Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (12): 2394-2406.doi: 10.3724/SP.J.1006.2021.04259
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
XIE Pan1,4(), LIU Wei1, KANG Yu1, HUA Wei1, QIAN Lun-Wen1,2,3, GUAN Chun-Yun1,2,3,*, HE Xin1,2,3,*
[1] | 陈明, 叶川, 吕伟生, 肖国滨, 应国勇, 王瑞平, 刘桅, 郑伟. 稻稻油三熟制下油菜早熟高产品种的筛选. 江苏农业科学, 2018, 46(17):61-64. |
Chen M, Ye C, Lyu W S, Xiao G B, Ying G Y, Wang D P, Liu Z, Zheng W. Screening of early-maturing and high-yielding rapeseed varieties under the three-cropping system of rice-rice-oil. Jiangsu Agric Sci, 2018, 46(17):61-64 (in Chinese with English abstract). | |
[2] | 张尧锋, 余华胜, 曾孝元, 林宝刚, 华水金, 张冬青, 傅鹰. 早熟甘蓝型油菜研究进展及其应用. 植物遗传资源学报, 2019, 20:258-266. |
Zhang Y F, Yu H S, Zeng X Y, Lin B G, Hua S J, Zhang D Q, Fu Y. Progress and application of early maturity in rapeseed ( Brassica napus L.). J Plant Genet Resour, 2019, 20:258-266 (in Chinese with English abstract). | |
[3] | 王必庆, 王国槐. 油菜早熟性研究进展. 作物研究, 2009, 23(5):336-338. |
Wang B Q, Wang G H. Research progress on early maturity of rape. Crop Res, 2009, 23:336-338 (in Chinese with English abstract). | |
[4] | 张学昆, 张春雷, 廖星, 王汉中. 2008年长江流域油菜低温冻害调查分析. 中国油料作物学报, 2008, 30:122-126. |
Zhang X K, Zhang C L, Liao X, Wang H Z. Investigation on 2008' low temperature and freeze injure on winter rape along Yangtze River. Chin J Oil Crop Sci, 2008, 30:122-126 (in Chinese with English abstract). | |
[5] | 涂玉琴, 戴兴临. 花期低温阴雨对甘蓝型油菜产量和种子含油量的影响. 中国油料作物学报, 2011, 33:470-475. |
Tu Y Q, Dai X L. Effects of continuous low temperature overcast and rainy weather on yield and oil content of Brassica napus during flowering stage. Chin J Oil Crop Sci, 2011, 33:470-475 (in Chinese with English abstract). | |
[6] |
Meshi T, Iwabuchi M. Plant transcription factors. Plant Cell Physiol, 1995, 36:1405-1420.
pmid: 8589926 |
[7] |
Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94:1035-1040.
doi: 10.1073/pnas.94.3.1035 |
[8] |
Gilmour S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16:433-442.
pmid: 9881163 |
[9] |
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10:1391-1406.
pmid: 9707537 |
[10] | Ding Y L, Shi Y T, Yang S H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol, 2019, 20:1690-1704. |
[11] |
Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol, 2002, 130:639-648.
doi: 10.1104/pp.006478 |
[12] |
Jaglo-Ottosen K R, Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F, Jaglo-Ottosen K R, Gilmour S J, Zarka D G. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science, 1998. 280:104-106.
pmid: 9525853 |
[13] |
Novillo F, Medina J, Salinas J. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA, 2007, 104:21002-21007.
doi: 10.1073/pnas.0705639105 |
[14] |
Park S, Lee C M, Doherty C J, Gilmour S J, Kim Y, Thomashow M F. Regulation of the Arabidopsis CBF regulon by a complex low‐temperature regulatory network. Plant J, 2015, 82:193-207.
doi: 10.1111/tpj.2015.82.issue-2 |
[15] |
Jia Y X, Ding Y L, Shi Y T, Zhang X Y, Gong Z Z, Yang S H. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol, 2016, 212:345-353.
