Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1357-1371.doi: 10.3724/SP.J.1006.2022.14091
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
CHEN Song-Yu(), DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang*(), QIAN Wei
[1] |
Hu Z Y, Wang X F, Zhan G M, Liu G H, Hua W, Wang H Z. Unusually large oil bodies are highly correlated with lower oil content in Brassica napus. Plant Cell Rep, 2009, 28: 541-549.
doi: 10.1007/s00299-008-0654-2 |
[2] |
Lu C F, Napier J A, Clemente T E, Cahoon E B. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol, 2011, 22: 252-259.
doi: 10.1016/j.copbio.2010.11.006 |
[3] | 张霖, 赵翔, 王亚静, 张骁. NO与Ca2+对蚕豆保卫细胞气孔运动的互作调控. 作物学报, 2009, 35: 1491-1499. |
Zhang L, Zhao X, Wang Y J, Zhang X. Crosstalk of NO with Ca2+ in stomatal movement in Vicia faba guard cells. Acta Agron Sin, 2009, 35: 1491-1499 (in Chinese with English abstract). | |
[4] |
苏炜华, 刘峰, 黄珑, 苏亚春, 黄宁, 凌辉, 吴期滨, 张华, 阙友雄. 甘蔗Ca2+/H+反向运转体基因的克隆与表达分析. 作物学报, 2016, 42: 1074-1082.
doi: 10.3724/SP.J.1006.2016.01074 |
Su W H, Liu F, Huang L, Su Y C, Huang N, Ling H, Wu Q B, Zhang H, Que Y X. Cloning and expression analysis of a Ca2+/H+ antiporter gene from sugarcane. Acta Agron Sin, 2016, 42: 1074-1082 (in Chinese with English abstract). | |
[5] | Defalco T A, Marshall C B, Munro K, Kang H G, Moeder W, Ikura M, Snedden W A, Yoshioka K. Multiple calmodulin- binding sites positively and negatively regulate Arabidopsis cyclic nucleotide-gated channel 12. Plant Cell, 2016, 28: 1738. |
[6] |
Talke I N, Blaudez D, Maathuis F J M, Sanders D. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci, 2003, 8: 286-293.
pmid: 12818663 |
[7] |
Köhler C, Neuhaus G. Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett, 2000, 471: 133-136.
pmid: 10767408 |
[8] | Sunkar R, Kaplan B, Bouché N, Arazi T, Fromm H. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J, 2010, 24: 533-542. |
[9] |
Yoshioka K, Moeder W, Kang H G, Kachroo P, Masmoudi K, Berkowitz G, Klessiq D F. The chimeric cyclic nucleotide-gated ion channel AtCNGC11/12 activates multiple pathogen resistance responses. Plant Cell, 2006, 18: 747.
pmid: 16461580 |
[10] |
Fesenko E E, Kolesnikov S S, Lyubarsky A L. Induction by Cyclic-GMP of cationic conductance in plasma-membrane of retinal rod outer segment. Nature, 1985, 313: 310-313.
doi: 10.1038/313310a0 |
[11] |
Chin K, Moeder W, Yoshioka K. Biological roles of cyclic- nucleotide-gated ion channels in plants: what we know and don’t know about this 20 members ion channel family. Botany, 2009, 87: 668-677.
doi: 10.1139/B08-147 |
[12] |
Zhou L M, Lan W Z, Jiang Y Q, Fang W, Luan S. A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol Plant, 2014, 7: 369-376.
doi: 10.1093/mp/sst125 |
[13] |
Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15: 365-379.
doi: 10.1105/tpc.006999 |
[14] |
Ma W, Qi Z, Smigel A, Walker R K, Verma R, Berkowitz G A. Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci USA, 2009, 106: 20995-21000.
doi: 10.1073/pnas.0905831106 |
[15] |
Cukkemane A, Seifert R, Kaupp U B. Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem Sci, 2011, 36: 55-64.
doi: 10.1016/j.tibs.2010.07.004 pmid: 20729090 |
[16] |
Kakar K U, Nawaz Z, Kakar K, Ali E, Almoneafy A A, Ullah R, Ren X L, Shu Q Y. Comprehensive genomic analysis of the CNGC gene family in Brassica oleracea: novel insights into synteny, structures, and transcript profiles. BMC Genomics, 2017, 18: 869.
doi: 10.1186/s12864-017-4244-y |
[17] |
Li Q Q, Yang S Q, Ren J, Ye X L, Liu Z Y. Genome-wide identification and functional analysis of the cyclic nucleotide-gated channel gene family in Chinese cabbage. 3 Biotech, 2019, 9: 114.
doi: 10.1007/s13205-019-1647-2 |
[18] |
Saand M A, Xu Y P, Munyampundu J P, Li W, Zhang X R, Cai X Z. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs. DNA Res, 2015, 22: 471-483.
doi: 10.1093/dnares/dsv029 |
[19] |
Nawaz Z, Kakar K U, Ullah R, Yu S Z, Zhang J, Shu Q Y, Ren X L. Genome-wide identification, evolution and expression analysis of cyclic nucleotide-gated channels in tobacco (Nicotiana tabacum L.). Genomics, 2019, 111: 142-158.
doi: 10.1016/j.ygeno.2018.01.010 |
[20] |
Nawaz Z, Kakar K, Saand M A, Shu Q Y. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genomics, 2014, 15: 853.
doi: 10.1186/1471-2164-15-853 |
[21] |
Kaplan B, Sherman T, Fromm H. Cyclic nucleotide-gated channels in plants. FEBS Lett, 2007, 581: 2237-2246.
pmid: 17321525 |
[22] |
曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因. 作物学报, 2021, 47: 1460-1471.
