Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1357-1371.doi: 10.3724/SP.J.1006.2022.14091

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought

CHEN Song-Yu(), DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang*(), QIAN Wei   

  1. College of Agronomy and Biotechnology, Southwest University / Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
  • Received:2021-05-18 Accepted:2021-09-09 Online:2022-06-12 Published:2021-10-11
  • Contact: WAN Hua-Fang E-mail:chensongyu1123@163.com;wanhua05@163.com
  • Supported by:
    Natural Science Foundation of Chongqing, China(cstc2020jcyj-msxmX0957);National Key Research and Development Program of China(2018YFD0100500)

Abstract:

CNGCs are common cyclic nucleotide-gated channel proteins in plants, which play important roles in plant stress response. In order to elucidate the biological function of the BnCNGC genes in Brassica napus, we identified the BnCNGC family members in the genome and analyzed the distribution, structure, evolution, and the expression of candidate members in B. napus exposed to Sclerotinia sclerotiorum or PEG-simulated drought. In this study, employing CNGC amino acid sequences of Arabidopsis thaliana and Brassica oleracea as references, the homologies were acquired using BLASTP software in Brassica napus Genome Browser, and the gene family members were identified according to the conserved domain and specific motif of BnCNGC in plants. The gene structure, chromosome distribution, protein physicochemical property, subcellular localization, phylogenetic evolution, and promoter cis-acting regulatory elements were analyzed. The relative expression profiles of the candidate BnCNGC genes, screened out based on the transcriptome data in B. napus challenged with S. sclerotiorum or PEG-simulated drought, were analyzed by qRT-PCR. As a result, a total of 49 BnCNGC genes were identified in B. napus genome. They were distributed at 17 pairs of chromosomes, except for A08 and C06, and generally had 5-10 introns. The 1500 bp region in the upstream sequence of BnCNGC contained lots of cis-acting regulatory elements involved in stress response. Most of the corresponding proteins were composed of 413-801 amino acids with molecular weight (MW) of 47.62-110.58 kD and isoelectric point (pI) of 6.10-9.88. All the identified family members had specific motif of CNGC in the CNBD region. Phylogenetic analysis showed that BnCNGC were divided into four categories, namely Group I, II, III, and IV. Transcriptome data analysis revealed that BnCNGC9, BnCNGC27, and BnCNGC48 were involved in stress response. The relative expression levels of the three genes were detected in B. napus leaves exposed to different stresses. All were down-regulated by 48.2%-99.1%, 79.4%-87.1%, and 39.7%-92.6% under inoculation with Sclerotinia sclerotiorum, respectively. The relative expression levels of BnCNGC9 and BnCNGC48 were increased 3.34 times and 6.27 times at 24 and 48 hours after simulated drought stress, respectively, thus BnCNGC27 was not sensitive to drought stress.

Key words: Brassica napus, CNGC gene family, Sclerotinia sclerotiorum, PEG-simulated drought, relative expression analysis

Table 1

Primers used for qRT-PCR"

基因名称
Gene name
基因号
Gene ID
正向引物序列
Forward sequence (5′-3′)
反向引物序列
Reverse sequence (5′-3′)
BnCNGC9 BnaA03g34680D AGTTACCCTCTTTCCTCTACTCGT GTGCGGCTTTGAGCAGCTT
BnCNGC27 BnaA10g18740D ATAAATTCGCAAACGAGCGC GAACCGCCTACACCACCAC
BnCNGC48 BnaC09g42720D GAGCAGCAGCAGCAGCAGC CGGGCTCGAACCGGGTC
BnActin7 BnaA01g27090D CTGGAATTGCTGACCGTATGAG ATCTGTTGGAAAGTGCTGAGGG

Fig. 1

Chromosome distribution of BnCNGC family genes in Brassica napus"

Fig. 2

Special motif of cNMP-binding/CNBD of BnCNGC in Brassica napus Amino acids in a specific position are listed in brackets. X represents any amino acid, while numbers in parenthesis indicate the amount of amino acids. Residues shaded in dark blue, pink, and light blue, indicate 100%, >75%, and >50% similarity among 49 BnCNGC, respectively."