doi: 10.1111/nph.2016.212.issue-2 |
[16] |
Zhao C Z, Zhang Z J, Xie S J, Si T, Li Y Y, Zhu J K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol, 2016, 171:2744-2759.
doi: 10.1104/pp.16.00533 |
[17] |
Yan L, Shah T, Cheng Y, Lyu Y, Zhang X K, Zou X L. Physiological and molecular responses to cold stress in rapeseed ( Brassica napus L.). J Integr Agric, 2019, 18:2742-2752.
doi: 10.1016/S2095-3119(18)62147-1 |
[18] |
Karimi M, Ebadi A, Mousavi S A, Salami S A, Zarei A. Comparison of CBF1, CBF2, CBF3 and CBF4 expression in some grapevine cultivars and species under cold stress. Sci Hortic, 2015, 197:521-526.
doi: 10.1016/j.scienta.2015.10.011 |
[19] | An D, Ma Q X, Yan W, Zhou W Z, Liu G H, Zhang P. Divergent regulation of CBF regulon on cold tolerance and plant phenotype in cassava overexpressing Arabidopsis CBF3 gene. Front Plant Sci, 2016, 7:1866. |
[20] | 甄伟, 陈溪, 孙思洋, 胡鸢雷, 林忠平. 冷诱导基因的转录因子CBF1转化油菜和烟草及抗寒鉴定. 自然科学进展, 2002, 10:1104-1109. |
Zhen W, Chen X, Sun S Y, Hu Y L, Lin Z P. Transformation of cold-induced gene transcription factor CBF1 into rape and tobacco and identification of cold tolerance. Prog Nat Sci, 2002, 10:1104-1109 (in Chinese with English abstract). | |
[21] |
Hsieh T, Lee J T, Charng Y Y, Chan M T. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol, 2002, 130:618-626.
doi: 10.1104/pp.006783 |
[22] | 金建凤, 高强, 陈勇, 王君晖. 转移拟南芥CBF1基因引起水稻植株脯氨酸含量提高. 细胞生物学杂志, 2005, 27(1):73-76. |
Jin J F, Gao Q, Chen Y, Wang J H. Transfer of Arabidopsis CBFl gene leads to increased proline contents in rice plants. Chin J Cell Biol, 2005, 27(1):73-76 (in Chinese with English abstract). | |
[23] |
Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M. Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol, 2006, 47:141-153.
doi: 10.1093/pcp/pci230 |
[24] |
He X, Xie S, Xie P, Yao M, Liu W, Qin L W, Liu Z S, Zheng M, Liu H F, Guan M, Hua W. Genome-wide identification of stress-associated proteins ( SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in Brassica napus. Environ Exp Bot, 2019, 165:108-119.
doi: 10.1016/j.envexpbot.2019.05.007 |
[25] | He X, Ni X C, Xie P, Liu W, Yao M, Kang Y, Qin L W, Hua W. Comparative transcriptome analyses revealed conserved and novel responses to cold and freezing stress in Brassica napus L. G3: Genes Genom Genet, 2019, 9:2723-2737. |
[26] |
Sudhir K, Glen S, Koichiro T. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 2016, 33:1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904 |
[27] |
Smith T F, Waterman M S. Identification of common molecular subsequences. J Mol Biol, 1981, 147:195-197.
pmid: 7265238 |
[28] |
Savitch L V, Allard G, Seki M, Robert L S, Tinker N A, Huner N P, Shinozaki K, Singh J. The effect of overexpression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiol, 2005, 46:1525-1539.
pmid: 16024910 |
[29] |
Shi Y, Ding Y, Yang S. Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci, 2018, 23:623-637.
doi: 10.1016/j.tplants.2018.04.002 |
[30] |
Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z, Deits T, Thomashow M F. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol, 2001, 127:910-917.
pmid: 11706173 |
[31] |
Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol, 2004, 45:346-350.
