Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1372-1388.doi: 10.3724/SP.J.1006.2022.12031
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
TIAN Tian(), CHEN Li-Juan, HE Hua-Qin*()
[1] |
Deng Y W, Zhai K, Xie Z, Yang D Y, Zhu X D, Liu J Z, X W. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017, 355: 962-965.
doi: 10.1126/science.aai8898 |
[2] |
Sharma T R, Madhav M S, Singh B K, Shanker P, Jana T K, Dalal V. High resolution mapping, cloning and molecular characterization of the Pi-k(h) gene of rice, which confers resistance to Magnaporthe grisea. Mol Genet Genom, 2005, 274: 569-578.
doi: 10.1007/s00438-005-0035-2 |
[3] |
Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M R, Kulkarni R, Xu J R, Pan H Q. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434: 980-986.
doi: 10.1038/nature03449 |
[4] | Bagali P G, Hittalmani S, Shashidhar S Y, Shashidhar H E. Identification of DNA markers linked to partial resistance for blast disease in rice across four locations. In: Tharreau D, Lebrun M H, Talbot N J, Notteghem J L, eds. Advances in Rice Blast Research. Dordrecht: Springer Netherlands, 2000. pp 34-42. |
[5] |
Urso S, Desiderio F, Biselli C, Bagnaresi P, Crispino L, Piffanelli P, Abbruscato P, Assenza F, Guarnieri G, Cattivelli L. Genetic analysis of durable resistance to Magnaporthe oryzae in the rice accession Gigante Vercelli identified two blast resistance loci. Mol Genet Genom, 2016, 291: 17-32.
doi: 10.1007/s00438-015-1085-8 |
[6] |
Wu J L, Fan Y Y, Li D B, Zheng K L, Leung H, Zhuang J Y. Genetic control of rice blast resistance in the durably resistant cultivar Gumei 2 against multiple isolates. Theor Appl Genet, 2005, 111: 50-56.
pmid: 15856160 |
[7] |
Swamy B P M, Vikram P, Dixit S, Ahmed H U, Kumar A. Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics, 2011, 12: 319-337.
doi: 10.1186/1471-2164-12-319 |
[8] |
Islam M S, Ontoy J, Subudhi P K. Meta-analysis of quantitative trait loci associated with seedling-stage salt tolerance in rice (Oryza sativa L.). Plants, 2019, 8: 33-50.
doi: 10.3390/plants8020033 |
[9] |
Goffinet B, Gerber S. Quantitative trait loci: a meta-analysis. Genetics, 2000, 155: 463-473.
doi: 10.1093/genetics/155.1.463 pmid: 10790417 |
[10] |
Yin Z G, Qi H D, Chen Q S, Zhang Z G, Jiang H W, Zhu R S, Hu Z B, Wu X X, Li C D, Zhang Y. Soybean plant height QTL mapping and meta-analysis for mining candidate genes. Plant Breed, 2017, 136: 688-698.
doi: 10.1111/pbr.2017.136.issue-5 |
[11] |
Courtois B, Ahmadi N, Khowaja F S, Price A H, Rami J, Frouin J, Hamelin C, Ruiz M. Rice root genetic architecture: meta-analysis from a drought QTL database. Rice, 2009, 2: 115-128.
doi: 10.1007/s12284-009-9028-9 |
[12] |
Wang B H, Ebbole D J, Wang Z H. The arms race between Magnaporthe oryzae and rice: diversity and interaction of Avr and R genes. J Integr Agric, 2017, 16: 2746-2760.
doi: 10.1016/S2095-3119(17)61746-5 |
[13] |
Priyanka J, Singh P K, Kapoor R, Khanna A, Solanke A U, Krishnan S G, Singh A K, Sharma V, Sharma T R. Understanding host-pathogen interactions with expression profiling of NILs carrying rice-blast resistance Pi9 gene. Front Plant Sci, 2017, 8: 93-113.
doi: 10.3389/fpls.2017.00093 pmid: 28280498 |
[14] |
Kong W, Zhang C, Qiang Y, Zhong H, Zhao G, Li Y. Integrated RNA-Seq analysis and Meta-QTLs mapping provide insights into cold stress response in rice seedling roots. Int J Mol Sci, 2020, 21: 4615-4628.
