Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1081-1090.doi: 10.3724/SP.J.1006.2022.14067


Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton

SUN Si-Min(), HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan*()   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2021-04-19 Accepted:2021-09-09 Online:2022-05-12 Published:2021-10-13
  • Contact: YANG Xi-Yan E-mail:ssm_sunshine@163.com;yxy@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000907)


Root is the main organ of plants that absorbs water and nutrients. The growth of the root system will directly affect the absorption and utilization of nutrients, the resistance to abiotic stress and finally the yield of cotton. In this study, a natural population of 220 upland cotton accessions and a chromosomal segment substitution line (CSSL) population with 325 lines, derived from the crossing and backcrossing of Gossypium barbadense acc. 3-79 with G. hirsutum cv. ‘Emian 22’ were selected to collect the major root phenotypic traits. Four major traits, namely main root length (MRL), root fresh weight (RFW), root dry weight (RDW) and lateral root angle (LRA) were investigated, and genome-wide association analysis (GWAS) was performed for four root traits in natural populations in combination with genome resequencing. The results showed that the four root traits of the natural population are all in line with normal distribution, and the CSSL population were all in skewed distribution. The mean value of root index of CSSL population was higher than that of natural population. A total of 2,714,140 SNP was obtained from the resequencing data of the natural population. The principal component analysis (PCA) showed that the RFW and MRL could be used as two indexes for cotton root classification, through which the cotton root could be divided into nine types in each population. The analysis of population structure demonstrated that the natural population can be divided into five subgroups. Genome-wide association analysis rrevealed that two association sites were simultaneously associated by RFW and RDW in natural populations. The results of this study provide a theoretical basis for further research on root system architecture (RSA) and its genetic mechanism, and it is also of great significance to cotton breeding of abiotic stress resistance.

Key words: cotton, GWAS, main root length (MRL), root fresh weight (RFW), plant root system architecture (RSA)

Table S1

Natural population material"