pmid: 15047884 |
[32] |
Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Yamaguchi-Shinozaki K. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol, 2004, 45:1042-1052.
doi: 10.1093/pcp/pch118 |
[33] | Canella D, Gilmour S J, Kuhn L A, Thomashow M F. DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence. Biochim Biophys Acta, 2010, 1799:454-462. |
[34] |
Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol, 1999, 119:463-470.
pmid: 9952441 |
[35] |
Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol, 2000, 124:1854-1865.
pmid: 11115899 |
[36] |
Zhang X, Fowler S, Cheng H M, Lou Y, Rhee S Y, Stockinger E J, Thomashow M F. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J, 2004, 39:905-919.
pmid: 15341633 |
[1] | YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190. |
[2] | FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907. |
[3] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[4] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. |
[5] | ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39. |
[6] | ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659. |
[7] | NIU Na, LIU Zhen, HUANG Peng-Xiang, ZHU Jin-Yong, LI Zhi-Tao, MA Wen-Jing, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of potato GAUT gene family [J]. Acta Agronomica Sinica, 2021, 47(12): 2348-2361. |
[8] | FENG Tao,TAN Hui,GUAN Mei,GUAN Chun-Yun. Mechanism of BnaBZR1 and BnaPIF4 regulating photosynthetic efficiency in oilseed rape (Brassica napus L.) under poor light [J]. Acta Agronomica Sinica, 2020, 46(8): 1146-1156. |
[9] | ZHANG Rui-Dong,XIAO Meng-Ying,XU Xiao-Xue,JIANG Bing,XING Yi-Fan,CHEN Xiao-Fei,LI Bang,AI Xue-Ying,ZHOU Yu-Fei,HUANG Rui-Dong. Responses of sorghum hybrids to germination temperatures and identification of low temperature resistance [J]. Acta Agronomica Sinica, 2020, 46(6): 889-901. |
[10] | SUN Cheng-Ming,CHEN Feng,CHEN Song,PENG Qi,ZHANG Wei,YI Bin,ZHANG Jie-Fu,FU Ting-Dong. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(01): 147-153. |
[11] | ZHANG Cheng-Xin,GUO Bao-Wei,TANG Jian,XU Fang-Fu,XU Ke,HU Ya-Jie,XING Zhi-Peng,ZHANG Hong-Cheng,DAI Qi-Gen,HUO Zhong-Yang,WEI Hai-Yan,HUANG Li-Fen,LU Yang,TANG Chuang,DAI Qi-Xing,ZHOU Miao,SUN Jun-Yi. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality [J]. Acta Agronomica Sinica, 2019, 45(8): 1208-1220. |
[12] | Jing LI,Jin-Yao YAN,Wen-Shi HU,Xiao-Kun LI,Ri-Huan CONG,Tao REN,Jian-Wei LU. Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.) [J]. Acta Agronomica Sinica, 2019, 45(6): 941-948. |
[13] | Xiao-Han MA,Jie ZHANG,Huan-Wei ZHANG,Biao CHEN,Xin-Yi WEN,Zi-Cheng XU. Exogenous MeJA improves cold tolerance of tobacco by inhibiting H2O2 accumulation [J]. Acta Agronomica Sinica, 2019, 45(3): 411-418. |
[14] | Rui-Xia WANG, Chang-Sheng YAN, Xiu-Ying ZHANG, Guo-Zhong SUN, Zhao-Guo QIAN, Xiao-Lei QI, Qiu-Huan MOU, Shi-He XIAO. Effect of Low Temperature in Spring on Yield and Photosynthetic Characteristics of Wheat [J]. Acta Agronomica Sinica, 2018, 44(02): 288-296. |
[15] | XIAO Fei,YANG Yan-Long,WANG Ya-Ting,MA Hui,ZHANG Wang-Feng. Effects of Low Temperature on PSI and PSII Photoinhibition in Cotton Leaf at Boll Stage [J]. Acta Agron Sin, 2017, 43(09): 1401-1409. |
|