Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 1050-1058.doi: 10.3724/SP.J.1006.2019.82054

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice

MO Yi1,2,SUN Zhi-Zhong2,DING Jia2,YU Dong2,SUN Xue-Wu2,SHENG Xia-Bing2,TAN Yan-Ning2,YUAN Gui-Long2,YUAN Ding-Yang1,2,3,*(),DUAN Mei-Juan1,*()   

  1. 1 Hunan Agricultural University, Changsha 410128, Hunan, China
    2 State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, Hunan, China
    3 National South Grain and Oil Crops Collaborative Innovation Center, Changsha 410128, Hunan, China
  • Received:2018-11-08 Accepted:2019-01-19 Online:2019-07-12 Published:2019-03-01
  • Contact: Ding-Yang YUAN,Mei-Juan DUAN E-mail:yuandingyang@hhrrc.ac.cn;duanmeijuan@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(3167166);the Research and Demonstration of Key Technology of Improved Seed Breeding of Rice Seeds(2018YFD0100802);the Chinese University of Hong Kong(CUHK Joint Project to Develop Super-High Yield Hybrid Rice TK1711793);the Scientific and Technological Innovation Project of Hunan Academy of Agricultural Sciences(2017ZD02);the Project of Hunan Natural Science Youth Foundation(2017JJ3166)

Abstract:

A white stripe leaf mutant wsl1 was obtained from the recombinant inbred lines derived from the cross of Oryza sativa var. japonica Nipponbare and Oryza sativa L. subsp. indica R1128. The mutant wsl1 showed white striped leaves and albino veins firstly at the seedling stage and then through the whole growth period. Agronomic traits such as plant height, number of spikelets per panicle, flag leaf length and heading date were significantly increased, while the seed setting rate decreased significantly in the mutant. Compared with wild type R1128, the chlorophyll a, chlorophyll b, and carotene contents of mutant leaves obviously decreased. Microscope observation indicated there were significantly decreased normal chloroplast and a large number of abnormal chloroplasts in mutant. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive nuclear gene. WSL1 was mapped on the short arm of chromosome 1, between markers M1-54 and M1-70, with physical distance of about 89.7 kb. There were eight new open reading frames in the candidate region. Among them LOC_Os01g02080 encodes a peptide-based prolyl cis-trans isomerase, GO (Gene Ontology) classification showed that it might be related to thylakoid formation.

Key words: rice, white stripe leaf mutant, genetic analysis, gene mapping

Fig. 1

Phenotype of wild type (WT) R1128 and mutant wsl1 at seedling, tillering, and booting stages A: five-leaf stage. Left: WT; Right: wsl1. B-D: the mutant wsl1 at tillering stage in Changsha (B), tillering stage in Sanya (C), and booting stage in Changsha (D)."

Table 1

Comparison of agronomic traits between wild type R1128 and mutant wsl1"

农艺性状Agronomic trait R1128 wsl1
有效穗数 No. of effective panicles 6.25±2.3 5.9±1.9
穗长 Panicle length (cm) 29.8±1.0 32.9±2.8
千粒重 1000-grain weight (g) 23.3±1.5 22.6±1.1
一次枝梗数 No. of primary branch 19.8±2.4 21.1±1.9
二次枝梗数 No. of secondary branch 49.5±6.8 68.7±8.7**
剑叶宽 Flag leaf width (cm) 3.0±0.4 3.0±0.4
株高 Plant height (cm) 121.9±5.8 181.6±6.9**
每穗总粒数 No. of spikelets per panicle 342.0±61.5 447.1±85.9**
结实率 Seed setting rate (%) 76.3±0.9 57.8±0.9**
剑叶长 Flag leaf length (cm) 40.8±7.7 55.1±9.6**
抽穗期 Heading date (d) 87.0±2.5 102±2.1**

Fig. 2

Comparison of photosynthetic pigments at seedling stage and tillering stage in the mutant wsl1 and wild type R1128 A: comparison of photosynthetic pigments of the seeding stage; B: comparison of photosynthetic pigments of the tillering stage; Chl a: chlorophyll a; Chl b: chlorophyll b; Total Chl: content of chlorophyll a and chlorophyll b; Car: carotenoids. * represents significant difference between the wsl1 mutant and wild type at the 0.05 probability level; ** represents significant difference between the wsl1 mutant and wild type at the 0.01 probability level."