doi: 10.3724/SP.J.1006.2021.04195 |
Zeng W Y, Lai Z G, Sun Z D, Yang S Z, Chen H Z, Tang X M. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq. Acta Agron Sin, 2021, 47: 1460-1471 (in Chinese with English abstract). | |
[23] |
Clough S J, Fengler K A, Yu I C, Lippok B, Smith R K, Bent A F. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA, 2000, 97: 9323-9330.
doi: 10.1073/pnas.150005697 |
[24] |
Foyer C, Vadassery J, Varma M, Kundu A, Meena M K, Jogawat A. Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. J Exp Bot, 2020, 71: 2752-2768.
doi: 10.1093/jxb/eraa028 |
[25] |
Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi D V H, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[26] | Walker J M. The Proteomics Protocols Handbook. University of Hertfordshire, Hatfield, UK: Humana Press, 2005. pp 571-607. |
[27] | Paul H, Keun-Joon P, Takeshi O, Naoya F, Hajime H, Adams-Collier C J, Kenta N. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: 585-587. |
[28] |
Hu B, Jin J P, Guo A Y, Zhang H, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817 |
[29] |
Lescot M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
doi: 10.1093/nar/30.1.325 |
[30] |
Mei J Q, Qian L, Disi J O, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2010, 177: 393-399.
doi: 10.1007/s10681-010-0274-0 |
[31] | 胡承伟, 张学昆, 邹锡玲, 程勇, 曾柳, 陆光远. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35: 48-53. |
Hu C W, Zhang X K, Zou X L, Cheng Y, Zeng L, Lu G Y. Root structure and drought tolerance of rapeseed under PEG imposed drought. Chin J Oil Crop Sci, 2013, 35: 48-53 (in Chinese with English abstract). | |
[32] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[33] |
Zelman A K, Dawe A, Berkowitz G A. Identification of cyclic nucleotide gated channels using regular expressions. Methods Mol Biol, 2013, 1016: 207-224.
doi: 10.1007/978-1-62703-441-8_14 pmid: 23681581 |
[34] |
Zelman A K, Dawe A, Gehring C, Berkowitz G A. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci, 2012, 3: 95.
doi: 10.3389/fpls.2012.00095 pmid: 22661976 |
[35] |
Mäser P, Thomine S, Schroeder J I, Ward J M, Guerinot M L. Phylogenetic relationships within cation transporter families of Arabidopsis1. J Plant Physiol, 2001, 126: 1646-1667.
doi: 10.1104/pp.126.4.1646 |
[36] |
Cheung F, Trick M, Drou N, Lim Y P, Park J Y, Kwon S J, Kim J A, Scott R, Pires J C, Paterson A H, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell, 2009, 21: 1912-1928.
doi: 10.1105/tpc.108.060376 pmid: 19602626 |
[37] |
Verkest A, Byzova M, Martens C, Willems P, Block M D. Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes. J Plant Physiol, 2015, 168: 1338-1350.
doi: 10.1104/pp.15.00155 |
[38] |
Wang P, Yang C, Chen H, Luo L, Leng Q, Li S, Han Z, Li X, Song C, Zhang X, Wang D. Exploring transcription factors reveals crucial members and regulatory networks involved in different abiotic stresses in Brassica napus L. BMC Plant Biol, 2018, 18: 202.
doi: 10.1186/s12870-018-1417-z pmid: 30231862 |
[39] |
Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007.
doi: 10.1038/srep19007 |
[40] | Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A, Zhao M X, Ma J X, Yu J Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T J, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S, Yang L M, Min J M, Zhang D, Jin D C, Li W S, Belcram H, Tu J X, Guan M, Qi C K, Du D Z, Li J, Jiang L C, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y H, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T H, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z, Liu X, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 23: 3930. |
[41] | 汪影, 张昌伟, 吕善武, 侯喜林. 大白菜BrCNGC全基因组鉴定及其表达分析. 南京农业大学学报, 2018, 41: 994-1002. |
Wang Y, Zhang C W, Lyu S W, Hou X L. Genome-wide identification and expression analysis of BrCNGC in Chinese cabbage. J Nanjing Agric Univ, 2018, 41: 994-1002 (in Chinese with English abstract). | |
[42] |
Duszyn M, Swiezawska B, Szmidt-Jaworska A, Jaworski K. Cyclic nucleotide gated channels (CNGCs) in plant signaling- current knowledge and perspectives. J Plant Physiol, 2019, 241: 153035.
doi: 10.1016/j.jplph.2019.153035 |
[43] |
Bouche N, Yellin A, Snedden W A, Fromm H. Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol, 2005, 56: 435-466.
doi: 10.1146/arplant.2005.56.issue-1 |
[44] |
Cherel I. Regulation of K + channel activities in plants: from physiological to molecular aspects. J Exp Bot, 2004, 55: 337-351.
doi: 10.1093/jxb/erh028 |
[45] | Saand M A, Xu Y P, Li W, Wang J P, Cai X Z. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs. Front Plant Sci, 2015, 6: 303. |
[46] |
Harmer S L, Hogenesch J B, Straume M, Chang H S, Han B, Zhu T, Wang X, Kreps J A, Kay S A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 2000, 290: 2110-2113.
pmid: 11118138 |
[47] |
Jeffares D C, Penkett C J, Hler J B. Rapidly regulated genes are intron poor. Trends Genet, 2008, 24: 375-378.
doi: 10.1016/j.tig.2008.05.006 pmid: 18586348 |
[1] | SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811. |
[2] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[3] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[4] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[5] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[6] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[7] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[8] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[9] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[10] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[11] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[12] | WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274. |
[13] | LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223. |
[14] | WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422. |
[15] | WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393. |
|