Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (12): 2379-2393.doi: 10.3724/SP.J.1006.2021.04280
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
WANG Zhen1,2(), ZHANG Xiao-Li1,2(), MENG Xiao-Jing1,2, YAO Meng-Nan1,2, MIU Wen-Jie1,2, YUAN Da-Shuang1,2, ZHU Dong-Ming1,2, QU Cun-Min1,2, LU Kun1,2, LI Jia-Na1,2,*(), LIANG Ying1,2,*()
[1] | 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010, 32:300-302. |
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010, 32:300-302 (in Chinese with English abstract). | |
[2] | 王爱凡, 康雷, 李鹏飞, 李再云. 我国甘蓝型油菜远缘杂交和种质创新研究进展. 中国油料作物学报, 2016, 38:691-698. |
Wang A F, Kang L, Li P F, Li Z Y. Review on new germplasm development in Brassica napus through wide hybridizations in China. Chin J Oil Crop Sci, 2016, 38:691-698 (in Chinese with English abstract). | |
[3] | 刘成, 冯中朝, 肖唐华, 马晓敏, 周广生, 黄凤洪, 李加纳, 王汉中. 我国油菜产业发展现状、潜力及对策. 中国油料作物学报, 2019, 41:485-489. |
Liu C, Feng Z C, Xiao T H, Ma X M, Zhou G S, Huang F H, Li J N, Wang H Z. Development, potential and adaptation of Chinese rapeseed industry. Chin J Oil Crop Sci, 2019, 41:485-489 (in Chinese with English abstract). | |
[4] | 范成明, 田建华, 胡赞民, 王钰, 吕慧颖, 葛毅强, 魏珣, 邓向东, 张蕾颖, 杨维才. 油菜育种行业创新动态与发展趋势. 植物遗传资源学报, 2018, 19:447-454. |
Fan C M, Tian J H, Hu Z M, Wang Y, Lyu H Y, Ge Y Q, Wei X, Deng X D, Zhang L Y, Yang W C. Advances of oilseed rape breeding. J Plant Genet Res, 2018, 19:447-454 (in Chinese with English abstract). | |
[5] |
Kelkar N, Gupta S, Dickens M, Davis R J. Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol, 2000, 20:1030-1043.
doi: 10.1128/MCB.20.3.1030-1043.2000 pmid: 10629060 |
[6] |
Hamel L P, Nicole M C, Duplessis S, Ellis B E. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell, 2012, 24:1327-1351.
doi: 10.1105/tpc.112.096156 |
[7] |
Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol, 2009, 12:421-426.
doi: 10.1016/j.pbi.2009.06.008 pmid: 19608449 |
[8] |
Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling. Curr Opin Plant Biol, 2002, 5:388-395.
doi: 10.1016/S1369-5266(02)00282-0 |
[9] |
Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P. MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev, 2009, 23:80-92.
doi: 10.1101/gad.1740009 |
[10] |
Andreasson E, Ellis B. Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci, 2010, 15:106-113.
doi: 10.1016/j.tplants.2009.12.001 pmid: 20047850 |
[11] |
Moustafa K, AbuQamar S, Jarrar M, Al-Rajab A J, Trémouillaux-Guiller J. MAPK cascades and major abiotic stresses. Plant Cell Rep, 2014, 33:1217-1225.
doi: 10.1007/s00299-014-1629-0 pmid: 24832772 |
[12] |
Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr Opin Plant Biol, 2018, 45:1-10.
doi: 10.1016/j.pbi.2018.04.012 |
[13] |
Colcombet J, Hirt H. Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J, 2008, 413:217-226.
doi: 10.1042/BJ20080625 pmid: 18570633 |
[14] |
Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis B E, Morris P C, Innes R W, Ecker J R, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi Y, Walker J C. Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci, 2002, 7:301-308.
doi: 10.1016/S1360-1385(02)02302-6 |
[15] |
Taj G, Agarwal P, Grant M, Kumar A. MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav, 2010, 5:1370-1378.
doi: 10.4161/psb.5.11.13020 |
[16] |
Chardin C, Schenk S T, Hirt H, Colcombet J, Krapp A. Review: mitogen-activated protein kinases in nutritional signaling in Arabidopsis. Plant Sci, 2017, 260:101-108.