Table 2

Physicochemical property and subcellular localization prediction of BnCNGC protein in Brasscia napus"

CNGC蛋白
CNGC
protein
基因号
Gene ID
染色体
Chr.
起始位置
Initial
position
终止位置
End
position
氨基酸数
Amino acid amounts
等电点
pI
分子量
MW (kD)
总平均
亲水性
GRAVY
亚细胞定位
Subcellular localization
BnCNGC1 BnaA01g06670D A01 3095672 3099840 694 8.35 80.77 -0.205 质膜Plasma membrane
BnCNGC2 BnaA01g22170D A01 14545425 14551189 801 9.21 90.74 0.028 质膜Plasma membrane
BnCNGC3 BnaA01g27850D A01 19425000 19428539 760 9.57 86.26 -0.064 质膜Plasma membrane
BnCNGC4 BnaA01g27860D A01 19430256 19433767 743 9.64 85.28 -0.138 质膜Plasma membrane
BnCNGC5 BnaA02g07990D A02 3784851 3788310 721 9.13 82.42 -0.123 质膜Plasma membrane
BnCNGC6 BnaA02g09790D A02 4902667 4907022 621 9.38 71.77 -0.008 质膜Plasma membrane
BnCNGC7 BnaA02g10440D A02 5360323 5362868 711 9.38 82.56 -0.178 质膜Plasma membrane
BnCNGC8 BnaA03g26780D A03 13180480 13184496 705 9.26 81.49 -0.212 质膜Plasma membrane
BnCNGC9 BnaA03g34680D A03 16863304 16866599 680 8.91 77.60 -0.147 质膜Plasma membrane
BnCNGC10 BnaA03g34700D A03 16872203 16875542 654 8.92 74.72 -0.053 质膜Plasma membrane
BnCNGC11 BnaA03g50250D A03 26087831 26090699 741 9.29 84.40 -0.157 质膜Plasma membrane
BnCNGC12 BnaA04g14030D A04 11848036 11851336 736 9.44 84.50 -0.199 质膜Plasma membrane
BnCNGC13 BnaA04g14530D A04 12210464 12213711 703 9.33 81.07 -0.077 质膜Plasma membrane
BnCNGC14 BnaA04g15220D A04 12665265 12668409 647 9.50 74.80 -0.028 质膜Plasma membrane
BnCNGC15 BnaA05g01380D A05 808631 812078 702 9.14 81.03 -0.154 质膜Plasma membrane
BnCNGC16 BnaA05g22550D A05 17157632 17161030 753 9.55 85.87 -0.081 质膜Plasma membrane
BnCNGC17 BnaA05g22560D A05 17162980 17166118 751 9.19 86.39 -0.186 质膜Plasma membrane
BnCNGC18 BnaA05g22570D A05 17167881 17171529 790 9.71 90.63 -0.185 质膜Plasma membrane
BnCNGC19 BnaA06g10680D A06 5629756 5632689 722 9.50 82.80 -0.204 质膜Plasma membrane
BnCNGC20 BnaA06g16940D A06 9550763 9553801 706 8.46 81.62 -0.247 质膜Plasma membrane
BnCNGC21 BnaA07g13760D A07 12144138 12147369 684 9.68 79.43 -0.102 质膜Plasma membrane
BnCNGC22 BnaA07g17630D A07 14705083 14708986 688 8.68 78.43 -0.092 质膜Plasma membrane
BnCNGC23 BnaA09g41300D A09 28879650 28883074 715 8.85 82.39 -0.110 质膜Plasma membrane
BnCNGC24 BnaA09g41750D A09 29111335 29114828 737 9.44 84.65 -0.181 质膜Plasma membrane