Material number
Material name
Materials source
ZY01 鄂棉24 Emian 24 湖北 Hubei, China
ZY02 渝棉1 Yumian 1 四川Sichuan, China
ZY03 湘棉13 Xiangmian 13 湖南Hunan, China
ZY06 银山4号Yinshan 4 河南Henan, China
ZY07 军棉1号Junmian 1 南疆Southern Xinjiang, China
ZY08 新陆早16 Xinluzao 16 北疆Northern Xinjiang, China
ZY10 中棉所12 Zhongmiansuo 12 河南Henan, China
ZY11 鄂荆1号Ejing 1 湖北Hubei, China
ZY13 94052 不详 Unknown
ZY14 川棉30 Chuanmian 30 四川Sichuan, China
ZY15 鲁棉2号Lumian 2 山东Shandong, China
ZY17 鲁棉9号Lumian 9 山东Shandong, China
ZY18 鲁棉10号Lumian 10 山东Shandong, China
ZY21 辽棉7号Liaomian 7 辽宁Liaoning, China
ZY24 辽棉11号Liaomian 11 辽宁Liaoning, China
ZY25 辽棉14号Liaomian 14 辽宁Liaoning, China
ZY26 辽棉15号Liaomian 15 辽宁Liaoning, China
ZY30 晋棉12号Jinmian 12 山西Shanxi, China
ZY31 晋棉13号Jinmian 13 山西Shanxi, China
ZY32 晋棉18号Jinmian 18 山西Shanxi, China
ZY34 斯字棉4B Stoneville 4B 美国USA
ZY35 晋棉28号Jinmian 8 山西Shanxi, China
ZY36 晋棉36号Jinmian 36 山西Shanxi, China
ZY37 冀棉3号Jimian 3 河北Hebei, China
ZY38 冀棉8号Jimian 8 河北Hebei, China
ZY40 冀棉11号Jimian 11 河北Hebei, China
ZY41 冀棉12号Jimian 12 河北Hebei, China
ZY42 冀棉91-19 Jimian 91-19 河北Hebei, China
ZY43 冀棉228 Jimian 298 河北Hebei, China
ZY45 冀棉321 Jimian 321 河北Hebei, China
ZY47 邯4849 Han 4849 河北Hebei, China
ZY48 豫棉3号Yumian 3 河南Henan, China
ZY50 豫棉11号Yumian 11 河南Henan, China
ZY52 豫棉19号Yumian 19 河南Henan, China
ZY53 豫棉668 Emian 668 河南Henan, China
ZY54 新陆早1号Xinluzao 1 北疆Northern Xinjiang, China
ZY55 新陆早6号Xinluzao 6 北疆Northern Xinjiang, China
ZY57 新陆早8号Xinluzao 8 北疆Northern Xinjiang, China
ZY58 新陆早9号Xinluzao 9 北疆Northern Xinjiang, China
ZY59 新陆早12号Xinluzao 12 北疆Northern Xinjiang, China
ZY61 邯802 Han 802 河北Hebei, China
ZY63 新陆早22号Xinluzao 22 北疆Northern Xinjiang, China
ZY65 新陆早32号Xinluzao 32 北疆Northern Xinjiang, China
ZY66 新陆中3号Xinluzhong 3 南疆Southern Xinjiang, China
ZY67 新陆中4号Xinluzhong 4 南疆Southern Xinjiang, China
ZY70 鄂棉3号Emian 3 湖北Hubei, China
ZY73 鄂棉6号Emian 6 湖北Hubei, China
ZY74 鄂棉9号Emian 9 湖北Hubei, China
ZY76 鄂棉11号Emian 11 湖北Hubei, China
ZY80 鄂棉15号Emian 15 湖北Hubei, China
ZY81 鄂棉16号Emian 16 湖北Hubei, China
ZY83 晋棉11 Jinmian 11 山西Shanxi, China
ZY84 鄂棉19号Emian 19 湖北Hubei, China
ZY85 鄂棉20号Emian 20 湖北Hubei, China
ZY88 苏棉4号Sumian 4 江苏Jiangsu, China
ZY90 鄂抗棉2号Ekangmian 2 湖北Hubei, China
ZY94 鄂抗棉6号Ekangmian 6 湖北Hubei, China
ZY95 鄂抗棉7号Ekangmian 7 湖北Hubei, China
ZY97 鄂抗棉9号Ekangmian 9 湖北Hubei, China
ZY98 鄂抗棉10号Ekangmian 10 湖北Hubei, China
ZY101 鄂光Eguangmian 湖北Hubei, China
ZY102 鄂沙28 Esha 28 湖北Hubei, China
ZY103 鄂荆92 Ejing 92 湖北Hubei, China
ZY105 徐州142 Xuzhou 142 江苏Jiangsu, China
ZY106 徐州209 Xuzhou 209 江苏Jiangsu, China
ZY107 徐州1214 Xuzhou 1214 江苏Jiangsu, China
ZY108 徐州1514 Xuzhou 1514 江苏Jiangsu, China
ZY109 徐州1818 Xuzhou 1818 江苏Jiangsu, China
ZY110 苏棉2号Sumian 2 江苏Jiangsu, China
ZY111 苏棉3号Sumian 3 江苏Jiangsu, China
ZY112 苏棉5号Sumian 5 江苏Jiangsu, China
ZY113 苏棉8号Sumian 8 江苏Jiangsu, China
ZY116 苏抗191 Sukang 191 江苏Jiangsu, China
ZY118 冈棉2号Gangmian 2 湖北Hubei, China
ZY121 泗棉2号Simian 2 江苏Jiangsu, China
ZY122 晋棉1号Jinmian 1 山西Shanxi, China
ZY123 陕棉9号Shanmian 9 陕西Shaanxi, China
ZY126 岱红岱Daihongdai 美国USA
ZY127 荆1246 Jing1246 湖北Hubei, China
ZY134 黑山棉1号Heishanmian 1 辽宁Liaoning, China
ZY136 天棉1号Tianmian 1 湖北Hubei, China
ZY138 华抗棉1号Huakangmian 1 湖北Hubei, China
ZY139 科遗2号Keyimian 2 河北Hebei, China
ZY142 南通5号Nantong 5 江苏Jiangsu, China
ZY143 石短5号Shiduan 5 河北Hebei, China
ZY144 山农丰6号Shannongfeng 6 山东Shandong, China
ZY145 沙农6号Shanong 6 湖北Hubei, China
ZY147 赣棉12号Ganmian 12 江西Jiangxi, China
ZY148 湘棉13 Xiangmian 13 湖南Hunan, China
ZY152 皖棉73-10 Wanmian 73-10 安徽Anhui, China
ZY153 86-1 不详Unknown
ZY154 99B 美国USA
ZY156 SGK321 河北Hebei, China
ZY157 鲁棉26 Lumian 26 山东Shandong, China
ZY158 斯字棉4号Stoneville 4 美国USA
ZY160 泾斯棉Jingsimian 陕西Shaanxi, China
ZY161 鸭鹏棉Yapengmian 湖北Hubei, China
ZY162 鸡脚德字棉Jijiaodezimian 美国USA
ZY163 中棉所36Z hongmiansuo 36 河南Henan, China
ZY164 中棉所40 Zhongmiansuo 40 河南Henan, China
ZY165 中棉所2 Zhongmiansuo 2 河南Henan, China
ZY168 宛抗棉9号Wankangmian 9 河南Henan, China