doi: 10.1016/j.plantsci.2017.04.006 |
[17] |
Ortiz-Masia D, Perez-Amador M A, Carbonell J, Marcote M J. Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett, 2007, 581:1834-1840.
pmid: 17433310 |
[18] |
Dóczi R, Brader G, Pettkó-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell, 2007, 19:3266-3279.
doi: 10.1105/tpc.106.050039 |
[19] |
Danquah A, Zélicourt A D, Boudsocq M, Neubauer J, Frey N F D, Leonhardt N, Pateyron S, Gwinner F, Tamby J P, Ortiz-Masia D, Marcote M J, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J, 2015, 82:232-244.
doi: 10.1111/tpj.2015.82.issue-2 |
[20] |
Zong X J, Li D P, Gu L K, Li D Q, Liu L X, Hu X L. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species. Planta, 2009, 229:485-495.
doi: 10.1007/s00425-008-0848-4 |
[21] |
Shi J, An H L, Zhang L, Gao Z, Guo X Q. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. Plant Mol Biol, 2010, 74:1-17.
doi: 10.1007/s11103-010-9661-0 |
[22] |
Wang C, Lu W J, He X W, Wang F, Zhou Y L, Guo X L, Guo X Q. The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant Cell Physiol, 2016, 57:1629-1642.
doi: 10.1093/pcp/pcw090 |
[23] | 朱斌, 陆俊杏, 彭茜, 翁昌梅, 王淑文, 余浩, 李加纳, 卢坤, 梁颖. 甘蓝型油菜MAPK7基因家族及其启动子的克隆与表达分析. 作物学报, 2013, 39:789-805. |
Zhu B, Lu J X, Peng Q, Weng C M, Wang S W, Yu H, Li J N, Lu K, Liang Y. Cloning and analysis of MAPK7 gene family and their promoters from Brassica napus. Acta Agron Sin, 2013, 39:789-805 (in Chinese with English abstract). | |
[24] |
Kõressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics, 2018, 34:1937-1938.
doi: 10.1093/bioinformatics/bty036 pmid: 29360956 |
[25] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer Y V D, Rouzé P, Rombauts S. PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30:325-327.
doi: 10.1093/nar/30.1.325 |
[26] |
Zhang H, Zhang F, Yu Y, Feng L, Jia J, Liu B, Li B, Guo H, Zhai J. A comprehensive online database for exploring ~20,000 public Arabidopsis RNA-Seq libraries. Mol Plant, 2020, 13:1231-1233.
doi: S1674-2052(20)30257-4 pmid: 32768600 |
[27] |
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai Y, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li N, Zhou G, Zheng H, Wang X, Paterson A H, Li J. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019, 10:1154.
doi: 10.1038/s41467-019-09134-9 |
[28] | 王珍, 姚梦楠, 张晓莉, 曲存民, 卢坤, 李加纳, 梁颖. 甘蓝型油菜BnMAPK1的原核表达、亚细胞定位及酵母双杂交文库筛选. 作物学报, 2020, 46:1312-1321. |
Wang Z, Yao M N, Zhang X L, Qu C M, Lu K, Li J N, Liang Y. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in B. napus. Acta Agron Sin, 2020, 46:1312-1321 (in Chinese with English abstract). | |
[29] | 靳义荣, 宋毓峰, 白岩, 张良, 董连红, 刘朝科, 冯祥国, 胡晓明, 王倩, 刘好宝. 林烟草钾离子通道基因NKT6的克隆与表达定位分析. 作物学报, 2013, 39:1602-1611. |
Jin Y R, Song Y F, Bai Y, Zhang L, Dong L H, Liu C K, Feng X G, Hu X M, Wang Q, Liu H B. Molecular cloning and expression analysis of potassium channel gene NKT6 in Nicotiana sylvestris. Acta Agron Sin, 2013, 39:1602-1611 (in Chinese with English abstract). | |
[30] | Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp, 2013, 77:e50521. |
[31] |
Rushton P J, Reinstädler A, Lipka V, Lippok B, Somssich I E. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell, 2002, 14:749-762.