doi: 10.3390/ijms21134615 |
[15] |
Delfino P, Zenoni S, Imanifard Z, Tornielli G B, Bellin D. Selection of candidate genes controlling version time in grapevine through integration of Meta-QTL and transcriptomic data. BMC Genom, 2019, 20: 739-757.
doi: 10.1186/s12864-019-6124-0 |
[16] |
Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64.
pmid: 10417726 |
[17] |
Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol, 2007, 10: 366-371.
doi: 10.1016/j.pbi.2007.04.020 |
[18] |
Darvasi A, Soller M. A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet, 1997, 27: 125-132.
pmid: 9145551 |
[19] |
Guo B, Sleper D A, Lu P, Shannon J G, Nguyen H, Arelli P R. QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci, 2006, 46: 595-602.
doi: 10.2135/cropsci2005.04-0036-2 |
[20] |
Goldberg D, Victor J, Gardner E, Gardner D. Spike train analysis toolkit: enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 2009, 7: 165-178.
doi: 10.1007/s12021-009-9049-y pmid: 19475519 |
[21] | Kroll K, Mokaram N, Pelletier A, Frankhouser D, Westphal M, Stump P, Stump C, Bundschuh R, Blachly J, Yan P. Quality control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014, 13: 7-14. |
[22] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 |
[23] |
Pertea M, Kim D, Pertea G, Leek J, Salzberg S. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016, 11: 1650-1667.
doi: 10.1038/nprot.2016.095 |
[24] |
Liao Y, Smyth G, Shi W. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2013, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 |
[25] |
Akamatsu A, Wong H L, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y, Shimamoto K. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microb, 2013, 13: 465-476.
doi: 10.1016/j.chom.2013.03.007 |
[26] |
Smita S, Katiyar A, Lenka S K, Dalal M, Kumar A, Mahtha S K, Yadav G, Chinnusamy V, Pandey D M, Bansal K C. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis. Funct Integr Genom, 2020, 20: 29-49.
doi: 10.1007/s10142-019-00697-w |
[27] |
Chin C H, Chen S H, Wu H H, Ho C W, Ko M T, Lin C Y. CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol, 2014, 8: 11-15.
doi: 10.1186/1752-0509-8-11 |
[28] |
Wang G L, Mackill D J, Bonman J M, Mccouch S R, Champoux M C, Nelson R J. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics, 1994, 136: 1421-1434.
doi: 10.1093/genetics/136.4.1421 pmid: 7912216 |
[29] |
Fukuoka S, Okuno K. QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet, 2001, 103: 185-190.
doi: 10.1007/s001220100611 |
[30] | 樊叶杨, 吴建利, 庄杰云, Leung H, 郑康乐. 应用候选基因定位水稻抗稻瘟病QTL. 中国水稻科学, 2001, 15: 253-256. |
Fan Y Y, Wu J L, Zhuang J Y, Leung H, Zheng K L. Mapping of QTL for rice blast resistance by using candidate genes. Chin J Rice Sci, 2001, 15: 253-256 (in Chinese with English abstract). | |
[31] |
Miyamoto M, Yano M, Hirasawa H. Mapping of quantitative trait loci conferring blast field resistance in the Japanese upland rice variety Kahei. Breed Sci, 2001, 51: 257-261.
doi: 10.1270/jsbbs.51.257 |
[32] |
Sirithunya P, Tragoonrung S, Vanavichit A, Pain N, Vongsaprom C, Toojinda T. Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (Oryza sativa). DNA Res, 2002, 9: 79-88.
pmid: 12168952 |
[33] |
Tabien R, Li Z K, Paterson H, Marchetti A, Stansel W, Pinson S. Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. Theor Appl Genet, 2002, 105: 313-324.
pmid: 12582534 |
[34] |
Zenbayashi K S, Ashizawa T, Tani T, Koizumi S. Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. Theor Appl Genet, 2002, 104: 547-552.
pmid: 12582657 |
[35] | Loan L C, Du P V, Li Z K. Identification of genes conferring resistance to some Philippine and Vietnamese races of blast. Omonrice, 2003, 11: 49-62. |
[36] |
Chen H L, Wang S P, Xing Y Z, Xu C G, Hayes P M, Zhang Q F. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA, 2003, 100: 2544-2549.