ZY169 中棉所7号Zhongmiansuo 7 河南Henan, China
ZY171 中棉所10 Zhongmiansuo 10 河南Henan, China
ZY173 中棉所13 Zhongmiansuo 13 河南Henan, China
ZY178 中棉所19 Zhongmiansuo 19 河南Henan, China
ZY179 中棉所20 Zhongmiansuo 20 河南Henan, China
ZY184 赣棉10号Ganmian 10 江西Jiangxi, China
ZY187 中棉所27 Zhongmiansuo 27 河南Henan, China
ZY188 中棉所30 Zhongmiansuo 30 河南Henan, China
ZY189 中棉所31 Zhongmiansuo 31 河南Henan, China
ZY190 中棉所32 Zhongmiansuo 32 河南Henan, China
ZY192 中棉所34 Zhongmiansuo 34 河南Henan, China
ZY193 中棉所35 Zhongmiansuo 35 河南Henan, China
ZY196 中棉所43 Zhongmiansuo 43 河南Henan, China
ZY198 中棉所45 Zhongmiansuo 45 河南Henan, China
ZY199 中棉所49 Zhongmiansuo 49 河南Henan, China
ZY202 中棉所69 Zhongmiansuo 69 河南Henan, China
ZY207 31503 苏联Soviet Union
ZY208 108夫108 fu 苏联Soviet Union
ZY209 52-128 四川Sichuan, China
ZY210 57-681 四川Sichuan, China
ZY211 611波611 bo 苏联Soviet Union
ZY213 NC20B 美国USA
ZY214 SGK棉69 SGKmian 69 河南Henan, China
ZY218 霸王鞭Bawangbian 山西Shanxi, China
ZY219 北农1号Beinong 1 河北Hebei, China
ZY220 宾川373 Binchuan 373 云南Yunnan, China
ZY221 滨棉1号Binmian 1 山东Shandong, China
ZY222 渤棉2号Bomian 2 山东Shandong, China
ZY223 长绒1号Changrong 1 江苏Jiangsu, China
ZY224 常抗棉Changkangmian 江苏Jiangsu, China
ZY225 朝阳棉1号Chaoyangmian 1 辽宁Liaoning, China
ZY229 川棉56 Chuanmian 56 四川Sichuan, China
ZY230 川棉239 Chuanmian 239 四川Sichuan, China
ZY233 大丰30 Dafeng 30 江苏Jiangsu, China
ZY234 岱字棉Deltapine cotton 美国USA
ZY235 岱字棉14 Deltapine cotton 14 美国USA
ZY236 岱字棉16 Deltapine cotton 16 美国USA
ZY237 德夏棉1号Dexiamian 1 美国USA
ZY238 德字棉531 Dezimian 531 美国USA
ZY239 敦棉1号Dunmian 1 甘肃Gansu, China
ZY240 敦棉2号Dunmian 2 甘肃Gansu, China
ZY243 富棉289 Fumian 289 河南Henan, China
ZY244 赣棉1号Ganmian 1 江西Jiangxi, China
ZY245 赣棉2号Ganmian 2 江西Jiangxi, China
ZY250 赣棉13 Ganmian 13 江西Jiangxi, China
ZY252 关农1号Guannong 1 辽宁Liaoning, China
ZY253 光叶岱字棉Guangyedaizimian 美国USA
ZY254 国欣棉3号Guoxinmian 3 河北Hebei, China
ZY256 邯7860 Han 7860 河北Hebei, China
ZY259 邯棉885 Handan 885 河北Hebei, China
ZY260 河南79 Henan 79 河南Henan, China
ZY261 华东6号Huadong 6 江苏Jiangsu, China
ZY263 冀688 Ji 688 河北Hebei, China
ZY264 冀958 Jimian 958 河北Hebei, China
ZY267 冀丰554 Jifeng 554 山东Shandong, China
ZY268 冀棉1号Jimian 1 山东Shandong, China
ZY270 冀棉6号Jimian 6 山东Shandong, China
ZY271 冀棉7号Jimian 7 山东Shandong, China
ZY274 冀棉15 Jimian 15 山东Shandong, China
ZY275 冀棉19 Jimian 19 山东Shandong, China
ZY276 冀棉20 Jimian 20 山东Shandong, China
ZY277 冀棉21 Jimian 21 山东Shandong, China
ZY281 冀棉28 Jimian 28 山东Shandong, China
ZY282 冀棉169 Jimian 169 山东Shandong, China
ZY283 晋中169 Jinzhong 169 山西Shanxi, China
ZY285 江苏棉1号Jiangsumian 1 江苏Jiangsu, China
ZY286 江苏棉3号Jiangsumian 3 江苏Jiangsu, China
ZY288 锦棉1号Jinmian 1 辽宁Liaoning, China
ZY289 锦棉2号Jinmian 2 辽宁Liaoning, China
ZY291 锦棉6号Jinmian 6 辽宁Liaoning, China
ZY294 晋棉5号Jinmian 5 山西Shanxi, China
ZY295 晋棉6号Jinmian 6 山西Shanxi, China
ZY297 晋棉9号Jinmian 9 山西Shanxi, China
ZY299 苏棉10号Sumian 10 江苏Jiangsu, China
ZY301 晋棉16 Jinmian 16 山西Shanxi, China
ZY302 晋棉17 Jinmian 17 山西Shanxi, China
ZY304 晋棉21 Jinmian 21 山西Shanxi, China
ZY305 晋棉24 Jinmian 24 山西Shanxi, China
ZY306 晋棉25 Jinmian 25 山西Shanxi, China
ZY307 晋棉26 Jinmian 26 山西Shanxi, China
ZY309 晋棉29 Jinmian 29 山西Shanxi, China
ZY311 晋棉38 Jinmian 38 山西Shanxi, China
ZY314 科遗181 Keyi 181 河北Hebei, China
ZY315 克克1543 Keke 1543 苏联Soviet Union
ZY316 澧县72 Lixian 72 湖南Hunan, China
ZY317 辽棉1号Liaomian 1 辽宁Liaoning, China
ZY318 辽棉3号Liaomian 3 辽宁Liaoning, China
ZY321 辽棉6号Liaomian 6 辽宁Liaoning, China
ZY322 辽棉8号Liaomian 8 辽宁Liaoning, China
ZY323 辽棉12 Liaomian 12 辽宁Liaoning, China
ZY326 辽棉18 Liaomian 18 辽宁Liaoning, China
ZY327 辽阳短节Liaoyangduanjie 辽宁Liaoning, China
ZY329 鲁742 Lu 742 山东Shandong, China
ZY330 鲁K638 LuK 638 山东Shandong, China
ZY331 鲁棉5号Lumian 5 山东Shandong, China
ZY332 鲁棉12 Lumian 12 山东Shandong, China
ZY333 鲁棉14号Lumian 14 山东Shandong, China
ZY335 鲁棉22 Lumian 22 山东Shandong, China
ZY338 鲁棉28 Lumian 28 山东Shandong, China
ZY340 鲁棉32 Lumian 32 山东Shandong, China