pmid: 11971132 |
[32] |
Mao X, Zhang J, Liu W, Yan S, Liu Q, Fu H, Zhao J, Huang W, Dong J, Zhang S, Yang T, Yang W, Liu B, Wang F. The MKKK62-MKK3-MAPK7/14 module negatively regulates seed dormancy in rice. Rice, 2019, 12:2.
doi: 10.1186/s12284-018-0260-z |
[33] | Keren I, Tal L, Francs-Small C C D, Araújo W L, Shevtsov S, Shaya F, Fernie A R, Small I, Ostersetzer-Biran O. NMAT1, a nuclear-encoded maturase involved in the trans-splicing of nad1 intron 1, is essential for mitochondrial complex I assembly and function. Plant J, 2012, 71:413-426. |
[34] |
Leu K C, Hsieh M H, Wang H J, Hsieh H L, Jauh G Y. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing. RNA Biol, 2016, 13:593-604.
doi: 10.1080/15476286.2016.1184384 |
[35] |
Longevialle A F D, Meyer E H, Andrés C, Taylor N L, Lurin C, Millar A H, Smalla I D. The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. Plant Cell, 2007, 19:3256-3265.
pmid: 17965268 |
[36] |
Wang C, Aubé F, Planchard N, Quadrado M, Dargel-Graffin C, Nogué F, Mireau H. The pentatricopeptide repeat protein MTSF2 stabilizes a nad1 precursor transcript and defines the 3′ end of its 5′-half intron. Nucleic Acids Res, 2017, 45:6119-6134.
doi: 10.1093/nar/gkx162 |
[37] |
Kiyosue T, Abe H, Yamaguchi-Shinozaki K, Shinozaki K. ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim Biophys Acta, 1998, 1370:187-191.
pmid: 9545564 |
[38] |
Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides. J Biol Chem, 2010, 285:1138-1146.
doi: 10.1074/jbc.M109.054288 pmid: 19901034 |
[39] |
Kotsinas A, Aggarwal V, Tan E J, Levy B, Gorgoulis V G. PIG3: a novel link between oxidative stress and DNA damage response in cancer. Cancer Lett, 2012, 327:97-102.
doi: 10.1016/j.canlet.2011.12.009 |
[40] |
Herraiz C, Calvo F, Pandya P, Cantelli G, Rodriguez-Hernandez I, Orgaz J L, Kang N, Chu T, Sahai E, Sanz-Moreno V. Reactivation of p53 by a cytoskeletal sensor to control the balance between DNA damage and tumor dissemination. J Natl Cancer Inst, 2016, 108: djv289.
doi: 10.1093/jnci/djv289 |
[41] |
Li J, Brader G, Kariola T, Palva E T. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J, 2006, 46:477-491.
doi: 10.1111/tpj.2006.46.issue-3 |
[42] |
Price A M, Orellana D F A, Salleh F M, Stevens R, Acock R, Buchanan-Wollaston V, Stead A D, Rogers H J. A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol, 2008, 147:1898-1912.
doi: 10.1104/pp.108.120402 |
[1] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[2] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[3] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[4] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[5] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[6] | SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711. |
[7] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[8] | LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798. |
[9] | TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990. |
[10] | ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598. |
[11] | LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637. |
[12] | WANG Xiao-Chun, WANG Lu-Lu, ZHANG Zhi-Yong, QIN Bu-Tan, YU Mei-Qin, WEI Yi-Hao, MA Xin-Ming. Transcription characteristics of wheat glutamine synthetase isoforms and the sequence analysis of their promoters [J]. Acta Agronomica Sinica, 2021, 47(4): 761-769. |
[13] | TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426. |
[14] | MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471. |
[15] | LI Lan-Lan, MU Dan, YAN Xue, YANG Lu-Ke, LIN Wen-Xiong, FANG Chang-Xun. Effect of OsPAL2;3 in regulation of rice allopathic inhibition on barnyardgrass (Echinochloa crusgalli L.) [J]. Acta Agronomica Sinica, 2021, 47(2): 197-209. |
|