doi: 10.1073/pnas.0437898100 |
[37] |
Sallaud C, Lorieux M, Roumen E, Tharreau D, Berruyer R, Svestasrani P. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. Theor Appl Genet, 2003, 106: 794-803.
pmid: 12647052 |
[38] |
Talukder Z I, Tharreau D, Price A H. Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytol, 2004, 162: 197-209.
doi: 10.1111/nph.2004.162.issue-1 |
[39] |
Talukder Z I, McDonald A J S, Price A H. Loci controlling partial resistance to rice blast do not show marked QTL × environment interaction when plant nitrogen status alters disease severity. New Phytol, 2005, 168: 455-464.
pmid: 16219084 |
[40] |
Xu J C, Wang J L, Ling Z Z, Zhu L H. Analysis of rice blast resistance genes by QTL mapping. Sci Bull, 2004, 49: 337-342.
doi: 10.1007/BF02900315 |
[41] |
Sato H, Takeuchi Y, Hirabayashi H, Nemoto H, Hirayama M, Kato H, Imbe T, Ando I. Mapping QTLs for field resistance to rice blast in the Japanese upland rice variety Norin12. Breed Sci, 2006, 56: 415-418.
doi: 10.1270/jsbbs.56.415 |
[42] | Lopez-Gerena J. Mapping QTL Controlling Durable Resistance to Rice Blast in the Cultivar Oryza Llanos 5. PhD Dissertation of Kansas State University, Manhattan, USA, 2006. |
[43] |
Noenplab A, Vanavichit A, Toojinda T, Sirithunya P, Tragoonrung S, Sriprakhon S, Vongsaprom C. QTL mapping for leaf and neck blast resistance in Khao DawkMalIL 105 and Jao Hom Nin recombinant inbred lines. Sci Asia, 2006, 32: 133-142.
doi: 10.2306/scienceasia1513-1874.2006.32.133 |
[44] |
Ballini E, Morel J, Droc G, Price A H, Courtois B, Notteghem J, Tharreau D. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact, 2008, 21: 859-868.
doi: 10.1094/MPMI-21-7-0859 |
[45] | Cho Y C, Kwon S W, Suh J P, Kim J J, Lee J H, Roh J H, Oh M K, Kim M K, Ahn S N, Koh H J, Yang S J, Kim Y G. QTLs identification and confirmation of field resistance to leaf blast in temperate japonica rice (Oryza sativa L.). J Crop Sci Biotechnol, 2008, 11: 269-276. |
[46] |
Shi X L, Wang J F, Bao Y M, Li P F, Xie L J, Huang J, Zhang H S. Identification of the quantitative trait loci in japonica rice landrace Heikezijing responsible for broad-spectrum resistance to rice blast. Phytopathology, 2010, 100: 822-829.
doi: 10.1094/PHYTO-100-8-0822 |
[47] |
Kongprakhon P, Cuestamarcos A, Hayes P M, Hongtrakul V, Sirithunya P, Toojinda T, Sangduen N. Four QTL in rice associated with broad spectrum resistance to blast isolates from rice and barley. J Phytopathol, 2010, 158: 125-131.
doi: 10.1111/jph.2009.158.issue-2 |
[48] |
Jia Y L, Liu G. Mapping quantitative trait loci for resistance to rice blast. Phytopathology, 2011, 101: 176-181.
doi: 10.1094/PHYTO-06-10-0151 pmid: 20879845 |
[49] |
Lestari P, Trijatmiko K R, Reflinur, Warsun A, Tasliah, Ona I, Cruz C V, Bustamam M. Mapping quantitative trait loci conferring blast resistance in upland indica rice (Oryza sativa L.). J Crop Sci Biotechnol, 2011, 14: 57-63.
doi: 10.1007/s12892-010-0030-y |
[50] | Sabouri H, Sabouri A, Jafarzadeh M R, Mollashahi M. Detection of QTLs controlling field blast resistance in rice (Oryza sativa L.). Plant Omics, 2011, 4: 1-5. |
[51] |
Korinsak S, Sirithunya P, Meakwatanakarn P, Sarkarung S, Vanavichit A, Toojinda T. Changing allele frequencies associated with specific resistance genes to leaf blast in backcross introgression lines of Khao Dawk Mali 105 developed from a conventional selection program. Field Crops Res, 2011, 122: 32-39.