BnCNGC25 BnaA10g06480D A10 4931547 4934085 720 9.57 83.90 -0.194 质膜Plasma membrane
BnCNGC26 BnaA10g07330D A10 5759951 5765207 699 8.60 80.72 -0.173 质膜Plasma membrane
BnCNGC27 BnaA10g18740D A10 13494368 13497571 719 9.56 82.00 0.012 质膜Plasma membrane
BnCNGC28 BnaA10g19030D A10 13658839 13663652 973 7.24 110.58 -0.284 质膜Plasma membrane
BnCNGC29 BnaC01g08020D C01 4234002 4238184 705 9.01 81.88 -0.185 质膜Plasma membrane
BnCNGC30 BnaC01g34960D C01 34227372 34232651 734 9.20 82.98 0.033 质膜Plasma membrane
BnCNGC31 BnaC02g11090D C02 6416508 6419623 721 9.21 82.52 -0.122 质膜Plasma membrane
BnCNGC32 BnaC02g14560D C02 10092252 10095260 711 9.35 82.54 -0.179 质膜Plasma membrane
BnCNGC33 BnaC03g31720D C03 19518056 19522572 704 9.18 81.33 -0.212 质膜Plasma membrane
BnCNGC34 BnaC03g40070D C03 25130865 25135231 413 6.10 47.62 -0.098 质膜Plasma membrane
BnCNGC35 BnaC04g01250D C04 984082 987459 701 9.40 80.79 -0.137 质膜Plasma membrane
BnCNGC36 BnaC04g16000D C04 14008149 14011414 684 9.68 79.49 -0.108 质膜Plasma membrane
BnCNGC37 BnaC04g36270D C04 37794024 37797281 714 9.16 82.28 -0.081 质膜Plasma membrane
BnCNGC38 BnaC04g36890D C04 38310006 38313393 745 9.45 85.22 -0.184 质膜Plasma membrane
CNGC蛋白
CNGC
protein
基因号
Gene ID
染色体
Chr.
起始位置
Initial
position
终止位置
End
position
氨基酸数
Amino acid amounts
等电点
pI
分子量
MW (kD)
总平均
亲水性
GRAVY
亚细胞定位
Subcellular localization
BnCNGC39 BnaC04g38170D C04 39436436 39439178 647 9.50 74.82 -0.016 质膜Plasma membrane
BnCNGC40 BnaC05g12210D C05 7083786 7086776 722 9.50 82.84 -0.207 质膜Plasma membrane
BnCNGC41 BnaC05g35840D C05 35081609 35084991 750 9.60 85.61 -0.072 质膜Plasma membrane
BnCNGC42 BnaC05g35850D C05 35087166 35090279 750 9.20 86.57 -0.201 质膜Plasma membrane
BnCNGC43 BnaC05g35860D C05 35092931 35096102 762 9.88 87.76 -0.163 质膜Plasma membrane
BnCNGC44 BnaC07g42730D C07 42093754 42097033 741 9.29 84.49 -0.169 质膜Plasma membrane
BnCNGC45 BnaC08g33890D C08 32189874 32193318 715 8.85 82.34 -0.111 质膜Plasma membrane
BnCNGC46 BnaC09g29350D C09 31884192 31886408 600 9.45 70.24 -0.169 质膜Plasma membrane
BnCNGC47 BnaC09g30630D C09 33625801 33632938 698 8.42 80.76 -0.192 质膜Plasma membrane
BnCNGC48 BnaC09g42460D C09 44006544 44009743 719 9.58 82.17 0.002 质膜Plasma membrane
BnCNGC49 BnaC09g42720D C09 44128700 44131819 714 8.60 81.30 -0.139 质膜Plasma membrane