ZY343 鲁棉研17号Lumianyan 17 山东Shandong, China
ZY347 鲁棉研27 Lumianyan 27 山东Shandong, China
ZY350 鲁棉研32 Lumianyan 32 山东Shandong, China
ZY352 罗甸铁籽Luodiantiezi 贵州Guizhou, China
ZY354 宁棉1号Ningmian 1 江苏Jiangsu, China
ZY355 宁棉5号Ningmian 5 江苏Jiangsu, China
ZY356 宁棉7号Ningmian 7 江苏Jiangsu, China
ZY357 宁棉12 Ningmian 12 江苏Jiangsu, China
ZY358 宁棉22 Ningmian 22 江苏Jiangsu, China
ZY359 农大94-7 Nongda 94-7 河北Hebei, China
ZY360 农大棉8号Nongdamian 8 河北Hebei, China
ZY361 农垦5号Nongkeng 5 苏联Soviet Union
ZY363 秦荔514 Qinli 514 河北Hebei, China
ZY364 秦远4号Qinyuan 4 陕西Shaanxi, China
ZY367 山农丰抗棉6号Shangnongfengkangmian 6 山东Shandong, China
ZY370 陕2234 Shaan 2234 陕西Shaanxi, China
ZY371 陕3619 Shaan 3619 陕西Shaanxi, China
ZY373 陕棉1号Shaanmian 1 陕西Shaanxi, China
ZY375 陕棉4号Shaanmian 4 陕西Shaanxi, China
ZY377 陕早2786 Shaanzao 2786 陕西Shaanxi, China
ZY378 商丘24 Shangqiu 24 河南Henan, China
ZY380 司1470 Si1470 苏联Soviet Union
ZY381 斯字棉2B Stoneville 2B 美国USA
ZY384 泗棉4号Simian 4 江苏Jiangsu, China
ZY385 泗阳331 Siyang 331 江苏Jiangsu, China
ZY389 苏棉11 Sumian 11 江苏Jiangsu, China
ZY394 苏棉18 Sumian 18 江苏Jiangsu, China
ZY396 苏棉20 Sumian 20 江苏Jiangsu, China
ZY397 苏棉21 Sumian 21 江苏Jiangsu, China
ZY398 苏棉22 Sumian 22 江苏Jiangsu, China
ZY401 宛棉5号Wanmian 5 河南Henan, China
ZY402 皖棉8号Wanmian 8 安徽Anhui, China
ZY403 皖棉17号Wanmian 17 安徽Anhui, China
ZY404 湘4108 Xiang 4108 湖南Hunan, China
ZY405 湘棉10号Xiangmian 10 湖南Hunan, China
ZY406 湘棉11 Xiangmian 11 湖南Hunan, China
ZY408 协作2号Xiezuo 2 浙江Zhejiang, China
ZY409 新陆201 Xinlu 201 南疆Southern Xinjiang, China
ZY410 新陆早2号Xinluzao 2 北疆Northern Xinjiang, China
ZY412 新陆早4号Xinluzao 4 北疆Northern Xinjiang, China
ZY413 新陆早5号Xinluzao 5 北疆Northern Xinjiang, China
ZY415 新陆早11 Xinluzao 6 北疆Northern Xinjiang, China
ZY416 新陆早19 Xinluzao 7 北疆Northern Xinjiang, China
ZY420 新陆早30 Xinluzao 8 北疆Northern Xinjiang, China
ZY421 新陆早31 Xinluzao 9 北疆Northern Xinjiang, China
ZY422 新陆早36 Xinluzao 10 北疆Northern Xinjiang, China
ZY425 新陆中7号Xinluzhong 7 南疆Southern Xinjiang, China
ZY428 新陆中14 Xinluzhong 14 南疆Southern Xinjiang, China
ZY429 新陆中15 Xinluzhong 15 南疆Southern Xinjiang, China
ZY431 新陆中18 Xinluzhong 18 南疆Southern Xinjiang, China
ZY434 新研96-48 Xinyan 96-48 河南Henan, China
ZY436 鑫秋4号Xinqiu 4 山东Shandong, China
ZY437 徐棉18 Xumian 18 江苏Jiangsu, China
ZY439 徐州219 Xumian 219 江苏Jiangsu, China
ZY440 徐州514 Xuzhou 514 江苏Jiangsu, China
ZY441 盐棉1号Yanmian 1 四川Sichuan, China
ZY443 银山8号Yishan 8 河南Henan, China
ZY445 豫79-10 Yu 79-10 河南Henan, China
ZY446 豫抗1号Yukang 1 河南Henan, China
ZY447 豫棉1号Yumian 1 河南Henan, China
ZY449 豫棉5号Yumian 5 河南Henan, China
ZY451 豫棉7号Yumian 7 河南Henan, China
ZY452 豫棉8号Yumian 8 河南Henan, China
ZY454 豫棉14 Yumian 14 河南Henan, China
ZY458 豫棉20 Yumian 20 河南Henan, China
ZY461 豫棉19 Yumian 19 河南Henan, China
ZY463 粤陆2号Yuelu 2 广东Guangdong, China
ZY464 运1729 Yun 1729 山西Shanxi, China
ZY465 运87-509 Yun 87-509 山西Shanxi, China
ZY467 浙棉9号Zhemian 9 浙江Zhejiang, China
ZY468 浙棉11号Zhemian 11 浙江Zhejiang, China
ZY469 郑农棉4号Zhengnongmian 4 河南Henan, China
ZY470 斯517 Si 517 美国USA
ZY473 新陆早7号Xinluzao 7 北疆Northern Xinjiang, China
ZY478 新陆早15号Xinluzao 15 北疆Northern Xinjiang, China
ZY482 新陆早22号Xinluzao 22 北疆Northern Xinjiang, China
ZY484 新陆早25号Xinluzao 25 北疆Northern Xinjiang, China
ZY485 新陆早26号Xinluzao 26 北疆Northern Xinjiang, China
ZY487 新陆早28号Xinluzao 28 北疆Northern Xinjiang, China
ZY497 新陆早41号Xinluzao 41 北疆Northern Xinjiang, China
ZY501 新陆早46号Xinluzao 46 北疆Northern Xinjiang, China
ZY503 新陆早48号Xinluzao 48 北疆Northern Xinjiang, China
ZY506 中植棉2号Zhongzhimian 2 北疆Northern Xinjiang, China
ZY507 鄂棉22 Emian 22 湖北Hubei, China
ZY510 新陆中34 Xinluzhong 34 南疆Southern Xinjiang, China
ZY511 新陆中13 Xinluzhong 13 南疆Southern Xinjiang, China
ZY514 新陆中8号Xinluzhong 8 南疆Southern Xinjiang, China
ZY515 新陆中12 Xinluzhong 12 南疆Southern Xinjiang, China
ZY517 新陆中20 Xinluzhong 20 南疆Southern Xinjiang, China
ZY521 新陆中40号Xinluzhong 40 南疆Southern Xinjiang, China
ZY522 新陆中41号Xinluzhong 41 南疆Southern Xinjiang, China