doi: 10.1016/j.fcr.2011.02.005 |
[52] |
Wang Y, Wang D, Deng X J, Liu J L, Sun P Y, Liu Y, Huang H M, Jiang N, Kang H X, Ning Y. Molecular mapping of the blast resistance genes Pi2-1 and Pi51(t) in the durably resistant rice ‘Tianjingyeshengdao’. Phytopathology, 2012, 102: 779-786.
doi: 10.1094/PHYTO-03-12-0042-R pmid: 22779744 |
[53] |
Rahim H A, Bhuiyan M A, Lim L S, Sabu K K, Saad A, Azhar M, R W. Identification of quantitative trait loci for blast resistance in BC2F3 and BC2F5 advanced backcross families of rice. Genet Mol Res, 2012, 11: 3277-3289.
doi: 10.4238/2012.September.12.11 pmid: 23079822 |
[54] | Yang X L, Qi H X, Yin D S, Zeng F S, Zhang S, Yu D Z. Mapping QTLs for rice blast resistance in DH line derived from Muwanggu and E’wan 8. J Plant Pathol, 2012, 42: 600-607. |
[55] |
Ashkani S, Rafii M Y, Rahim H A, Latif M A. Mapping of the quantitative trait locus (QTL) conferring partial resistance to rice leaf blast disease. Biotechnol Lett, 2013, 35: 799-810.
doi: 10.1007/s10529-012-1130-1 pmid: 23315158 |
[56] |
Ashkani S, Rafii M Y, Rahim H A, Latif M A. Genetic dissection of rice blast resistance by QTL mapping approach using an F3 population. Mol Biol Rep, 2013, 40: 2503-2515.
doi: 10.1007/s11033-012-2331-3 pmid: 23203411 |
[57] |
Huan J, Bao Y M, Wu Y Y, Zeng G Y, He W W, Dang L L, Wang J F, Zhang H S. Identification of quantitative trait loci conferring blast resistance in Bodao, a japonica rice landrace. Genet Mol Res, 2014, 13: 9756-9765.
doi: 10.4238/2014.November.27.3 pmid: 25501185 |
[58] |
Mizobuchi R, Sato H, Fukuoka S, Yamamoto S, Kawasakitanaka A, Fukuta Y. Mapping of a QTL for field resistance to blast (Pyricularia oryzae Cavara) in ingngoppor-tinawon, a rice (Oryza sativa L.) landrace from the Philippines. Jpn Agric Res Quart, 2014, 48: 425-431.
doi: 10.6090/jarq.48.425 |
[59] | Liu J, Li Z, Gao C, Zhang Q L, He Y Q. QTL mapping for broad-spectrum resistance to blast of rice using an advanced backcross population. Mol Plant Breed, 2015, 13: 2155-2162. |
[60] | Wu Y Y, He J B, Li A H, Fang N Y, He W W, Dang L L, Zeng G Y, Huang J, Bao Y M, Zhang H S. Population structure analysis and association mapping of blast resistance in indica rice (Oryza sativa L.) landraces. Genet Mol Res, 2016, 15: 1-11. |
[61] | Fang N Y, Wang R S, He W W, Yin C F, Guan C H, Chen H, Huang J, Wang J F, Bao Y M, Zhang H S. QTL mapping of panicle blast resistance in japonica landrace Heikezijing and its application in rice breeding. Mol Breed, 2016, 12: 18-29. |
[62] |
Mandal L, Verma S K, Kotasthane A, Verulkar S. Identification of quantitative trait loci for leaf blast resistance of rice (Oryza sativa L.). Biotechnol J, 2017, 19: 1-14.
doi: 10.1016/0168-1656(91)90071-3 |
[63] |
Nagaoka I, Sasahara H, Tabuchi H, Shigemune A, Matsushita K, Maeda H, Goto A, Fukuoka S, Ando T, Miura K. Quantitative trait loci analysis of blast resistance in Oryza sativa L. ‘Hokuriku 193’. Breed Sci, 2017, 67: 159-164.