Fig. 3

Phylogenetic tree of CNGC protein in Brassica oleracea, Brassica rapa, Brassica napus (●), Solanum lycopersicum, Arabidopsis thaliana, and Oryza sativa"

Fig. 4

Gene structure of BnCNGC gene family in Brassica napus"

Fig. 5

Conserved protein domain of BnCNGC protein in Brassica napus"

Table 3

Cis-acting regulatory elements predicted in promoter of the BnCNGC gene family in Brassica napus"

元件类型
Element type
特性
Characteristic
基因
Gene
CGTCA-motif 茉莉酸甲酯响应元件
cis-acting regulatory element involved
in the MeJA-responsiveness
BnCNGC1-BnCNGC6, BnCNGC10, BnCNGC12-BnCNGC15, BnCNGC17, BnCNGC18-BnCNGC20, BnCNGC23-BnCNGC26, BnCNGC29, BnCNGC31-BnCNGC39, BnCNGC42-BnCNGC45, BnCNGC49
MBS 干旱响应元件
MYB binding site involved in drought-inducibility
BnCNGC2, BnCNGC5, BnCNGC12, BnCNGC16, BnCNGC17, BnCNGC21, BnCNGC29, BnCNGC31, BnCNGC34, BnCNGC36, BnCNGC37, BnCNGC41, BnCNGC46, BnCNGC47
元件类型
Element type
特性
Characteristic
基因
Gene
ABRE 脱落酸响应元件
cis-acting element involved in abscisic
acid responsiveness
BnCNGC3, BnCNGC4, BnCNGC6, BnCNGC8, BnCNGC10, BnCNGC12, BnCNGC13, BnCNGC18-BnCNGC25, BnCNGC27, BnCNGC28, BnCNGC30, BnCNGC33, BnCNGC34, BnCNGC36, BnCNGC39-BnCNGC41, BnCNGC43, BnCNGC46-BnCNGC49
GARE-motif 赤霉素响应元件
Gibberellin-responsive element
BnCNGC6, BnCNGC20-BnCNGC22, BnCNGC27, BnCNGC36, BnCNGC38, BnCNGC48
WUN-motif 损伤响应元件
Wound-responsive element
BnCNGC1, BnCNGC3, BnCNGC4, BnCNGC9, BnCNGC11, BnCNGC14, BnCNGC16, BnCNGC21, BnCNGC22, BnCNGC25, BnCNGC27, BnCNGC29, BnCNGC32, BnCNGC33, BnCNGC38, BnCNGC41-BnCNGC43, BnCNGC48
TCA-element 水杨酸响应元件
cis-acting element involved in salicylic
acid responsiveness
BnCNGC15, BnCNGC16, BnCNGC18, BnCNGC23, BnCNGC25, BnCNGC27, BnCNGC28, BnCNGC31, BnCNGC35-BnCNGC39, BnCNGC41, BnCNGC43, BnCNGC46
TGA-element 生长素响应元件
Auxin-responsive element
BnCNGC1-BnCNGC3, BnCNGC11, BnCNGC20, BnCNGC21, BnCNGC26, BnCNGC30, BnCNGC32, BnCNGC39, BnCNGC40, BnCNGC46, BnCNGC47
TC-rich repeats 逆境与防御反应响应元件
cis-acting element involved in stress and defense responsiveness
BnCNGC1, BnCNGC7, BnCNGC8, BnCNGC11, BnCNGC14, BnCNGC19, BnCNGC21, BnCNGC25, BnCNGC29, BnCNGC30, BnCNGC33, BnCNGC36, BnCNGC38, BnCNGC40, BnCNGC43, BnCNGC44
AT-rich sequence 诱导子激活元件
Element for maximal elicitor-mediated activation
BnCNGC2, BnCNGC3, BnCNGC8, BnCNGC9, BnCNGC12, BnCNGC17, BnCNGC19, BnCNGC20, BnCNGC25, BnCNGC44

Table S1

Transcriptome data of CNGC in Brassica napus leaves challenged with Sclerotinia sclerotiorum "

