Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (09): 1401-1409.doi: 10.3724/SP.J.1006.2017.01401
• RESEARCH NOTES • Previous Articles Next Articles
XIAO Fei1,YANG Yan-Long2,WANG Ya-Ting2,MA Hui2,ZHANG Wang-Feng2,*
[1]李新国, 段伟, 孟庆伟, 邹琦. PSI的低温光抑制. 植物生理学通讯, 2002, 38: 375–381 Li X G, Duan W, Meng Q W, Zou Q. PSI photoinhibition under low temperature. Plant Physiol Commun, 2002, 38: 375–381 (in Chinese with English abstract) [2]张子山, 张立涛, 高辉远, 贾裕娇, 部建雯, 孟庆伟. 不同光强与低温交叉胁迫下黄瓜PSI与PSII的光抑制研究. 中国农业科学, 2009, 42: 4288–4293 Zhang Z S, Zhang L T, Gao H Y, Jia Y J, Bu J W, Meng Q W. Research of the photoinhibition of PSI and PSII in leaves of cucumber under chilling stress combined with different light intensities. Sci Agric Sin, 2009, 42: 4288–4293 (in Chinese with English abstract) [3]Prasil O, Adir N, Ohad I. Dynamics of photosystem II, mechanism of photoinhibition and recovery process. Top Photosynth, 1992, 11: 295–348 [4]Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. BBA-Bioenergetics, 1993, 1143: 113–134 [5]Havaux M, Davaud A. Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of photosystem II activity. Photosynth Res, 1994, 40: 75–92 [6]Sonoike K, Terashima I. Mechanism of photosystem I photoinhibition in leaves of Cucumis sativus L. Planta, 1994, 194: 287–293 [7]孙山, 张立涛, 王家喜, 王少敏, 高华君, 高辉远. 低温弱光胁迫对日光温室栽培杏树光系统功能的影响. 应用生态学报, 2008, 19: 512–516 Sun S, Zhang L T, Wang J X, Wang S M, Gao H J, Gao H Y. Effects of low temperature and weak light on the functions of photosystem in Prunusarme. Chin J Appl Ecol, 2008, 19: 512–516 (in Chinese with English abstract) [8]Sonoike K. Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol, 1996, 37: 239–247 [9]Murata N, Takahashi S, Nishiyama Y, Allakhverdiev S I. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta: Bioenergetics, 2007, 1767: 414–421 [10]Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci, 2008, 13: 178–182 [11]Sonoike K. Photoinhibition of photosystem I. Physiol Plant, 2011, 142: 56–64 [12]Zhang Z S, Jia Y, Gao H Y, Zhang L, Li H, Meng Q W. Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta, 2011, 234: 883–889 [13]Golbeck J H. Structure, function and organization of the photosystem I reaction center complex. Biochim Biophys Acta: Rev Bioenergetics, 1987, 895: 167–204 [14]Mi H, Klughammer C, Schreiber U. Light-induced dynamic changes of NADPH fluorescence in synechocystis PCC 6803 and its ndhB-defective mutant M55. Plant Cell Physiol, 2000, 41: 1129–1135 [15]Sonoike K. The different roles of chilling temperatures in the photoinhibition of photosystem I and photosystem II. J Photoch Photobio B, 1999, 48: 136–141 [16]Zhang S, Scheller H V. Photoinhibition of photosystem I at chilling temperature and subsequent recovery in Arabidopsis thaliana. Plant Cell Physiol, 2004, 45: 1595–1602 [17]Kim S J, Lee C H, Hope A B, Chow W S. Inhibition of photosystems I and II and enhanced back flow of photosystem I electrons in cucumber leaf discs chilled in the light. Plant Cell Physiol, 2001, 42: 842–848 [18]Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell, 2002, 110: 361–371 [19]Takahashi S, Milward S E, Fan D Y, Chow W S, Badger M R. How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol, 2009, 149: 1560–1567 [20]Nuijs A M, Shuvalov V A, Van Gorkom H J, Plijter J J, Duysens L N. Picosecond absorbance difference spectroscopy on the primary reactions and the antenna-excited states in photosystem I particles. Biochim Biophys Acta: Bioenergetics, 1986, 850: 310–318 [21]Shikanai T. Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol, 2007, 58: 199–217 [22]Satoh K. Mechanism of photoinactivation in photosynthetic systems I: the dark reaction in photoinactivation. Plant Cell Physiol, 1970, 11: 15–27 [23]Sonoike K. Selective photoinhibition of photosystem I in isolated thylakoid membranes from cucumber and spinach. Plant Cell Physiol, 1995, 36: 825–830 [24]Kudoh H, Sonoike K. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 2002, 215: 541–548 [25]Niyogi K K. Safety valves for photosynthesis. Curr Opin Plant Biol, 2000, 3: 455–460 [26]Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol, 1999, 50: 601–639 [27]Miyake C, Shinzaki Y, Miyata M, Tomizawa K I. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching of Chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol, 2004, 45, 1426–1433 [28]黄伟, 张石宝, 曹坤芳. 高等植物环式电子传递的生理作用. 植物科学学报, 2012, 30: 100–106 Huang W, Zhang S B, Cao K F. Physiological role of cyclic electron flow in higher plants. Plant Sci J, 2012, 30: 100–106 (in Chinese with English abstract) [29]Yamori W, Shikanai T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol, 2016, 67: 81–106 [30]邹陈, 陈冬花, 吉春容, 杨举芳, 尹育红, 李新建. 障碍型冷害对石河子棉区花铃期棉花生长的影响研究. 中国农学通报, 2012, 12: 54–59 Zou C, Chen D H, Ji C R, Yang J F, Yin Y H, Li X J. Experiments and studies about effect of obstacle cold disaster on cotton during the flowering and boll stages in the cotton region of Shihezi. Chin Agric Bull, 2012, 12: 54–59 (in Chinese with English abstract) [31]刘鹏, 孟庆伟, 赵世杰. 冷敏感植物的低温光抑制及其生化保护机制. 植物生理学通讯, 2001, 37: 76–82 Liu P, Meng Q W, Zhao S J. Chilling–induced photoinhibition and biochemical protective mechanism of chilling-sensitive plants. Plant Physiol Commun, 2001, 37: 76–82 (in Chinese with English abstract) [32]张旺锋, 王振林, 余松烈, 李少昆, 曹连莆, 王登伟. 氮肥对新疆高产棉花群体光合性能和产量形成的影响. 作物学报, 2002, 28, 789–796 Zhang W F, Wang Z L, Yu S L, Li S K, Cao L P, Wang D W. Effect of under–mulch–drip irrigation on canopy apparent photosynthesis, canopy structure and yield formation in high yield cotton of Xinjiang. Acta Agron Sin, 2002, 28: 789–796 (in Chinese with English abstract) [33]武辉, 戴海芳, 张巨松, 焦晓玲, 刘翠, 石俊毅, 范志超. 棉花幼苗叶片光合特性对低温胁迫及恢复处理的响应. 植物生态学报, 2014, 38: 1124–1134 Wu H, Dai H F, Zhang J S, Jiao X L, Liu C, Shi J Y, Fan Z C. Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves. Chin J Plant Ecol, 2014, 38: 1124–1134 (in Chinese with English abstract) [34]Liu Y F, Qi M F, Li T L. Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci, 2012, 196: 8–17 [35]Kramer D M, Johnson G, KIIrats O, Edwards G E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res, 2004, 79: 209–218 [36]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta: Gen Subjects, 1989, 990: 87–92 [37]Huang W, Yang S J, Zhang S B, Zhang J L, Cao K F. Cyclic electron Flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta, 2012, 235: 819–828 [38]Miyake C, Horiguchi S, Makino A, Shinzaki Y, Yamamoto H, Tomizawa K I. Effects of light intensity on cyclic electron Flow around PSI and its relationship to non-photochemical quenching of Chl fluorescence in tobacco leaves. Plant Cell Physiol, 2005, 46: 1819–1830 [39]Fan D Y, Hope A B, Jia H, Chow W S. Separation of light-induced linear, cyclic and stroma-sourced electron fluxes to P700+ in cucumber leaf discs after pre-illumination at a chilling temperature. Plant Cell Physiol, 2008, 49: 901–911 [40]Huang W, Zhang S B, Cao K F. Cyclic electron flow plays an important role in photoprotection of tropical trees illuminated at temporal chilling temperature. Plant Cell Physiol, 2011, 52: 297–305 [41]Clarke J E, Johnson G N. In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley. Planta, 2001, 212: 808–816 [42]Hendrickson L, Ball M C, Osmond C B, Furbank R T, Chow W S. Assessment of photoprotection mechanisms of grapevines at low temperature. Funct Plant Biol, 2003, 30: 631–642 [43]Kudoh H, Sonoike K. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 2002, 215: 541–548 [44]Wise R R. Chilling-enhanced photooxidation: the production, action and study of reactive oxygen species produced during chilling in the light. Photosynth Res, 1995, 45: 79–97 [45]Kudoh H, Sonoike K. Dark-chilling pretreatment protects PSI from light-chilling damage. J Photosci, 2002, 9: 59–62 [46]Sonoike K. Degradation of psaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystemI: possible involvement of active oxygen species. Plant Sci, 1996, 115: 157–164 [47]Kim S J, Lee C H, Hope A B, Chow W S. Photosystem I acceptor side limitation is a prerequisite for the reversible decrease in the maximum extent of P700 oxidation after short-term chilling in the light in four plant species with different chilling sensitivities. Physiol Plant, 2005, 123: 100–107 [48]Li J W, Zhang S B. Differences in the responses of photosystems I and II in Cymbidium sinense and C. tracyanum to long-term chilling stress. Front Plant Sci, 2015, 6: 1–10 [49]Kintake S. Photoinhibition and Protection of Photosystem I: Photosystem I. Springer Netherlands, 2007. pp 657–668 [50]张子山, 张立涛, 高辉远, 贾裕娇, 部建雯, 孟庆伟. 不同光强与低温交叉胁迫下黄瓜PSI与PSII的光抑制研究. 中国农业科学, 2009, 42: 4288–4293 Zhang Z S, Zhang L T, Gao H Y, Jia Y J, Bu J W, Meng Q W. Research of the photoinhibition of PSI and PSII in leaves of cucumber under chilling stress combined with different light intensities. Sci Agric Sin, 2009, 42: 4288–4293 (in Chinese with English abstract) [51]Yamori W, Shikanai T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol, 2016, 67: 81–106 [52]Barth C, Krause H G. Study of tobacco transformants to assess the role of chloroplastic NAD(P)H dehydrogenase in photoprotection of photosystems I and II. Planta, 2002, 216: 273–279 [53]Zivcak M, Kalaji H M, Shao H B, Olsovska K, Brestic M. Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photoch Photobiol B, 2014, 137: 107–115 |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | FENG Ya, ZHU Xi, LUO Hong-Yu, LI Shi-Gui, ZHANG Ning, SI Huai-Jun. Functional analysis of StMAPK4 in response to low temperature stress in potato [J]. Acta Agronomica Sinica, 2022, 48(4): 896-907. |
[5] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[6] | SONG Shi-Qin, YANG Qing-Long, WANG Dan, LYU Yan-Jie, XU Wen-Hua, WEI Wen-Wen, LIU Xiao-Dan, YAO Fan-Yun, CAO Yu-Jun, WANG Yong-Jun, WANG Li-Chun. Relationship between seed morphology, storage substance and chilling tolerance during germination of dominant maize hybrids in Northeast China [J]. Acta Agronomica Sinica, 2022, 48(3): 726-738. |
[7] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[8] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[9] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[10] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[11] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[12] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[13] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[14] | GAO Zhen, LIANG Xiao-Gui, ZHANG Li, ZHAO Xue, DU Xiong, CUI Yan-Hong, ZHOU Shun-Li. Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain [J]. Acta Agronomica Sinica, 2021, 47(7): 1324-1331. |
[15] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
|