Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (6): 941-948.doi: 10.3724/SP.J.1006.2019.84146

• RESEARCH NOTES • Previous Articles     Next Articles

Effects of combined application of nitrogen and potassium on seed yield and nitrogen utilization of winter oilseed rape (Brassica napus L.)

Jing LI,Jin-Yao YAN,Wen-Shi HU,Xiao-Kun LI,Ri-Huan CONG,Tao REN(),Jian-Wei LU   

  1. College of Resources and Environment, Huazhong Agricultural University / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, Hubei, China
  • Received:2018-11-09 Accepted:2019-01-19 Online:2019-06-12 Published:2019-06-12
  • Contact: Tao REN E-mail:rentao@mail.hzau.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31872173);the China Agriculture Research System(CARS-12);the Fundamental Research Funds for the Central Universities (2662018PY077).


The imbalance inputs of nitrogen (N) and potassium (K) fertilizer in current agricultural production severely restricts fertilizer use efficiency and crop yield potential. In order to estimate the influence of K fertilizer application on rapeseed yield and N fertilizer use efficiency under different nitrogen application rates, field experiments using two-factor experimental design were conducted at Wuxue county, Hubei province in 2016/2017 and 2017/2018 winter oilseed rape growing seasons. Four levels of N and K fertilizer application rates were set up, which were 0, 90, 180, 270 kg N ha -1 and 0, 60, 120, 180 kg K2O ha -1, respectively. Seed yield, shoot N and K accumulation and N fertilizer use efficiency were measured at the harvest of winter oilseed rape. When K supply was insufficient (K0 and K60), the average increase rate of seed yield was 113.7%, while under sufficient K supplies (K120 and K180), the average seed yield increase rate was 172.9%. In contrast to the K0 treatment, the K120 treatment increased N fertilizer use efficiency by 16.6% on average; nevertheless, further increase K fertilizer application rate played minor role in the improvement of N fertilizer use efficiency. Considering the regional average rapeseed yield, adequate K supply could reduce the N fertilizer application rate with the average of 33.9% compared with insufficient K fertilization (K60). Consequently, the combined application of N and K fertilizers could significantly enhance rapeseed yield and N fertilizer use efficiency. In practices, besides paying more attention to N fertilizer application, K fertilizer input also should be strengthened. Optimizing N and K fertilizer application could be beneficial to further achieving higher seed yield and higher fertilizer use efficiency.

Key words: winter oilseed rape (Brassica napus L.), combined application of nitrogen and potassium, seed yield, nitrogen use efficiency

Table 1

Effects of different nitrogen and potassium fertilizer application rates on rapeseed yield in 2016-2017 and 2017-2018 growing season"

年份 Year 平均
Average (kg hm-2)
2016/2017 2017/2018
N0 K0 833 c 750 b 791
K60 977 b 909 ab 943
K120 1051 ab 956 ab 1003
K180 1125 a 1088 a 1106
平均 Average 996 926 961
N90 K0 1220 c 1284 c 1252
K60 1618 b 1594 b 1606
K120 2038 a 1988 a 2013
K180 2116 a 2138 a 2127
平均 Average 1748 1751 1749
N180 K0 1904 c 1659 c 1782
K60 2590 b 2278 b 2434
K120 3038 a 2981 a 3009
K180 3366 a 3281 a 3323
平均 Average 2724 2550 2637
N270 K0 1720 c 1406 c 1563
K60 2781 b 2372 b 2576
K120 3320 a 3162 a 3241
K180 3550 a 3478 a 3514
平均 Average 2843 2605 2724
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 761.1**
钾肥 Potassium (K) 296.1**
年份 Year (Y) 15.9**
N×K 29.2**
N×Y 3.2*
K×Y 1.3ns
N×K×Y 0.5ns

Table 2

Effects of different nitrogen and potassium fertilizer application rates on yield components of rapeseed in 2016-2017 and 2017-2018 growing season"