Fig. 3

Ultrastructures of chloroplasts in the mesophyll cell of the wsl1 mutant and wild type R1128 A: mesophyll cell of the wild type; B: mesophyll cell of the wsl1 mutant’s green leaf; C: mesophyll cell of the wsl1 mutant’s leaf regions with color change from green to white; D: mesophyll cell of the wsl1 mutant’s white leaf. c: chloroplast; v: vacuole."

Fig. 4

Cross-section of wild type R1128 and wsl1 mutant leaf at tillering stage A: cross section of wild type leaf; B: cross section of wsl1 mutant’s leaf. M: motor cell."

Table 2

Genetic analysis of the wsl1 mutant"

杂交组合
Cross
正常植株数
Number of green plant
白化叶植株数
Number of albino
plant
F2群体总株数
Total number of F2
plants
分离比
Theoretical segregation ratio
χ2
(χ20.05=3.84)
wsl1/Nipponbare 1247 390 1637 3.20 1.301
R1128/wsl1 2702 878 3580 308 0.431

Fig. 5

Fine mapping of WSL1 gene n: number of group; recombinant: number of recombinant."

Table 3

Sequence of markers linked with WSL1"

标记
Marker
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
RM10022 CCTCCATAGAGTAAGGTTTGCATGG CCTCCTCCTCTGTCTTTCTCTGC
M1-40 GACGACGCCCGGTGGCTGTG GCAGTATCACCATGGATCCA
M1-54 ACATAAGTATCATGGGCTTA CCGAAGTTGCGTACTAACCG
M1-70 GTTGCCGCGAAGTTTCACGC ACCACCACCCAAAATGAGCT
M1-76 ACCTGGAGGAGCAAATTAGG CGTCCATTCCAATGATTTCC
M1-80 AAGTTATCTTTGTGACTGCT AGAAATGCGGCAGGAACGAC
RI02428 CTTCGTCACCGCAGATGG CTGTTTCTTTGGACCGGTGT

Table 4

Genes in mapping area of WSL1"

