANG Fan, YANG Qian. Effects of combined application of organic materials and chemical fertilizers in barley-double cropping rice rotation system on barley resource utilization efficiency and yield [J]. Acta Agronomica Sinica, 2021, 47(12): 2522-2531. |
[8] | LEI Wei, WANG Rui-Li, WANG Liu-Yan, YUAN Fang, MENG Li-Jiao, XING Ming-Li, XU Lu, TANG Zhang-Lin, LI Jia-Na, CUI Cui, ZHOU Qing-Yuan. Genome-wide association study of seed density and its related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(11): 2099-2110. |
[9] | XU Ting-Ting, WANG Qiao-Ling, ZOU Shu-Qiong, DI Jia-Chun, YANG Xin, ZHU Yin, ZHAO Han, YAN Wei. Development and application of InDel markers based on high throughput sequencing in barley [J]. Acta Agronomica Sinica, 2020, 46(9): 1340-1350. |
[10] | TAO Ai-Fen,YOU Zi-Yi,XU Jian-Tang,LIN Li-Hui,ZHANG Li-Wu,QI Jian-Min,FANG Ping-Ping. Development and verification of CAPS markers based on SNPs from transcriptome of jute (Corchorus L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 987-996. |
[11] | ZHAO Xiao-Hong,BAI Yi-Xiong,WANG Kai,YAO You-Hua,YAO Xiao-Hua,WU Kun-Lun. Effects of planting density on lodging resistance and straw forage characteristics in two hulless barley varieties [J]. Acta Agronomica Sinica, 2020, 46(4): 586-595. |
[12] | Yin-Ping XU, Yong-Dong PAN, Qiang-De LIU, Yuan-Hu YAO, Yan-Chun JIA, Cheng REN, Ke-Cang HUO, Wen-Qing CHEN, Feng ZHAO, Qi-Jun BAO, Hua-Yu ZHANG. Drought resistance identification and drought resistance indexes screening of barley resources at mature period [J]. Acta Agronomica Sinica, 2020, 46(3): 448-461. |
[13] | YANG Xiao-Meng, LI Xia, PU Xiao-Ying, DU Juan, Muhammad Kazim Ali, YANG Jia-Zhen, ZENG Ya-Wen, YANG Tao. QTL mapping for total grain anthocyanin content and 1000-kernel weight in barley recombinant inbred lines population [J]. Acta Agronomica Sinica, 2020, 46(01): 52-61. |
[14] | SHI Li-Jie,JIANG Cong-Cong,WANG Fang-Mei,YANG Ping,FENG Zong-Yun. Genome-wide characterization and transcriptional analysis of the protein disulfide isomerase-like genes in barley (Hordeum vulgare) [J]. Acta Agronomica Sinica, 2019, 45(9): 1365-1374. |
[15] | WANG Kai,ZHAO Xiao-Hong,YAO Xiao-Hua,YAO You-Hua,BAI Yi-Xiong,WU Kun-Lun. Relationship of stem characteristics and lignin synthesis with lodging resistance of hulless barley [J]. Acta Agronomica Sinica, 2019, 45(4): 621-627. |
|