doi: 10.1270/jsbbs.16099 |
[64] |
He W W, Fang N Y, Wang R S, Wu Y Y, Zeng G Y, Guan C H, Chen H, Huang J, Wang J F, Bao Y M. Fine mapping of a new race-specific blast resistance gene Pi-hk2 in japonica Heikezijing from Taihu region of China. Phytopathology, 2017, 107: 84-91.
doi: <空> |
[65] |
Chen X L, Jia Y L, Jia M H, Shannon R M, Pinson S, Wang X Y, Wu B M. Functional interactions between major rice blast resistance genes, Pi-ta and Pi-b, and minor blast resistance QTLs. Phytopathology, 2018, 108: 1095-1103.
doi: 10.1094/PHYTO-02-18-0032-R |
[66] |
Fang N Y, Wei X R, Shen L T, Yu Y, Li M Y, Yin C F, He W W, Guan C H, Chen H, Zhang H S. Fine mapping of a panicle blast resistance gene Pb-bd1 in japonica landrace Bodao and its application in rice breeding. Rice, 2019, 12: 18-30.
doi: 10.1186/s12284-019-0275-0 |
[67] |
Jiang H C, Feng Y T, Qiu L, Gao G J, Zhang Q L, He Y Q. Identification of blast resistance QTLs based on two advanced backcross populations in rice. Rice, 2020, 13: 31-32.
doi: 10.1186/s12284-020-00392-6 |
[68] |
Zhu M, Wang L, Pan Q. Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses. Phytopathology, 2004, 94: 515-519.
doi: 10.1094/PHYTO.2004.94.5.515 |
[69] |
Tabien R E, Li Z, Paterson A H, Marchetti M A, Stansel J W, Pinson S R M, Park W D. Mapping of four major rice blast resistance genes from Lemont and Teqing and evaluation of their combinatorial effect for field resistance. Theor Appl Genet, 2000, 101: 1215-1225.
doi: 10.1007/s001220051600 |
[70] | Kwon S W, Cho Y C, Kim Y G, Suh J P, Jeung J U, Roh J H, Lee S K, Jeon J S, Yang S J, Lee Y T. Development of near-isogenic japonica rice lines with enhanced resistance to Magnaporthe grisea. Mol Cells, 2008, 25: 407-416. |
[71] |
Terashima T, Fukuoka S, Saka N, Kudo S. Mapping of a blast field resistance gene Pi39(t) of elite rice strain Chubu 111. Plant Breed, 2008, 127: 485-489.
doi: 10.1111/pbr.2008.127.issue-5 |
[72] |
Matsushita K, Yasuda N, Thinlay, Koizumi S, Ashizawa T, Sunohara Y, Iida S, Ideta O, Maeda H, Fujita Y. A novel blast resistance locus in a rice (Oryza sativa L.) cultivar, Chumroo, of Bhutan. Euphytica, 2011, 180: 273-280.
doi: 10.1007/s10681-011-0405-2 |
[73] |
Jeung J U, Kim B R, Cho Y C, Han S S, Moon H P, Lee Y T, Jena K K. A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theor Appl Genet, 2007, 115: 1163-1177.
doi: 10.1007/s00122-007-0642-x pmid: 17909744 |
[74] |
Koide Y, Telebanco-Yanoria M J, Fukuta Y, Kobayashi N. Detection of novel blast resistance genes, Pi58(t) and Pi59(t), in a Myanmar rice landrace based on a standard differential system. Mol Breed, 2013, 32: 241-252.
doi: 10.1007/s11032-013-9865-5 |
[75] |
Lee S, Wamishe Y, Jia Y, Liu G, Jia M H. Identification of two major resistance genes against race IE-1k of Magnaporthe oryzae in the indica rice cultivar Zhe 733. Mol Breed, 2009, 24: 127-134.
doi: 10.1007/s11032-009-9276-9 |
[76] |
Lin F, Liu Y, Wang L, Liu X, Pan Q. A high-resolution map of the rice blast resistance gene Pi15 constructed by sequence-ready markers. Plant Breed, 2007, 126: 287-290.
doi: 10.1111/pbr.2007.126.issue-3 |
[77] |
Gowda M, Roy-Barman S, Chattoo B B. Molecular mapping of a novel blast resistance gene Pi38 in rice using SSLP and AFLP markers. Plant Breed, 2006, 125: 596-599.