Number of pods per unit area (No. m-2)
Seed number
(No. pod-1)
1000 seed weight
2016/2017 2017/2018 2016/2017 2017/2018 2016/2017 2017/2018
N0 K0 1245 b 1059 b 1152 24.7 a 24.4 b 24.5 3.3 a 2.9 a 3.1
K60 1444 ab 1160 b 1302 25.4 a 24.7 ab 25.0 3.2 a 3.1 a 3.2
K120 1575 a 1290 ab 1432 26.1 a 25.4 ab 25.8 3.1 a 3.1 a 3.1
K180 1679 a 1503 a 1591 25.8 a 25.8 a 25.8 3.1 a 3.1 a 3.1
平均 Average 1486 1253 1369 25.5 25.1 25.3 3.2 3.0 3.1
N90 K0 2981 c 2272 c 2626 24.1 b 23.4 b 23.8 3.2 a 2.9 a 3.1
K60 3408 bc 2742 b 3075 25.7 ab 26.3 ab 26.0 3.4 a 2.9 a 3.1
K120 3591 ab 3250 a 3421 25.1 ab 25.1 ab 25.1 3.2 a 2.9 a 3.1
K180 4114 a 3479 a 3796 26.3 a 26.6 a 26.4 3.1 a 2.9 a 3.0
平均 Average 3523 2936 3230 25.3 25.4 25.3 3.2 2.9 3.1
N180 K0 3649 c 2662 c 3156 24.3 c 22.7 b 23.5 3.2 b 3.0 a 3.1
K60 4508 b 3593 b 4051 26.3 b 26.3 a 26.3 3.4 ab 3.0 a 3.2
K120 4720 a 4838 a 4779 27.5 a 26.8 a 27.1 3.5 a 3.0 a 3.3
K180 4751 a 5024 a 4888 27.7 a 27.0 a 27.4 3.3 b 3.0 a 3.1
平均 Average 4407 4029 4218 26.5 25.7 26.1 3.4 3.0 3.2
N270 K0 3455 c 2151 d 2803 24.0 c 22.7 b 23.4 3.4 a 3.2 a 3.3
K60 4791 b 3626 c 4209 26.2 b 27.3 a 26.8 3.5 a 3.1 a 3.3
K120 5406 ab 5138 b 5272 27.5 ab 26.0 a 26.8 3.3 a 3.2 a 3.2
K180 5953 a 5710 a 5832 28.1 a 27.4 a 27.7 3.3 a 3.0 a 3.2
平均 Average 4901 4156 4529 26.4 25.9 26.2 3.4 3.1 3.3
方差分析 ANOVA F F-value
氮肥 Nitrogen (N) 491.6** 6.3** 9.6**
钾肥 Potassium (K) 119.2** 50.4** 2.9*
年份 Year (Y) 57.2** 4.9* 92.5**
N×K 14.9** 3.7** 1.0ns
N×Y 3.1* 0.9ns 2.9*
K×Y 6.9** 2.3ns 2.2ns
N×K×Y 1.7ns 0.7ns 1.7ns

Fig. 1

Effect of combined application of N and K fertilizer on shoot N and K accumulation at harvest during 2016-2017 and 2017-2018 growing season Bar superscripted by different letters under the same N treatment in the same year are significantly different between different K fertilizer treatments by LSR test (P < 0.05); * and ** represent P < 0.05 and P < 0.01, respectively. Treatments are the same as those given in Table 1."

Fig. 2

Effect of combined application of N and K fertilizer application rates on N use efficiency of winter oilseed rape during 2016-2017 and 2017-2018 growing season Bar superscripted by different letters under the same N treatment in the same year are significantly different between different K fertilizer treatments by LSR test (P < 0.05); * and ** represent P < 0.05 and P < 0.01, respectively; ns means no significant difference. Treatments are the same as those given in Table 1."

Fig. 3

Rapeseed yield responses to N fertilizer application under different K fertilizer application rates and the optimal N and K fertilizer application rate for corresponding target seed yield The dashed line in the figure shows the N and K fertilizer application rate when the yield is set as 2500 kg hm-2, The dot dash line in the figure shows the N and K fertilizer application rate when the yield is set as 3000 kg hm-2; the black solid point is the average yield of 2016-2017, and the hollow point is the average yield of 2017-2018. Treatments are the same as those given in Table 1."