Table 1

Root phenotypic characters of male parent (3-79) and female parent material (Emian 22) of the imported line population"

3-79 鄂棉22 Emian 22
根鲜重RFW (g) 1.056±0.206 1.379 0.881 0.027 0.791±0.077 0.877 0.668
主根长MRL (cm) 30.040±3.179 33.640 26.180 7.350E-05 19.350±0.472 20.190 19.060
根干重RDW (g) 0.065±0.013 0.080 0.052 0.012 0.044±0.006 0.052 0.038
侧根夹角LRA (°) 63.562±4.826 67.850 57.710 0.632 64.764±2.435 68.420 62.490

Fig. 1

Root phenotype of the two parents of the imported populations A: two stock plants: two pieces of true leaves; B: root phenotype of the Emian 22 and 3-79. Scale bars: 2 cm."

Table 2

Descriptive statistics of root phenotypic characters of natural and imported populations"

自然群体Natural population 导入系群体CSSLs
CV (%)
CV (%)
根鲜重RFW (g) 0.468 0.952 0.163 0.148 31.62 0.592 1.027 0.271 0.198 33.45
主根长MRL (cm) 16.674 26.167 5.735 4.162 24.96 21.717 31.614 15.024 5.743 26.44
根干重RDW (g) 0.026 0.063 0.009 0.009 34.62 0.034 0.066 0.022 0.011 32.35
侧根夹角LRA (°) 67.774 86.467 54.462 5.624 8.30 57.234 77.319 37.688 14.953 26.13

Fig. 2

Histograms of frequency distribution of root phenotypic traits of natural populations and introgression population A: nature population; B: introgression population. Abbreviations are the same as those given in Table 1."

Table S2

Natural population description statistics"

Mean SEM
Skewness SEM
Kurtosis SEM
根鲜重RFW 0.468 0.010 0.148 0.630 0.164 0.407 0.327
根干重RDW 0.026 0.001 0.009 0.798 0.161 1.519 0.320
主根长MRL 16.674 0.281 4.162 -0.319 0.164 -0.257 0.327
侧根夹角LRA 67.774 0.379 5.624 0.321 0.164 0.330 0.327

Table S3

Natural population normality test"

根鲜重RFW 0.068 220 0.015 0.975 220 0.001
根干重RDW 0.070 220 0.011 0.961 220 0.000
主根长MRL 0.069 220 0.012 0.986 220 0.034
侧根夹角LRA 0.061 220 0.044 0.989 220 0.107

Table S4

Import system group description statistics test"

均值统计量Mean 均值标准误
Mean SEM
Skewness SEM
Kurtosis SEM
根鲜重RFW 0.634 0.007 0.126 0.266 0.144 -0.032 0.286
根干重RDW 0.037 0.001 0.007 0.524 0.144 1.016 0.286
主根长MRL 22.859 0.178 3.051 0.088 0.142 -0.244 0.284
侧根夹角LRA 60.383 0.393 6.716 -2.629 0.143 22.009 0.284

Table S5

Group normality test of importing system"

根鲜重RFW 0.040 271 0.200* 0.994 271 0.339
根干重RDW 0.048 271 0.200* 0.981 271 0.001
主根长MRL 0.041 271 0.200* 0.996 271 0.779
侧根夹角LRA 0.047 271 0.200* 0.986 271 0.010

Fig. S1

Natural population normality test Q-Q diagram"

Fig. S2

Import system group normality test Q-Q diagram"

Table 3

Variance of natural population by principal component analysis"

初始特征值Initial eigenvalue 提取平方和载入Sum of squares extracted
Variance (%)
Accumulation (%)
Variance (%)
Accumulation (%)
根鲜重RFW 1.641 41.036 41.036 1.641 41.036 41.036
根干重RDW 0.959 23.971 65.007
主根长MRL 0.869 21.724 86.731
侧根夹角LRA 0.531 13.269 100.000

Table 4

Correlation matrix and score coefficient of each trait in natural population"

根鲜重RFW 1.000 0.156 0.461 -0.194 0.488
根干重RGW 0.156 1.000 0.071 -0.077 0.209
主根长MRL 0.461 0.071 1.000 -0.200 0.474
侧根夹角LRA -0.194 -0.077 -0.200 1.000 -0.320

Table S6

Natural population cluster analysis materials"