基因名称
Gene name
FPKM-0 FPKM-12 FPKM-24 FPKM-48
BnCNGC2 0.76 0.30 0.53 0.10
BnCNGC32 1.65 1.89 0.65 0.54
BnCNGC24 0.88 1.06 0.40 0.72
BnCNGC29 1.50 1.79 1.68 1.59
BnCNGC5 0.23 0.67 0.40 0.20
BnCNGC31 0.49 2.49 1.37 0.45
BnCNGC33 1.86 1.67 2.55 7.20
BnCNGC36 0.72 0.21 0.31 0.14
BnCNGC7 2.84 3.53 3.42 1.53
BnCNGC1 1.74 2.32 2.52 3.08
BnCNGC39 0.64 1.34 1.15 1.42
BnCNGC11 0.47 0.31 0.31 0.90
BnCNGC35 4.15 1.78 5.82 1.25
BnCNGC41 3.41 3.07 3.13 0.73
BnCNGC48 10.25 17.10 12.49 1.61
BnCNGC9 4.33 2.21 4.62 0.35
BnCNGC8 3.43 2.86 3.71 12.18
BnCNGC34 0.03 0.04 2.31 18.35
BnCNGC38 2.04 4.54 3.49 4.11
BnCNGC16 2.12 1.77 2.49 0.15
BnCNGC47 3.84 5.64 5.52 1.17
BnCNGC15 6.09 4.69 10.52 4.13

Fig. 6

Relative expression profiles of BnCNGC genes in Brassica napus challenged with Sclerotinia sclerotiorum or PEG simulated drought derived from transcriptome data The squares with different colors in the picture represent the log2FPKM. A and B: the expression patterns of BnCNGC genes under PEG simulated drought stress form PRJNA273932 (A) and PRJNA389508 (B). PEG1 and PEG2 represent two plants with low respiratory efficiency and high NADH content under PEG simulated drought stress. C: NCBI Bioproject: PRJNA274853. The expression patterns of BnCNGC genes challenged with Sclerotinia sclerotiorum. D: the expression pattern of BnCNGC genes was screened from the transcriptome data of Brassica napus leaves infected by Sclerotinia sclerotiorum in our laboratory (unpublished data, Table S1)."

Fig. 7

Relative expression profiles of several BnCNGC genes in Brassica napus challenged with Sclerotinia sclerotiorum (S. s) or PEG simulated drought (sd) A: Sclerotinia sclerotiorum (S. s) infection; B: PEG simulated drought (sd). Error bar represents the standard deviation of three biological replicates. * indicates significant difference at the same time between the treatment and the control (P < 0.05), ns indicates no significant difference."