[1] Mulvaney R L, Khan S A, Ellsworth T R . Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Quality, 2009,38:2295-2314.
doi: 10.2134/jeq2008.0527 pmid: 19875786
[2] West P C, Gerber J S, Engstrom P M, Mueller N D, Brauman K A, Carlson K M, Cassidy E S, Johnston M , MacDonald G K, Ray D K, Siebert S. Leverage points for improving global food security and the environment. Science, 2014,345:325-328.
[3] Liu X J, Zhang Y, Han W X, Tang A H, Shen J L, Cui Z L, Vitousek P, Erisman J W, Goulding K, Christie P, Fangmeier A, Zhang F S . Enhanced nitrogen deposition over China. Nature, 2013,494:459-462.
[4] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Vitousek P M, Zhang F S . Significant acidification in major Chinese croplands. Science, 2010,327:1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[5] Zhang F S, Niu J F, Zhang W F, Chen X P, Li C J, Yuan L X, Xie J C . Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil, 2010,335:21-34.
doi: 10.1007/s11104-010-0323-4
[6] Regmi A P, Ladha J K, Pasuquin E, Pathak H, Hobbs P R, Shrestha L L, Gharti D B, Duveiller E . The role of potassium in sustaining yields in a long-term rice-wheat experiment in the Indo-Gangetic Plains of Nepal. Biol Fert Soils, 2002,36:240-247.
doi: 10.1007/s00374-002-0525-x
[7] Zörb C, Senbayram M, Peiter E . Potassium in agriculture-status and perspectives. J Plant Physiol, 2014,171:656-669.
doi: 10.1016/j.jplph.2013.08.008 pmid: 24140002
[8] Khan M Z, Muhammad S, Naeem M A, Akhtar E, Khalid M . Response of some wheat ( Triticum aestivum L.) varieties to foliar application of N & K under rainfed conditions. Pak J Bot, 2006,38:1027-1034.
[9] Jackson H . Evaluation of Nitrogen and Potassium Interactions in Corn. Graduate Theses and Dissertations of Iowa State University, America, 2018.
[10] Fischer R A, Byerlee D, Edmeades G O . Crop yields and global food security: will yield increase continue to feed the world? Eur Rev Agric Econ, 2014,158:191-192.
doi: 10.1093/ajae/aau121
[11] 王汉中 . 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z . Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[12] 李慧, 马常宝, 鲁剑巍, 李小坤, 任涛, 丛日环 . 中国不同区域油菜氮磷钾肥增产效果. 中国农业科学, 2013,46:1837-1847.
Li H, Ma C B, Lu J W, Li X K, Ren T, Cong R H . Increasing effect of N, P and K fertilizer on rapeseed in different regions of China. Sci Agric Sin, 2013,46:1837-1847 (in Chinese with English abstract).
[13] 徐华丽 . 长江流域油菜施肥状况调查及配方施肥效果研究. 华中农业大学硕士学位论文, 湖北武汉, 2012.
Xu H L . Investigation on Fertilization and Effect of Formulated Fertilization of Winter Rapeseed in Yangtze River Basin. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2012 (in Chinese with English abstract).
[14] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000. pp 25-114.
Bao S D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 25-114(in Chinese).
[15] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森 , Roland B, Christian W. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002,35:1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Roland B, Christian W . Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002,35:1095-1103 (in Chinese with English abstract).
[16] 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风 . 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45:915-924.