doi: 10.1111/pbr.2006.125.issue-6 |
[78] |
Zenbayashi S K, Fukuoka S, Katagiri S, Fujisawa M, Matsumoto T, Ashizawa T, Koizumi S. Genetic and physical mapping of the partial resistance gene, Pi34, to blast in rice. Phytopathology, 2007, 97: 598-602.
doi: 10.1094/PHYTO-97-5-0598 pmid: 18943579 |
[79] |
Huang H, Huang L, Feng G, Wang S, Wang Y, Liu J, Jiang N, Yan W, Xu L, Sun P, Li Z, Pan S, Liu X, Xiao Y, Liu E, Dai L, Wang G L. Molecular mapping of the new blast resistance genes Pi47 and Pi48 in the durably resistant local rice cultivar Xiangzi 3150. Phytopathology, 2011, 101: 620-626.
doi: 10.1094/PHYTO-08-10-0209 |
[80] |
Hayashi K, Yoshida H, Ashikawa I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet, 2006, 113: 251-260.
pmid: 16791691 |
[81] |
Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011, 122: 1017-1128.
doi: 10.1007/s00122-010-1506-3 pmid: 21153625 |
[82] |
Chen D H, Viña d, Inukai M, Mackill T D J, Ronald P C, Nelson R J. Molecular mapping of the blast resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Theor Appl Genet, 1999, 98: 1046-1053.
doi: 10.1007/s001220051166 |
[83] |
Fuentes J L, Correa F J, Escobar F, Prado G, Aricapa G, Duque M C, Tohme J. Identification of microsatellite markers linked to the blast resistance gene Pi-1(t) in rice. Euphytica, 2008, 160: 295-304.
doi: 10.1007/s10681-007-9497-0 |
[84] |
Hua L, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125: 1047-1055.
doi: 10.1007/s00122-012-1894-7 |
[85] |
Li L Y, Wang L, Jing J X, Li Z Q, Lin F, Huang L F, Pan H Q. The Pikm gene, conferring stable resistance to isolates of Magnaporthe oryzae, was finely mapped in a crossover-cold region on rice chromosome 11. Mol Breed, 2007, 20: 179-188.
doi: 10.1007/s11032-007-9118-6 |
[86] |
Sun P, Liu J, Wang Y, Jiang N, Wang S, Dai Y, Gao J, Li Z, Pan S, Wang D. Molecular mapping of the blast resistance gene Pi49 in the durably resistant rice cultivar Mowanggu. Euphytica, 2013, 192: 45-54.
doi: 10.1007/s10681-012-0829-3 |
[87] | 李培富, 史晓亮, 王建飞, 刘超, 张红生. 太湖流域粳稻地方品种黑壳子粳抗稻瘟病基因的分子定位. 中国水稻科学, 2007, 21: 579-584. |
Li, P F, Shi, X L, Wang J F, Liu C, Zhang H S. Molecular mapping of rice blast resistance gene in a japonica landrace Heikezijing from the Taihu lake area, China. Chin J Rice Sci, 2007, 21: 579-584 (in Chinese with English abstract). | |
[88] |
Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald P C, Harrington S E. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251-1274.
doi: 10.1093/genetics/138.4.1251 pmid: 7896104 |
[89] | Aglawe S B, Bangale U, Ramadevi S J, Balija V, Pal B V, Kumar S S, Kumar S P, Kumar S, Maddamshetty S P, Maganti S M. Identification of novel QTLs conferring field resistance for rice leaf and neck blast from an unique landrace of India. Gene Rep, 2017, 7: 35-42. |
[90] |
Liu Y, Qi X, Gealy D R, Olsen K M, Caicedo A L, Jia Y. QTL analysis for resistance to blast disease in U.S. Weedy Rice. Mol Plant-Microbe Interact, 2015, 28: 834-844.
doi: 10.1094/MPMI-12-14-0386-R |
[91] |
Wang Y J, Xu J, Deng D X, Ding H D, Bian Y L, Yin Z T, Wu Y R, Zhou B, Zhao Y. A comprehensive meta-analysis of plant morphology, yield, stay-green, and virus disease resistance QTL in maize (Zea mays L.). Planta, 2016, 243: 459-471.