基因位点
Gene locus
基因表达产物
Gene product
LOC_Os01g02000 phosphate transporter 1, putative, expressed
LOC_Os01g02010 expressed protein
LOC_Os01g02020 acetyl-CoA acetyltransferase, cytosolic, putative, expressed
LOC_Os01g02040 retrotransposon protein, putative, unclassified, expressed
LOC_Os01g02050 phosphoenolpyruvate carboxylase, putative, expressed
LOC_Os01g02060 TOO MANY MOUTHS precursor, putative, expressed
LOC_Os01g02070 invertase/pectin methylesterase inhibitor family protein, putative, expressed
LOC_Os01g02080 peptidyl-prolyl cis-trans isomerase, putative, expressed
[1] Morita R, Sato Y, Masuda Y, Nishimura M, Kusaba M . Defect innon-yellow coloring 3, an a/b hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J, 2009,59:940-952.
doi: 10.1111/tpj.2009.59.issue-6
[2] Du P, Ling Y H, Sang X C, Zhao F M, Xie R, Yang Z L, He G H . Gene mapping related to yellow green leaf in a mutant line in rice (Oryza sativa). Genes Genom, 2009,31:165-171.
[3] 张洪征, 程治军, 万建民 . 水稻白化突变体研究进展. 生物技术通报, 2013, ( 11):1-7.
Zhang H Z, Cheng Z J, Wan J M . Progresses on the studying of rice leaf albino. Biotechnol Bull, 2013, ( 11):1-7 (in Chinese with English abstract).
[4] Nagamatsu T, Omura T . Linkage study of the genes belonging to the first chromosome in rice. Jpn J Breed, 1962,12:231-236.
doi: 10.1270/jsbbs1951.12.231
[5] Birky C W Jr, Perlman P S, Byers T J . Genetics biogenesis mitochondria chloroplasts. Q Rev Biol, 1976,51:527-528.
[6] Aluru M R, Rodermel S R . Control of chloroplast redox by the immutants terminal oxidase. Physiol Plant, 2004,120:4-11.
doi: 10.1111/ppl.2004.120.issue-1
[7] 孙立亭, 林添资, 王云龙, 牛梅, 胡婷婷, 刘世家, 王益华, 万建民 . 水稻白条纹突变体st13 的表型分析及基因定位. 中国水稻科学, 2017,31:355-363.
Sun L T, Lin T Z, Wang Y L, Niu M, Hu T T, Liu S J, Wang Y H, Wan J M . Phenotypic analysis and gene mapping of a white stripe mutant st13 in rice. Chin J Rice Sci, 2017,31:355-363 (in Chinese with English abstract).
[8] Li H C, Qian Q, Wang B, Li X B, Zhu L H, Xu J C . Identification and chromosomal localization of rice white panicle. Chin Sci Bull, 2003,48:268-270.
[9] 许凤华, 程治军, 王久林, 吴自明, 孙伟, 张欣, 雷财林, 王洁, 吴赴清, 郭秀平, 刘玲珑, 万建民 . 水稻白条纹叶Gws基因的精细定位与遗传分析. 作物学报, 2010,36:71-720.
Xu F H, Cheng Z J, Wang J L, Wu Z M, Sun W, Zhang X, Lei C L, Wang J, Wu F Q, Guo X P, Liu L L, Wan J M . Genetic analysis and fine-mapping of Gws gene using green-white-stripe rice mutant. Acta Agron Sin, 2010,36:713-720 (in Chinese with English abstract).
[10] Fang J, Chai C, Qian Q . Mutations of genes in synthesis of the carotenoid precursors of ABA lead to preharvest sprouting and photo-oxidation in rice. Plant J, 2008,54:177-189.
doi: 10.1111/j.1365-313X.2008.03411.x
[11] Li N, Chu H W, Wen T Q, Zhang D B . Genetic analysis and mapping of the rice white midrib mutant Oswm. Acta Agric Shanghai, 2007,23(1):1-4.
[12] Ge C W, Wang L, Ye W J, Wu L W, Cui Y T, Chen P, Pan J J, Zhang D, Hu J, Zeng D L, Dong G J, Qian Q, Guo L B, Xue D W . Single-point mutation of an histidine-aspartic domain-containing gene involving in chloroplast ribosome biogenesis leads to white fine stripe leaf in rice. Sci Rep, 2017,7:3298.
doi: 10.1038/s41598-017-03327-2
[13] Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H . Differential regulation of chlorophyll a oxygenase genes in rice. Plant Mol Biol, 2005,57:805-818.
doi: 10.1007/s11103-005-2066-9
[14] Zhang T, Feng P, Li Y F, Yu P, Yu G L, Sang X C, Ling Y H, Zeng X Q, Li Y D, Huang J Y, Zhang T Q, Zhao F M, Wang N, Zhang C W, Yang Z L, Wu R H, He G H . Virescent-albino leaf 1 regulates leaf colour development and cell division in rice. J Exp Bot, 2018, doi: 10.1093/jxb/ery250.
[15] Rogers S O, Bendich A J . Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol, 1985,5:69-76.
doi: 10.1007/BF00020088
[16] 初志战, 刘小林, 陈远玲, 刘耀光 . 一个水稻白化致死突变基因的精细定位和遗传研究. 中国水稻科学, 2016,30:136-142.
Chu Z Z, Liu X L, Chen Y L, Liu Y G . Genetic analysis and gene mapping of an albino lethal mutant in rice. Chin J Rice Sci, 2016,30:136-142 (in Chinese with English abstract).
[17] Gothandam K M, Kim E S, Cho H, Chung Y Y . OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005,58:421-433.
doi: 10.1007/s11103-005-5702-5
[18] Su N, Hu M L, Wu D X . Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012,159:227-238.
doi: 10.1104/pp.112.195081
[19] 马娇, 任德勇, 吴国超, 朱小燕, 马玲, 桑贤春, 凌英华, 何光华 . 水稻叶缘白化突变体mal的遗传分析与基因定位. 作物学报, 2014,40:591-599.