Zhang F S, Wang J Q, Zhang W F, Cui Z L, Ma W Q, Chen X P, Jiang R F . Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin, 2008,45:915-924 (in Chinese with English abstract).
[17] 贾良良, 陈新平, 张福锁, 刘宏斌, 吴健繁 . 北京市冬小麦氮肥适宜用量评价方法的研究. 中国农业大学学报, 2001,6(3):67-73.
Jia L L, Chen X P, Zhang F S, Liu H B, Wu J F . Study of optimum N supplying rate in winter wheat in Beijing area. J China Agric Univ, 2001,6(3):67-73 (in Chinese with English abstract).
[18] 陈新平, 周金池, 王兴仁, 张福锁, 宝德俊, 贾晓红 . 小麦-玉米轮作制中氮肥效应模型的选择——经济和环境效益分析. 土壤学报, 2000,37:346-354.
Chen X P, Zhou J C, Wang X R, Zhang F S, Bao D J, Jia X H . Economic and environmental evaluation on models for describing crop yield response to nitrogen fertilizers at winter-wheat and summer-corn rotation system. Acta Pedol Sin, 2000,37:346-354 (in Chinese with English abstract).
[19] Wang W N, Lu J W, Ren T, Li X K, Su W, Lu M X . Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production. Field Crops Res, 2012,137:37-48.
doi: 10.1016/j.fcr.2012.08.010
[20] Loué A . The interaction of potassium with other growth factors, particularly with other nutrients. IPI Res Topics, 1980,8:67-93.
[21] Milford G F J, Johnston A E . Potassium and nitrogen interactions in crops production. Nawozy I Nawozenie, 2009,34:143-162.
[22] Brennan R F , Bolland M D A. Influence of potassium and nitrogen fertilizer on yield, oil and protein concentration of canola ( Brassica napus L.) grain harvested in southwestern Australia. Aust J Exp Agric, 2007,47:976-983.
[23] Ahmad C, Jan A, Arif M, Jan M T, Shah H . Effect of nitrogen and sulfur fertilization on yield components, seed and oil yields of canola. J Plant Nutr, 2011,34:2069-2082.
doi: 10.1080/01904167.2011.618569
[24] Amanullah, Hassan M , Malhi S S. Seed yield and yield components response of rape ( B. napus) versus mustard( B. juncea) to sulfur and potassium fertilizer application in northwest Pakistan. J Plant Nutr, 2011,34:1164-1174.
[25] Bruns H A, Ebellhar M W . Nutrient uptake of maize affected by nitrogen and potassium fertility in a humid subtropical environment. Commun Soil Sci Plant Anal, 2006,37:275-293.
doi: 10.1080/00103620500408829
[26] Duncan E G , Sullivan C A O,Roper M M, Palta J, Whisson K, Peoples M B . Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions. J Plant Nutr Soil Sci, 2018,181:364-373.
doi: 10.1002/jpln.201700376
[27] Siebrecht S, Tischner R . Changes in the xylem exudate composition of poplar (Populus tremula × P. alba): dependent on the nitrogen and potassium supply. J Exp Bot, 1999,50:1797-1806.
[28] Delaire M, Mauget J C, Beaujard F . Evidence for a strong correlation between season-dependent nitrate and potassium uptake in two deciduous trees. Trees, 2014,28:769-776.
doi: 10.1007/s00468-014-0990-5
[29] Armengaud P, Sulpice R, Miller A J, Stitt M, Amtmann A, Gibon Y . Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol, 2009,150:772-785.
doi: 10.1104/pp.108.133629
[30] 张智, 丛日环, 鲁剑巍 . 中国冬油菜产业氮肥减施增效潜力分析. 植物营养与肥料学报, 2017,23:1494-1504.
Zhang Z, Cong R H, Lu J W . Potential analysis on winter oilseed rape production under reducing nitrogen input and increasing its efficiency in China. J Plant Nutr Fert, 2017,23:1494-1504 (in Chinese with English abstract).