[1] Hu Z Y, Wang X F, Zhan G M, Liu G H, Hua W, Wang H Z. Unusually large oil bodies are highly correlated with lower oil content in Brassica napus. Plant Cell Rep, 2009, 28: 541-549.
doi: 10.1007/s00299-008-0654-2
[2] Lu C F, Napier J A, Clemente T E, Cahoon E B. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol, 2011, 22: 252-259.
doi: 10.1016/j.copbio.2010.11.006
[3] 张霖, 赵翔, 王亚静, 张骁. NO与Ca2+对蚕豆保卫细胞气孔运动的互作调控. 作物学报, 2009, 35: 1491-1499.
Zhang L, Zhao X, Wang Y J, Zhang X. Crosstalk of NO with Ca2+ in stomatal movement in Vicia faba guard cells. Acta Agron Sin, 2009, 35: 1491-1499 (in Chinese with English abstract).
[4] 苏炜华, 刘峰, 黄珑, 苏亚春, 黄宁, 凌辉, 吴期滨, 张华, 阙友雄. 甘蔗Ca2+/H+反向运转体基因的克隆与表达分析. 作物学报, 2016, 42: 1074-1082.
doi: 10.3724/SP.J.1006.2016.01074
Su W H, Liu F, Huang L, Su Y C, Huang N, Ling H, Wu Q B, Zhang H, Que Y X. Cloning and expression analysis of a Ca2+/H+ antiporter gene from sugarcane. Acta Agron Sin, 2016, 42: 1074-1082 (in Chinese with English abstract).
[5] Defalco T A, Marshall C B, Munro K, Kang H G, Moeder W, Ikura M, Snedden W A, Yoshioka K. Multiple calmodulin- binding sites positively and negatively regulate Arabidopsis cyclic nucleotide-gated channel 12. Plant Cell, 2016, 28: 1738.
[6] Talke I N, Blaudez D, Maathuis F J M, Sanders D. CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci, 2003, 8: 286-293.
pmid: 12818663
[7] Köhler C, Neuhaus G. Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett, 2000, 471: 133-136.
pmid: 10767408
[8] Sunkar R, Kaplan B, Bouché N, Arazi T, Fromm H. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J, 2010, 24: 533-542.
[9] Yoshioka K, Moeder W, Kang H G, Kachroo P, Masmoudi K, Berkowitz G, Klessiq D F. The chimeric cyclic nucleotide-gated ion channel AtCNGC11/12 activates multiple pathogen resistance responses. Plant Cell, 2006, 18: 747.
pmid: 16461580
[10] Fesenko E E, Kolesnikov S S, Lyubarsky A L. Induction by Cyclic-GMP of cationic conductance in plasma-membrane of retinal rod outer segment. Nature, 1985, 313: 310-313.
doi: 10.1038/313310a0
[11] Chin K, Moeder W, Yoshioka K. Biological roles of cyclic- nucleotide-gated ion channels in plants: what we know and don’t know about this 20 members ion channel family. Botany, 2009, 87: 668-677.
doi: 10.1139/B08-147
[12] Zhou L M, Lan W Z, Jiang Y Q, Fang W, Luan S. A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol Plant, 2014, 7: 369-376.
doi: 10.1093/mp/sst125
[13] Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15: 365-379.
doi: 10.1105/tpc.006999
[14] Ma W, Qi Z, Smigel A, Walker R K, Verma R, Berkowitz G A. Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci USA, 2009, 106: 20995-21000.
doi: 10.1073/pnas.0905831106
[15] Cukkemane A, Seifert R, Kaupp U B. Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem Sci, 2011, 36: 55-64.
doi: 10.1016/j.tibs.2010.07.004 pmid: 20729090
[16] Kakar K U, Nawaz Z, Kakar K, Ali E, Almoneafy A A, Ullah R, Ren X L, Shu Q Y. Comprehensive genomic analysis of the CNGC gene family in Brassica oleracea: novel insights into synteny, structures, and transcript profiles. BMC Genomics, 2017, 18: 869.
doi: 10.1186/s12864-017-4244-y
[17] Li Q Q, Yang S Q, Ren J, Ye X L, Liu Z Y. Genome-wide identification and functional analysis of the cyclic nucleotide-gated channel gene family in Chinese cabbage. 3 Biotech, 2019, 9: 114.
doi: 10.1007/s13205-019-1647-2
[18] Saand M A, Xu Y P, Munyampundu J P, Li W, Zhang X R, Cai X Z. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs. DNA Res, 2015, 22: 471-483.
doi: 10.1093/dnares/dsv029
[19] Nawaz Z, Kakar K U, Ullah R, Yu S Z, Zhang J, Shu Q Y, Ren X L. Genome-wide identification, evolution and expression analysis of cyclic nucleotide-gated channels in tobacco (Nicotiana tabacum L.). Genomics, 2019, 111: 142-158.
doi: 10.1016/j.ygeno.2018.01.010
