Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1091-1102.doi: 10.3724/SP.J.1006.2022.14063
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YU Chun-Miao1,3(), ZHANG Yong2, WANG Hao-Rang3, YANG Xing-Yong2, DONG Quan-Zhong2, XUE Hong2, ZHANG Ming-Ming2, LI Wei-Wei2, WANG Lei2, HU Kai-Feng2, GU Yong-Zhe3, QIU Li-Juan1,3,*(
)
[1] |
Wilcox J R, Sediyama T. Interrelationships among height, lodging and yield in determinate and indeterminate soybeans. Euphytica, 1981, 30:323-326.
doi: 10.1007/BF00033993 |
[2] | 李灿东, 郭泰, 王志新, 郑伟, 张振宇, 赵海红, 郭美玲, 李志民. 大豆耐密性状与产量的相关分析. 大豆科学, 2019, 38:862-867. |
Li C D, Guo T, Wang Z X, Zheng W, Zhang Z Y, Zhao H H, Guo M L, Li Z M. Correlation analysis between density tolerance and yield of soybean. Soybean Sci, 2019, 38:862-867 (in Chinese with English abstract). | |
[3] |
Mansur L M, Orf J, Lark K G. Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant in breds of soybean [Glycine max.(L). Merr.]. Theor Appl Genet, 1993, 86:914-918.
doi: 10.1007/BF00211041 pmid: 24193997 |
[4] |
Rossi M, Orf J H, Liu L J. Genetic basis of soybean adaptation to north American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses. Theor Appl Genet, 2013, 126:1809-1823.
doi: 10.1007/s00122-013-2094-9 |
[5] |
Kabelka E A, Diers B W, Fehr W R. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44:784-791.
doi: 10.2135/cropsci2004.7840 |
[6] | Diers B W, Specht J, Rainey K M, Cregan P, Song Q, Ramasubramanian V, Graef G, Nelson R, Schapaugh W, Wang D, Shannon G, McHale L, Kantartzi S K, Xavier A, Mian R, Stupar R M, Michno J M, An Y C, Goettel W, Ward R, Fox C, Lipka A E, Hyten D, Cary T, Beavis W D. Genetic architecture of soybean yield and agronomic traits. G3: Genes Genom Genet, 2018, 8:3367-3375. |
[7] |
Palomeque L, Liu L J, Li W B, Hedges B R, Cober E R, Smid M P, Lukens L, Rajcan I. Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans. Theor Appl Genet, 2010, 120:997-1003.
doi: 10.1007/s00122-009-1227-7 pmid: 20012262 |
[8] |
Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41:493-509.
doi: 10.2135/cropsci2001.412493x |
[9] |
Li D D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci, 2008, 48:571-581.
doi: 10.2135/cropsci2007.06.0361 |
[10] |
Lee S, Jun T H, Michel A P, Rouf Mian M A. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica, 2015, 203:521-532.
doi: 10.1007/s10681-014-1252-8 |
[11] |
Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean [Glycine max(L). Merr.] genetic map and their association with EST markers. Theor Appl Genet, 2004, 108:1131-1139.
pmid: 15067400 |
[12] |
Kim K S, Diers B W, Hyten D L, Rouf Mian M A, Shannon J G, Nelson R L. Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations. Theor Appl Genet, 2012, 125:1353-1369.
doi: 10.1007/s00122-012-1944-1 pmid: 22869284 |
[13] |
Palomeque L, Liu L J, Li W B, Hedges B, Cober E R, Rajcan I. QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted × high-yielding exotic soybean lines. Theor Appl Genet, 2009, 119:429-436.
doi: 10.1007/s00122-009-1048-8 pmid: 19462149 |
[14] | 周蓉, 王贤智, 陈海峰, 张晓娟, 单志慧, 吴学军, 蔡淑平, 邱德珍, 周新安, 吴江生. 大豆倒伏性及其相关性状的QTL分析. 作物学报, 2009, 35:57-65. |
Zhou R, Wang X Z, Chen H F, Zhang X J, Shan Z H, Wu X J, Cai S Z, Qiu D Z, Zhou X A, Wu J S. QTL Analysis of lodging and related traits in soybean. Acta Agron Sin, 2009, 35:57-65 (in Chinese with English abstract). | |
[15] |
Zhang X L, Wang W B, Guo N, Zhang Y Y, Bu Y P, Zhao J M, Xing H. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics, 2018, 19:226-237.
doi: 10.1186/s12864-018-4582-4 |
[16] |
Chen L Y, Nan H Y, Kong L P, Yue L, Yang H, Zhao Q S, Li H Y, Cheng Q, Lu S J, Kong F J, Liu B H, Dong L D. Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, 2020, 62:1868-1879.
doi: 10.1111/jipb.v62.12 |
[17] |
Yang X, Li X, Shan J M, Li Y H, Zhang Y T, Wang Y H, Li W B, Zhao L. Overexpression of GmGAMYB accelerates the transition to flowering and increases plant height in soybean. Front Plant Sci, 2021, 12:667242.