[31] Ren T, Zou J, Lu J W, Chen F, Wu J S, Li X K . On-farm trials of optimal fertilizer recommendations for the maintenance of high seed yields in winter oilseed rape (Brassica napus L.) production (fertilizers and soil amendments). Soil Sci Plant Nutr, 2015,61:528-540.
doi: 10.1080/00380768.2014.1003964
[1] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[2] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[3] WANG Yan, CHEN Zhi-Xiong, JIANG Da-Gang, ZHANG Can-Kui, ZHA Man-Rong. Effects of enhancing leaf nitrogen output on tiller growth and carbon metabolism in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 739-746.
[4] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[5] HUANG Heng, JIANG Heng-Xin, LIU Guang-Ming, YUAN Jia-Qi, WANG Yuan, ZHAO Can, WANG Wei-Ling, HUO Zhong-Yang, XU Ke, DAI Qi-Gen, ZHANG Hong-Cheng, LI De-Jian, LIU Guo-Lin. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency [J]. Acta Agronomica Sinica, 2021, 47(11): 2232-2249.
[6] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[7] Lei ZHOU,Qiu-Yuan LIU,Jin-Yu TIAN,Meng-Hua ZHU,Shuang CHENG,Yang CHE,Zhi-Jie WANG,Zhi-Peng XING,Ya-Jie HU,Guo-Dong LIU,Hai-Yan WEI,Hong-Cheng ZHANG. Differences in yield and nitrogen absorption and utilization of indica-japonica hybrid rice varieties of Yongyou series [J]. Acta Agronomica Sinica, 2020, 46(5): 772-786.
[8] Zhi-Yuan YANG,Na LI,Peng MA,Tian-Rong YAN,Yan HE,Ming-Jin JIANG,Teng-Fei LYU,Yu LI,Xiang GUO,Rong HU,Chang-Chun GUO,Yong-Jian SUN,Jun MA. Effects of methodical nitrogen-water distribution management on water and nitrogen use efficiency of rice [J]. Acta Agronomica Sinica, 2020, 46(3): 408-422.
[9] Fei-Na ZHENG,Jin-Peng CHU,Xiu ZHANG,Li-Wei FEI,Xing-Long DAI,Ming-Rong HE. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar [J]. Acta Agronomica Sinica, 2020, 46(3): 423-431.
[10] LYU Wei-Sheng, XIAO Fu-Liang, ZHANG Shao-Wen, ZHENG Wei, HUANG Tian-Bao, XIAO Xiao-Jun, LI Ya-Zhen, WU Yan, HAN De-Peng, XIAO Guo-Bin, ZHANG Xue-Kun. Effects of sowing and fertilizing methods on yield and fertilizer use efficiency in red-soil dryland rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1790-1800.
[11] WANG Yan,YI Jun,GAO Ji-Ping,ZHANG Li-Na,YANG Ji-Fen,ZHAO Yan-Ze,XIN Wei,ZHEN Xiao-Xi,ZHANG Wen-Zhong. Effects of precision leaf age fertilization on yield and nitrogen utilization of
japonica rice
[J]. Acta Agronomica Sinica, 2020, 46(01): 102-116.
[12] Hui-Hui TANG,Yan-Li XU,Qing-Yan WANG,Zheng-Bo MA,Guang-Yan LI,Hui DONG,Zhi-Qiang DONG. Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China [J]. Acta Agronomica Sinica, 2019, 45(3): 431-442.
[13] Yang-Dong XU,Kuan-Yu ZHU,Xing-Chuan ZHANG,Zhi-Qin WANG,Jian-Chang YANG. Analysis in agronomic and physiological traits of green super rice [J]. Acta Agronomica Sinica, 2019, 45(1): 70-80.
[14] Dan-Dan HE,Li-Guo JIA,Yong-Lin QIN,Ming-Shou FAN. Classification of potato cultivars by their nitrogen use efficiency [J]. Acta Agronomica Sinica, 2019, 45(1): 153-159.
[15] Jian-Gang AN,Fu JING,Yi DING,Yi XIAO,Hao-Hao SHANG,Hong-Li LI,Xiao-Lu YANG,Dao-Bin TANG,Ji-Chun WANG. Effects of Split Application of Nitrogen Fertilizer on Yield, Quality and Nitrogen Use Efficiency of Sweet Potato [J]. Acta Agronomica Sinica, 2018, 44(12): 1858-1866.
Full text



No Suggested Reading articles found!