Material number
Heavy RFW
I (38) ZY451, ZY286, ZY440, ZY343, ZY163, ZY190, ZY196, ZY416, ZY254, ZY090, ZY263, ZY037, ZY126, ZY047, ZY057, ZY515, ZY223, ZY244, ZY305, ZY021, ZY238, ZY067, ZY252, ZY406, ZY211, ZY318, ZY281, ZY329, ZY207, ZY032, ZY437, ZY098, ZY139, ZY309, ZY237, ZY276, ZY084, ZY123
II (46) ZY173, ZY065, ZY370, ZY294, ZY161, ZY354, ZY381, ZY352, ZY006, ZY389, ZY514, ZY413, ZY443, ZY291, ZY373, ZY449, ZY288, ZY073, ZY179, ZY052, ZY522, ZY268, ZY253, ZY048, ZY420, ZY127, ZY145, ZY445, ZY458, ZY013, ZY507, ZY220, ZY157, ZY074, ZY396, ZY101, ZY178, ZY465, ZY025, ZY102, ZY264, ZY035, ZY363, ZY326, ZY106, ZY468
III (19) ZY377, ZY506, ZY315, ZY011, ZY083, ZY144, ZY275, ZY107, ZY085, ZY066, ZY213, ZY398, ZY409, ZY050, ZY304, ZY240, ZY162, ZY321, ZY122
Medium RFW
IV (26) ZY360, ZY112, ZY289, ZY415, ZY081, ZY219, ZY470, ZY422, ZY034, ZY168, ZY380, ZY307, ZY040, ZY338, ZY316, ZY517, ZY230, ZY202, ZY171, ZY199, ZY261, ZY375, ZY421, ZY001, ZY347, ZY158
V (45) ZY070, ZY295, ZY136, ZY134, ZY402, ZY222, ZY002, ZY110, ZY408, ZY224, ZY184, ZY434, ZY214, ZY014, ZY045, ZY010, ZY361, ZY235, ZY385, ZY364, ZY111, ZY356, ZY259, ZY156, ZY497, ZY340, ZY428, ZY464, ZY311, ZY138, ZY441, ZY331, ZY447, ZY121, ZY431, ZY394, ZY503, ZY210, ZY301, ZY521, ZY233, ZY026, ZY042, ZY143, ZY243
VI (21) ZY108, ZY267, ZY221, ZY080, ZY367, ZY116, ZY306, ZY113, ZY041, ZY147, ZY031, ZY169, ZY274, ZY277, ZY105, ZY439, ZY378, ZY036, ZY245, ZY094, ZY271
VII (4) ZY192, ZY487, ZY008, ZY446
VIII (12) ZY384, ZY030, ZY330, ZY454, ZY218, ZY323, ZY452, ZY425, ZY188, ZY302, ZY038, ZY097
IX (9) ZY088, ZY256, ZY335, ZY397, ZY043, ZY189, ZY208, ZY327, ZY154

Fig. 3

Root architecture classification of natural population Abbreviations are the same as those given in Table 1."

Table 5

Variances of introgression population by principal component analysis"

初始特征值Initial eigenvalue 提取平方和载入Sum of squares extracted
Variance (%)
Accumulation (%)
Variance (%)
Accumulation (%)
根干重RDW 2.229 55.726 55.726 2.229 55.726 55.726
根鲜重RFW 1.031 25.777 81.503 1.031 25.777 81.503
主根长MRL 0.643 16.073 97.576
侧根夹角LRA 0.097 2.424 100.000

Table 6

Correlation matrix and score coefficient of each trait in the introgression population"

根鲜重RFW 0.898 1.000 0.491 -0.006 0.426
主根长MRL 0.409 0.491 1.000 -0.112 0.310
根干重RDW 1.000 0.898 0.409 0.025 0.414
侧根夹角LRA 0.025 -0.006 -0.112 1.000 -0.220

Table S7

Introduce the material table of system cluster analysis"

Material number
Heavy RFW
I (10) M134, M001, M191, M294, M005, M058, M285, M324, M087, M245

II (25)
M008, M062, M250, M065, M289, M203, M241, M235, M311, M216, M182, M201, M217, M310, M316, M119, M190, M124, M323, M138, M014, M295, M126, M306, M224
III (28) M214, M043, M013, M253, M009, M104, M112, M301, M226, M113, M211, M141, M242, M299, M002, M105, M208, M238, M284, M317, M265, M086, M261, M192, M290, M102, M170, M003
Medium RFW
IV (44) M172, M020, M174, M082, M308, M227, M185, M267, M282, M030, M264, M210, M155, M196, M315, M137, M044, M220, M246, M280, M319, M179, M187, M089, M121, M231, M212, M035, M033, M146, M256, M283, M298, M230, M140, M281, M175, M271, M313, M149, M154, M221, M132, M084
V (17) M034, M225, M100, M056, M171, M291, M015, M047, M229, M079, M275, M037, M133, M207, M288, M142, M314
VI (31) M111, M257, M157, M183, M243, M073, M222, M151, M061, M094, M255, M052, M130, M115, M028, M223, M218, M012, M278, M011, M232, M254, M305, M228, M045, M108, M017, M006, M240, M021, M198
VII (32) M300, M219, M215, M118, M325, M143, M270, M148, M139, M204, M136, M292, M168, M312, M274, M268, M125, M320, M131, M165, M049, M076, M069, M193, M276, M116, M054, M122, M194, M273, M205, M123
VIII (57) M004, M263, M259, M024, M098, M318, M074, M110, M297, M233, M213, M109, M251, M066, M303, M158, M117, M046, M078, M085, M023, M309, M189, M163, M018, M252, M064, M144, M129, M169, M101, M272, M053, M152, M097, M099, M091, M106, M019, M077, M083, M269, M090, M147, M095, M266, M075, M296, M060, M262, M302, M173, M135, M103, M068, M070, M164
IX (29) M159, M286, M055, M048, M010, M156, M162, M307, M277, M029, M040, M072, M039, M128, M016, M057, M071, M059, M050, M234, M025, M166, M007, M153, M067, M027, M167, M096, M176

Fig. 4

Root architecture classification of introgression population Abbreviations are the same as those given in Table 1."