[20] Nawaz Z, Kakar K, Saand M A, Shu Q Y. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genomics, 2014, 15: 853.
doi: 10.1186/1471-2164-15-853
[21] Kaplan B, Sherman T, Fromm H. Cyclic nucleotide-gated channels in plants. FEBS Lett, 2007, 581: 2237-2246.
pmid: 17321525
[22] 曾维英, 赖振光, 孙祖东, 杨守臻, 陈怀珠, 唐向民. 基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因. 作物学报, 2021, 47: 1460-1471.
doi: 10.3724/SP.J.1006.2021.04195
Zeng W Y, Lai Z G, Sun Z D, Yang S Z, Chen H Z, Tang X M. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq. Acta Agron Sin, 2021, 47: 1460-1471 (in Chinese with English abstract).
[23] Clough S J, Fengler K A, Yu I C, Lippok B, Smith R K, Bent A F. The Arabidopsis dnd1 “defense, no death” gene encodes a mutated cyclic nucleotide-gated ion channel. Proc Natl Acad Sci USA, 2000, 97: 9323-9330.
doi: 10.1073/pnas.150005697
[24] Foyer C, Vadassery J, Varma M, Kundu A, Meena M K, Jogawat A. Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. J Exp Bot, 2020, 71: 2752-2768.
doi: 10.1093/jxb/eraa028
[25] Chalhoub B, Denoeud F, Liu S Y, Parkin I A P, Tang H B, Wang X Y, Chiquet J, Belcram H, Tong C B, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M X, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G Y, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi D V H, Chalabi S, Hu Q, Fan C C, Tollenaere R, Lu Y H, Battail C, Shen J X, Sidebottom C H D, Wang X F, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z S, Sun F M, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X W, Meng J L, Ma J X, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y M, Hua W, Sharpe A G, Paterson A H, Guan C Y, Wincker P. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[26] Walker J M. The Proteomics Protocols Handbook. University of Hertfordshire, Hatfield, UK: Humana Press, 2005. pp 571-607.
[27] Paul H, Keun-Joon P, Takeshi O, Naoya F, Hajime H, Adams-Collier C J, Kenta N. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: 585-587.
[28] Hu B, Jin J P, Guo A Y, Zhang H, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 2015, 31: 1296-1297.
doi: 10.1093/bioinformatics/btu817
[29] Lescot M. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327.
doi: 10.1093/nar/30.1.325
[30] Mei J Q, Qian L, Disi J O, Yang X, Li Q, Li J, Frauen M, Cai D, Qian W. Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica, 2010, 177: 393-399.
doi: 10.1007/s10681-010-0274-0
[31] 胡承伟, 张学昆, 邹锡玲, 程勇, 曾柳, 陆光远. PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性. 中国油料作物学报, 2013, 35: 48-53.
Hu C W, Zhang X K, Zou X L, Cheng Y, Zeng L, Lu G Y. Root structure and drought tolerance of rapeseed under PEG imposed drought. Chin J Oil Crop Sci, 2013, 35: 48-53 (in Chinese with English abstract).
[32] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[33] Zelman A K, Dawe A, Berkowitz G A. Identification of cyclic nucleotide gated channels using regular expressions. Methods Mol Biol, 2013, 1016: 207-224.
doi: 10.1007/978-1-62703-441-8_14 pmid: 23681581
[34] Zelman A K, Dawe A, Gehring C, Berkowitz G A. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci, 2012, 3: 95.
doi: 10.3389/fpls.2012.00095 pmid: 22661976
[35] Mäser P, Thomine S, Schroeder J I, Ward J M, Guerinot M L. Phylogenetic relationships within cation transporter families of Arabidopsis1. J Plant Physiol, 2001, 126: 1646-1667.
doi: 10.1104/pp.126.4.1646
[36] Cheung F, Trick M, Drou N, Lim Y P, Park J Y, Kwon S J, Kim J A, Scott R, Pires J C, Paterson A H, Town C, Bancroft I. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell, 2009, 21: 1912-1928.
doi: 10.1105/tpc.108.060376 pmid: 19602626
[37] Verkest A, Byzova M, Martens C, Willems P, Block M D. Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes. J Plant Physiol, 2015, 168: 1338-1350.
doi: 10.1104/pp.15.00155