doi: 10.1007/s00425-015-2419-9 |
[92] |
Chen M S, Presting G G, Barbazuk W B, Goicoechea J L, Blackmon B P, Fang G C, Kim H, Frisch D, Yu Y, Sun S. An integrated physical and genetic map of the rice genome. Plant Cell, 2002, 14: 537-545.
doi: 10.1105/tpc.010485 |
[93] | Qi Z M, Zhang Z G, Wang Z Y, Yu J Y, Qin H T, Mao X R, Jiang H W, Xin D W, Yin Z G, Zhu R S. Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development. Plant Cell Environ, 2018, 41: 2109-2127. |
[94] |
An Y, Chen L, Li Y X, Li C, Shi Y, Song Y, Zhang D, Li Y, Wang T. Candidate loci for the kernel row number in maize revealed by a combination of transcriptome analysis and regional association mapping. BMC Plant Biol, 2019, 19: 201-212.
doi: 10.1186/s12870-019-1811-1 |
[95] |
Ma H G, Li J, Ma L, Wang P, Xue Y, Yin P, Xiao J, Wang S. Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase OsEDR1 and inhibits its scaffold function to promote rice disease resistance. Mol Plant, 2021, 14: 620-632.
doi: 10.1016/j.molp.2021.01.008 |
[96] |
Amorim L, Fonseca, da Fonseca Dos Santos R, Neto J, Guida-Santos M, Crovella S, Benko A M. Transcription factors involved in plant resistance to pathogens. Curr Protein Pept Sci, 2017, 18: 335-351.
doi: 10.2174/1389203717666160619185308 |
[97] |
Li W T, Zhu Z W, Chern M, Yin J J, Yang C, Ran L, Cheng M P, He M, Wang K, Wang J. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017, 170: 114-126.
doi: 10.1016/j.cell.2017.06.008 |
[98] |
Cao W, Chu R, Zhang Y, Luo J, Su Y, Liu J, Zhang H, Wang J, Bao Y. OsJAMyb, a R2R3-type MYB transcription factor enhanced blast resistance in transgenic rice. Physiol Mol Plant Pathol, 2015, 92: 154-160.
doi: 10.1016/j.pmpp.2015.04.008 |
[99] |
Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot, 2013, 64: 5085-5097.
doi: 10.1093/jxb/ert298 pmid: 24043853 |
[100] |
Yao S, Yang Z, Yang R, Huang Y, Guo G, Kong X, Lan Y, Zhou T, Wang H, Wang W, Cao X, Wu J, Li Y. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice. Mol Plant, 2019, 12: 1114-1122.
doi: 10.1016/j.molp.2019.04.010 |
[101] |
Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J E, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009, 28: 431-439.
doi: 10.1007/s10059-009-0161-5 pmid: 19904499 |
[102] |
Heo J B, Yi Y B, Bahk J D. Rice GDP dissociation inhibitor 3 inhibits OsMAPK2 activity through physical interaction. Biochem Biophys Res Commun, 2011, 414: 814-819.
doi: 10.1016/j.bbrc.2011.10.018 |
[103] |
Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 2003, 15: 745-759.
doi: 10.1105/tpc.008714 |
[104] |
Xu M R, Huang L Y, Zhang F, Zhu L H, Zhou Y L, Li Z K. Genome-wide phylogenetic analysis of stress-activated protein kinase genes in rice (OsSAPKs) and expression profiling in response to Xanthomonas oryzae pv. oryzicola infection. Plant Mol Biol, 2013, 31: 877-885.
doi: 10.1007/BF00019474 |
[105] |
Zhou X, Peng C, Zhu X, Yin J, Li W, He M, Wang J, Chern M, Yuan C, Wu W, Ma W, Qin P, Ma B, Wu X, Li S, Ronald P, Chen X. Four receptor-like cytoplasmic kinases regulate development and immunity in rice. Plant Cell Environ, 2015, 39: 1381-1392.
doi: 10.1111/pce.12696 |
[106] |
Ao Y, Li Z Q, Feng D R, Xiong F, Liu J, Li J F, Wang M L, Wang J F, Liu B, Wang H B. OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J, 2014, 80: 1072-1084.