Fig. 5

ΔK based on population structure analysis, LD decay and population structure of the natural population A: ΔK with K to determine the optimal number of subgroups; B: attenuation of linkage disequilibrium in the cotton root genome; C: the population structure of the natural population."

Fig. 6

Manhattan map for genome-wide association analysis of root related traits in natural populations Abbreviations are the same as those given in Table 1."

[1] Snapp S, Koide R, Lynch J. Exploitation of localized phosphorus- patches by common bean roots. Plant Soil, 1995, 177:211-218.
doi: 10.1007/BF00010127
[2] Nicotra A, Babicka N, Westoby M. Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia, 2002, 130:136-145.
doi: 10.1007/s004420100788 pmid: 28547018
[3] 梁泉, 廖红, 严小龙. 植物根构型的定量分析. 植物学通报, 2007, 24:695-702.
Liang Q, Liao H, Yan X L. Quantitative analysis of plant root architecture. Chin Bull Bot, 2007, 24:695-702 (in Chinese with English abstract).
[4] Zhang B W. Plant root research methods and trends. Agric Sci Technol, 2017, 18:2295-2298.
[5] 严小龙, 廖红, 杨茂. 根构型分析在豆科作物磷效率研究中的应用. 中国农业科技导报, 1999, (1):40-43.
Yan X L, Liao H, Yang M. Application of root architecture analysis in the study of phosphorus efficiency of leguminous crops. Rev China Agric Sci Technol, 1999, (1):40-43 (in Chinese).
[6] Bonser A M, Lynch J, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol, 1996, 132:281-288.
pmid: 11541132
[7] 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 崔暐文, 巩鹏涛, 方宣钧. 幼苗期大豆根系性状的遗传分析与QTL检测. 中国农业科学, 2014, 47:1681-1691.
Liang H Z, Yu Y L, Yang H Q, Zhang H Y, Dong W, Cui W W, Gong P T, Fang X J. Genetic and QTL analysis of root traits at seedling stage in soybean [Glycine max (L.) Merr.]. Sci Agric Sin, 2014, 47:1681-1691 (in Chinese with English abstract).
[8] 蒋奇峰. 不同抗旱型玉米苗期根系性状的遗传分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2015.
Jiang Q F. Analysis on the Heredity of Root Traits during Drought-resistant Maize Seedling. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract).
[9] Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015, 16:47.
doi: 10.1186/s12864-015-1226-9
[10] Beyer S, Daba S, Tyagi P, Bockelman H, Brown-Guedira G, Mohammadi M. Loci and candidate genes controlling root traits in wheat seedlings—a wheat root GWAS. Funct Integr Genomics, 2019, 19:91-107.
doi: 10.1007/s10142-018-0630-z
[11] 王杰. 甘蓝型油菜根系性状遗传基础解析. 中国农业科学院博士学位论文, 北京 2017.
Wang J. Genetic Basis of Root Traits in Rapeseed (Brassica napus L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract).
[12] 陈贵菊, 靳义荣, 刘彩云, 贾德新, 樊庆琦, 刘金栋, 刘鹏. 普通小麦根系建成相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21:975-983.
Chen G J, Jin Y R, Liu C Y, Jia D X, Fan Q Q, Liu J D, Liu P. Genome-wide association study of root system architecture related traits in common wheat (Triticum aestivum L.). J Plant Genet Resour, 2020, 21:975-983 (in Chinese with English abstract).
[13] 张忠波, 刘贞贞, 平文超, 李洪民, 王安录, 李洪芹, 柴卫东. 棉花产量、纤维品质育种主要方法的简要剖析. 农业科技通讯, 2020, (7):279-281.
Zhang Z B, Liu Z Z, Ping W C, Li H M, Wang A L, Li H Q, Chai W D. Brief analysis of the main breeding methods of cotton yield and fiber quality. Bull Agric Sci Technol, 2020, (7):279-281 (in Chinese).
[14] Fry E L, Evans A L, Sturrock C J, Bullock J M, Bardgett R D. Root architecture governs plasticity in response to drought. Plant Soil, 2018, 433:189-200.
doi: 10.1007/s11104-018-3824-1
[15] Maurel C, Nacry P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat Plants, 2020, 6:744-749.
doi: 10.1038/s41477-020-0684-5
[16] 张吴平, 李保国. 棉花根系生长发育的虚拟研究. 系统仿真学报, 2006, 18:283-286.
Zhang W P, Li B G. Three-dimensional model simulating development and growth of cotton root system. J Syst Simul, 2006, 18:283-286 (in Chinese with English abstract).
[17] Zhu D, Li X M, Wang Z W, You C Y, Nie X H, Sun J, Zhang X L, Zhang D W, Lin Z X. Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton. BMC Genomics, 2020, 21:431.
doi: 10.1186/s12864-020-06800-x pmid: 32586283
[18] Li B Q, Chen L, Sun W N, Wu D, Wang M J, Yu Y, Chen G X, Yang W N, Lin Z X, Zhang X L, Duan L F, Yang X Y. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnol J, 2020, 18:2533-2544.
doi: 10.1111/pbi.v18.12
[19] Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y, C Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51:224-229.
doi: 10.1038/s41588-018-0282-x
[20] Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25:14.
doi: 10.1093/bioinformatics/btn569
[21] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20:1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199
[22] Joost S, Kalbermatten M, Bonin A. Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Mol Ecol Resour, 2008, 8:957-960.