[38] Wang P, Yang C, Chen H, Luo L, Leng Q, Li S, Han Z, Li X, Song C, Zhang X, Wang D. Exploring transcription factors reveals crucial members and regulatory networks involved in different abiotic stresses in Brassica napus L. BMC Plant Biol, 2018, 18: 202.
doi: 10.1186/s12870-018-1417-z pmid: 30231862
[39] Wu J, Zhao Q, Yang Q, Liu H, Li Q, Yi X, Cheng Y, Guo L, Fan C, Zhou Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep, 2016, 6: 19007.
doi: 10.1038/srep19007
[40] Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A, Zhao M X, Ma J X, Yu J Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T J, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S, Yang L M, Min J M, Zhang D, Jin D C, Li W S, Belcram H, Tu J X, Guan M, Qi C K, Du D Z, Li J, Jiang L C, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y H, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T H, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z, Liu X, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 23: 3930.
[41] 汪影, 张昌伟, 吕善武, 侯喜林. 大白菜BrCNGC全基因组鉴定及其表达分析. 南京农业大学学报, 2018, 41: 994-1002.
Wang Y, Zhang C W, Lyu S W, Hou X L. Genome-wide identification and expression analysis of BrCNGC in Chinese cabbage. J Nanjing Agric Univ, 2018, 41: 994-1002 (in Chinese with English abstract).
[42] Duszyn M, Swiezawska B, Szmidt-Jaworska A, Jaworski K. Cyclic nucleotide gated channels (CNGCs) in plant signaling- current knowledge and perspectives. J Plant Physiol, 2019, 241: 153035.
doi: 10.1016/j.jplph.2019.153035
[43] Bouche N, Yellin A, Snedden W A, Fromm H. Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol, 2005, 56: 435-466.
doi: 10.1146/arplant.2005.56.issue-1
[44] Cherel I. Regulation of K + channel activities in plants: from physiological to molecular aspects. J Exp Bot, 2004, 55: 337-351.
doi: 10.1093/jxb/erh028
[45] Saand M A, Xu Y P, Li W, Wang J P, Cai X Z. Phylogeny and evolution of plant cyclic nucleotide-gated ion channel (CNGC) gene family and functional analyses of tomato CNGCs. Front Plant Sci, 2015, 6: 303.
[46] Harmer S L, Hogenesch J B, Straume M, Chang H S, Han B, Zhu T, Wang X, Kreps J A, Kay S A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 2000, 290: 2110-2113.
pmid: 11118138
[47] Jeffares D C, Penkett C J, Hler J B. Rapidly regulated genes are intron poor. Trends Genet, 2008, 24: 375-378.
doi: 10.1016/j.tig.2008.05.006 pmid: 18586348
[1] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[2] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[3] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[6] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[7] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
[8] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[9] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[10] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[11] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
[12] WEI Li-Juan, SHEN Shu-Lin, HUANG Xiao-Hu, MA Guo-Qiang, WANG Xi-Tong, YANG Yi-Ling, LI Huan-Dong, WANG Shu-Xian, ZHU Mei-Chen, TANG Zhang-Lin, LU Kun, LI Jia-Na, QU Cun-Min. Genome-wide association analysis reveals zinc-tolerant loci of rapeseed at germination stage [J]. Acta Agronomica Sinica, 2021, 47(2): 262-274.
[13] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
[14] WANG Rui-Li, WANG Liu-Yan, LEI Wei, WU Jia-Yi, SHI Hong-Song, LI Chen-Yang, TANG Zhang-Lin, LI Jia-Na, ZHOU Qing-Yuan, CUI Cui. Screening candidate genes related to aluminum toxicity stress at germination stage via RNA-seq and QTL mapping in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2407-2422.
[15] WANG Zhen, ZHANG Xiao-Li, MENG Xiao-Jing, YAO Meng-Nan, MIU Wen-Jie, YUAN Da-Shuang, ZHU Dong-Ming, QU Cun-Min, LU Kun, LI Jia-Na, LIANG Ying. Identification of upstream regulators for mitogen-activated protein kinase 7 gene (BnMAPK7) in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(12): 2379-2393.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!