doi: 10.1111/tpj.12710 |
[107] |
Mitsuhara I, Iwai T, Seo S, Yanagawa Y, Kawahigasi H, Hirose S, Ohkawa Y, Ohashi Y. Characteristic expression of twelve rice PR1 family genes in response to pathogen infection, wounding, and defense-related signal compounds. Mol Genet Genomics, 2008, 279: 415-427.
doi: 10.1007/s00438-008-0322-9 pmid: 18247056 |
[108] |
Li W, Wang F, Wang J, Fan F, Zhu J, Yang J, Liu F, Zhong W. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice. PLoS One, 2015, 10: e0119867.
doi: 10.1371/journal.pone.0119867 |
[109] |
Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S, Ji S, Liu R, Xu L, Zheng H, Zhou Y, Zhang X, Cao X, Xie L, Wu Z, Liu Y. Viral-inducible argonaute 18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. eLife, 2015, 4: e05733.
doi: 10.7554/eLife.05733 |
[110] | Cho S, Shin S, Kim K, Kim Y, Eun M, Cho B. Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1 (OsNDPK1) in rice plants upon infection with bacterial pathogens. Mol Cells, 2004, 18: 390-395. |
[111] |
Xu F, Tang J, Gao S, Cheng X, Du L, Chu C. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. Plant J, 2019, 100: 1036-1051.
doi: 10.1111/tpj.v100.5 |
[112] |
Day R B, Tanabe S, Koshioka M, Mitsui T, Itoh H, Ueguchi T M, Matsuoka M, Kaku H, Shibuya N, Minami E. Two rice GRAS family genes responsive to N-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells. Plant Mol Biol, 2004, 54: 261-272.
doi: 10.1023/B:PLAN.0000028792.72343.ee |
[113] |
Gui J, Zheng S, Liu C, Shen J, Li J, Li L. OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev Cell, 2016, 38: 201-213.
doi: 10.1016/j.devcel.2016.06.011 |
[114] |
Peng Y, Bartley L, Chen X, Dardick C, Chern M, Ruan R, Canlas P, Ronald P. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant, 2008, 1: 446-458.
doi: 10.1093/mp/ssn024 |
[115] |
Ke Y, Liu H, Li X, Xiao J, Wang S. Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions. Plant J, 2014, 78: 619-631.
doi: 10.1111/tpj.12500 |
[116] |
Wong H L, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol, 2004, 135: 1447-1456.
doi: 10.1104/pp.103.036384 |
[117] |
Zhang C, Ding Z, Kang C W, Yang L, Li Y, Yang Z, Shi S, Liu X, Zhao S, Yang Z, Wang Y, Zheng L, Wei J, Zhen G D, Zhang A, Miao H, Liu Y, Wu Z, Wu J. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol Plant, 2016, 9: 1302-1314.
doi: S1674-2052(16)30127-7 pmid: 27381440 |
[118] |
Zhang X, Li D, Zhang H, Wang X, Zheng Z, Song F. Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses. Mol Biol Rep, 2010, 37: 653-660.
doi: 10.1007/s11033-009-9507-5 |
[1] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[2] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[3] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[4] | WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746. |
[5] | ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352. |
[6] | ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39. |
[7] | ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471. |
[8] | JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227. |
[9] | CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123. |
[10] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[11] | ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133. |
[12] | XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902. |
[13] | LIU Chang, MENG Yun, LIU Jin-Dong, WANG Ya-Mei, Guoyou Ye. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(10): 2036-2044. |
[14] | LI Jing-Cai, WANG Qiang-Lin, SONG Wei-Wu, HUANG Wei, XIAO Gui-Lin, WU Cheng-Jin, GU Qin, SONG Bo-Tao. Association analysis of dormancy QTL in tetraploid potato via candidate gene markers [J]. Acta Agronomica Sinica, 2020, 46(9): 1380-1387. |
[15] | HAN Zhan-Yu,GUAN Xian-Yue,ZHAO Qian,WU Chun-Yan,HUANG Fu-Deng,PAN Gang,CHENG Fang-Min. Individual and combined effects of air temperature at filling stage and nitrogen application on storage protein accumulation and its different components in rice grains [J]. Acta Agronomica Sinica, 2020, 46(7): 1087-1098. |
|