doi: 10.1111/men.2008.8.issue-5
[23] Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigasciense, 2015, 4:7.
[24] Hubisz M J, Falush D, Stephens M, Pritchard J K. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour, 2009, 9:1322-1332.
doi: 10.1111/men.2009.9.issue-5
[25] Earl D A, Von Holdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4:359-361.
doi: 10.1007/s12686-011-9548-7
[26] Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21:263-265.
pmid: 15297300
[27] Olivier J, Vekemans X. SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Resour, 2002, 2:618-620.
[28] Abdurakhmonov I Y, Saha S, Jenkins J N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genomics, 2008, 92:478-487.
doi: 10.1016/j.ygeno.2008.07.013 pmid: 18801424
[29] 张爱良, 苗果园, 王建平. 作物根系与水分的关系. 作物研究, 1997, (2):6-8.
Zhang A L, Miao G Y, Wang J P. The relationship between crop roots and water. Crop Res, 1997, (2):6-8 (in Chinese).
[30] 邓旭阳, 周淑秋, 郭新宇, 赵春江, 王纪华. 玉米根系几何造型研究. 工程图学学报, 2004, 25(4):62-66.
Deng X Y, Zhou S Q, Guo X Y, Zhao C J, Wang J H. Study on the geometry modeling for corn root system. J Eng Graph, 2004, 25(4):62-66 (in Chinese with English abstract).
[31] Brunel-Saldias N, Ferrio J P, Elazab A, Orellana M, Del Pozo A. Root architecture and functional traits of Spring Wheat under contrasting water regimes. Fronit Plant Sci, 2020, 11:581140.
[32] 林涛, 汤秋香, 郝卫平, 吴凤全, 雷蕾, 严昌荣, 何文清, 梅旭荣. 地膜残留量对棉田土壤水分分布及棉花根系构型的影响. 农业工程学报, 2019, 35(19):117-125.
Lin T, Tang Q X, Hao W P, Wu F Q, Lei L, Yan C R, He W Q, Mei X R. Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition. Trans CSAE, 2019, 35(19):117-125 (in Chinese with English abstract).
[33] 潘晓迪, 张颖, 邵萌, 马黎明, 郭新宇. 作物根系结构对干旱胁迫的适应性研究进展. 中国农业科技导报, 2017, 19(2):51-58.
Pan X D, Zhang Y, Shao M, Ma L M, Guo X Y. Research progress on adaptive responses of crop root structure to drought stress. J Agric Sci Technol, 2017, 19(2):51-58 (in Chinese with English abstract).
[34] Shahzad A N, Rizwan M, Asghar M G, Qureshi M K, Bukhari S A H, Kiran A, Wakeel A. Early maturing Bt cotton requires more potassium fertilizer under water deficiency to augment seed-cotton yield but not lint quality. Sci Rep, 2019, 9:7378.
doi: 10.1038/s41598-019-43563-2 pmid: 31089147
[35] Ayele A G, Dever J K, Kelly C M, Sheehan M, Morgan V, Payton P. Responses of upland cotton (Gossypium hirsutum L.) lines to irrigated and rainfed conditions of texas high plains. Plants, 2020, 9:1598.
doi: 10.3390/plants9111598
[36] 刘婷婷, 滕元旭, 杨涛, 李斌, 万素梅, 陈国栋, 张伟. 玉米‖棉花的作物生理特性及根系特征研究. 干旱地区农业研究, 2019, 37(6):160-165.
Liu T T, Teng Y X, Yang T, Li B, Wan S M, Chen G D, Zhang W. Study on physiological and root morphological characteristics of maize and cotton intercropping. Agric Res Arid Areas, 2019, 37(6):160-165 (in Chinese with English abstract).
[37] 张小琼, 郭剑, 代书桃, 任元, 李凤艳, 刘京宝, 李永祥, 张登峰, 石云素, 宋燕春, 黎裕, 王天宇, 邹华文, 李春辉. 玉米花期根系结构的表型变异与全基因组关联分析. 中国农业科学, 2019, 52:2391-2405.
Zhang X Q, Guo J, Dai S T, Ren Y, Li F Y, Liu J B, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Wang T Y, Zou H W, Li C H. Phenotypic variation and genome-wide association analysis of root architecture at maize flowering stage. Sci Agric Sin, 2019, 52:2391-2405 (in Chinese with English abstract).
[38] Li X, Guo Z, Lyu Y, Cen X, Ding X, Wu H, Li X, Huang J, Xiong L. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet, 2017, 13:e1006889.
[39] Deolu-Ajayi A O, Meyer A J, Haring M A, Julkowska M M, Testerink C. Genetic loci associated with early salt stress responses of roots. iScience, 2019, 21:458-473.
doi: S2589-0042(19)30423-7 pmid: 31707259
[40] Deja-Muylle A, Parizot B, Motte H, Beeckman T. Exploiting natural variation in root system architecture via genome-wide association studies. J Exp Bot, 2020, 71:2379-2389.
doi: 10.1093/jxb/eraa029 pmid: 31957786
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[3] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[4] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[5] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[6] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[7] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[8] ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137.
[9] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[10] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[11] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[12] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[13] MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238.
[14] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[15] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
Full text



No Suggested Reading articles found!