Ma J, Ren D Y, Wu G C, Zhu X Y, Ma L, Sang X C, Ling Y H, He G H . Genetic analysis and gene mapping of a marginal albino leaf mutant mal in rice. Acta Agron Sin, 2014,40:591-599 (in Chinese with English abstract).
[20] Siddappa K, Vasudev K L, Ganiger B S, Rathod R, Devar K V . Report of albino seedlings in Pongamia pinnata. Karnataka J Agric Sci, 2004,17:884-885.
[21] 谭炎宁, 孙学武, 袁定阳, 孙志忠, 余东, 何强, 段美娟, 邓华凤, 袁隆平 . 水稻单叶独立转绿型黄化突变体grc2的鉴定与基因精细定位. 作物学报, 2015,41:831-837.
Tan Y N, Sun X W, Yuan D Y, Sun Z Z, Yu D, He Q, Duan M J, Deng H F, Yuan L P . Identification and fine mapping of green-revertible chlorina gene grc2 in rice(Oryza sativa L.). Acta Agron Sin, 2015,41:831-837 (in Chinese with English abstract).
[22] 朱小燕, 徐芳芳, 桑贤春, 蒋钰东, 代高猛, 王楠, 张长伟, 何光华 . 水稻叶脉白化突变体wpsm的遗传分析与基因定位. 作物学报, 2013,39:1409-1415.
Zhu X Y, Xu F F, Sang X C, Jiang Y D, Dai G M, Wang N, Zhang C W, He G H . Genetic analysis and gene mapping of a rice white midrib mutant wpsm. Acta Agron Sin, 2013,39:1409-1415 (in Chinese with English abstract).
[23] 周坤能, 夏加发, 马廷臣, 王元垒, 李泽福 . 水稻条纹叶和白穗基因SLWP的定位及变异分析. 中国水稻科学, 2018,32:325-334.
Zhou K N, Xia J F, Ma T C, Wang Y L, Li Z F . Mapping and mutation analysis of stripe leaf and white panicle of gene SLWP in rice. Chin J Rice Sci, 2018,32:325-334 (in Chinese with English abstract).
[24] 王兴春, 王敏, 季芝娟, 陈钊, 刘文真, 韩渊怀, 杨长登 . 水稻糖苷水解酶基因OsBE1在叶绿体发育中的功能. 作物学报, 2014,40:2090-2097.
Wang X C, Wang M, Ji Z J, Chen Z, Liu W Z, Han Y H, Yang C D . Functional characterization of the clycoside hydrolase encoding gene OsBE1 during chloroplast development in Oryza sativa. Acta Agron Sin, 2014,40:2090-2097 (in Chinese with English abstract).
[25] Gothandam K M, Kim E S, Cho H, Chung Y Y . OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis. Plant Mol Biol, 2005,58:421-433.
doi: 10.1007/s11103-005-5702-5
[26] Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y . Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant Biol(Stuttg), 2015,17:599-607.
[27] Zhang Z, Tan J, Shi Z, Xie Q, Xing Y, Liu C, Chen Q, Zhu H, Wang J, Zhang J, Zhang G . Albino leaf1 that encodes the sole octotricopeptide repeat protein is responsible for chloroplast development. Plant Physiol, 2016,171:1182-1191.
[28] Wang Y, Wang C, Zheng M, Liu J, Xu Y, Li X, Niu M, Long W, Wang D, Wang H Y, William T, Wang Y, Wan J . White Panicle1, a Val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development. Plant Physiol, 2016,170:2110-2123.
doi: 10.1104/pp.15.01949
[29] Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K . The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J, 2007,52:512-527.
[30] Yoo S C, Cho S H, Sugimoto H, Li J, Kusumi K, Koh H J, Iba K, Paek N C . Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol, 2009,150:388-401.
doi: 10.1104/pp.109.136648
[31] Wang Y, Zhang J, Shi X, Peng Y, Li P, Lin D, Dong Y, Teng S . Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures. J Exp Bot, 2016,67:5187-5202.
[32] Wang L, Wang C, Wang Y, Niu M, Ren Y, Zhou K, Zhang H, Lin Q, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Jiang L, Lei C, Wang J, Zhu S, Zhao Z, Wan J . WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. Plant Mol Biol, 2016,92:581-595.
doi: 10.1007/s11103-016-0533-0
[33] Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L, Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H, Wan J M . Disruption of a rice pentatricopeptide repeat protein causes a seedling specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiol, 2012,159:227-238.
doi: 10.1104/pp.112.195081
[34] 成钦淑, 叶邦全, 袁灿, 李伟滔, 尹俊杰, 王静, 贺闽, 汪吉春, 王玉平, 李仕贵, 陈学伟 . 水稻白条纹叶突变体st11的遗传分析与基因定位. 中国水稻科学, 2015,29:14-21.
Cheng Q S, Ye B Q, Yuan C, Li W T, Yin J J, Wang J, He M, Wang J C, Wang Y P, Li S G, Chen X W . Genetic analysis and gene mapping of white stripe leaf mutant stl1 in rice. Chin J Rice Sci, 2015,29:14-21 (in Chinese with English abstract).
[35] Cao P H, Ren Y, Kun L X, Zhang T Y, Zhang P, Xiao L J, Zhang F L, Liu S J, Jiang L, Wan J M . Purine nucleotide biosynthetic gene GARS controls early chloroplast development in rice(Oryza sativa L.). Plant Cell Rep, 2019,38:183-194.
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[15] LIU Lei, ZHAN Wei-Min, DING Wu-Si, LIU Tong, CUI Lian-Hua, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping. Genetic analysis and molecular characterization of dwarf mutant gad39 in maize [J]. Acta Agronomica Sinica, 2022, 48(4): 886-895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!