doi: 10.3389/fpls.2021.667242 pmid: 34040624 |
[18] |
Li Z F, Guo Y, Ou L, Hong H L, Wang J, Liu Z X, Guo B F, Zhang L J, Qiu L J. Identification of the dwarf gene GmDW1 in soybean(Glycine max L.) by combining mapping-by-sequencing and linkage analysis. Theor Appl Genet, 2018, 131:1001-1016.
doi: 10.1007/s00122-017-3044-8 |
[19] |
Cheng Q, Dong L D, Su T, Li T Y, Gan Z R, Nan H Y, Lu S L, Fang C, Kong L P, Li H Y, Hou Z H, Kou K, Tang Y, Lin X Y, Zhao X H, Chen L Y, Liu B H, Kong F J. CRISPR/ Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol, 2019, 19:562-572.
doi: 10.1186/s12870-019-2145-8 pmid: 31852439 |
[20] |
Zhang H, Zhang D, Han S, Zhang X, Yu D. Identification and gene mapping of a soybean chlorophyll-deficient mutant. Plant Breed, 2011, 130:133-138.
doi: 10.1111/pbr.2011.130.issue-2 |
[21] | Chen K, Liu W C, Li X W, Li H Y. GmGASA32 overexpression of promoted soybean height by interacting with GmCDC25. Plant Signal Behav, 2021, 16:e1855017. |
[22] | Weigel D, Glazebrook J. Dellaporta miniprep for plant DNA isolation. Cold Spring Harb Protoc, 2009, 3(4):1-2. |
[23] | 王建康. 数量性状基因的完备区间作图方法. 作物学报, 2009, 35:239-245. |
Wang J W. Inclusive composite interval mapping of guantitative trait genes. Acta Agron Sin, 2009, 35:239-245 (in Chinese with English abstract). | |
[24] |
McCouch S R, Chen X, Panaud O, Temnykb S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35:89-99.
pmid: 9291963 |
[25] |
Pathan S M, Vuong T, Clark T, Lee J D, Shannon J G, Roberts A C, Ellersieck M A, Burton J W, Cregan P B, Hyten D L, Nguyen H T, Sleper D A. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci, 2013, 53:765-774.
doi: 10.2135/cropsci2012.03.0153 |
[26] |
Li D M, Sun M M, Han Y P, Teng W L, Li W B. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica, 2010, 172:49-57.
doi: 10.1007/s10681-009-0036-z |
[27] |
Chapman A, Pantalone V. R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica, 2003, 129:387-393.
doi: 10.1023/A:1022282726117 |
[28] |
Hu W F, Yan H W, Lou S S, Pan F, Wang Y, Xiang Y. Genome-wide analysis of poplar SAUR gene family and expression profiles under cold, polyethylene glycol and indole-3-acetic acid treatments. Plant Physiol Biochem, 2018, 128:50-65.
doi: 10.1016/j.plaphy.2018.04.021 |
[29] |
Gil P, Green P J. Regulatory activity exerted by the SAUR-AC1 promoter region in transgenic plants. Plant Mol Biol, 1997, 34:803-808.
pmid: 9278170 |
[30] |
Aleman F, Yazaki J, Lee M, Takahashi Y, Kim A Y, Li Z, Kinoshita T, Ecker J R, Schroeder J I. An ABA-increased interaction of thePYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling. Sci Rep, 2016, 6:28941-28950.
doi: 10.1038/srep28941 |
[31] | 杨琪. 大豆遗传基础拓宽问题. 大豆科学, 1993, (1):75-80. |
Yang Q. The problem of broadening the genetic basis of soybean. Soybean Sci, 1993, (1):75-80 (in Chinese). | |
[32] | 王彩洁, 孙石, 吴宝美, 常汝镇, 韩天富. 20世纪40年代以来中国大面积种植大豆品种的系谱分析. 中国油料作物学报, 2013, 35:246-252. |
Wang C J, Sun S, Wu B M, Chang R Z, Han T F. Pedigree analysis of soybean varieties planted in large areas in China since the 1940s. J Oil Crop Sci, 2013, 35:246-252 (in Chinese with English abstract). | |
[33] | Tan C, Han Z M, Yu H H, Zhan W, Xie W B, Chen X, Zhao H, Zhou F S, Xing Y Z. QTL scanning for rice yield using a whole genome SNP array. Genet Genomics, 2013, 40:629-638. |
[34] |
Chen H T, Kumawat G, Yan Y L, Fan B J, Xu D H. Mapping and validation of a major QTL for primary root length of soybean seedlings grown in hydroponic conditions. BMC Genomics, 2021, 22:132-140.
doi: 10.1186/s12864-021-07445-0 |
[35] |
Li H Y, L H C, Han Y P, Wu X X, Teng W L, Liu G F, Li W B. Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theor Appl Genet, 2010, 120:1405-1413.
doi: 10.1007/s00122-010-1264-2 |
[36] |
Ma Y J, Kan G Z, Zhang X N, Wang Y L, Zhang W, Du H Y, Yu D Y. Quantitative trait loci (QTL) mapping for glycinin and β-conglycinin contents in soybean (Glycine max L. Merr.). Agric Food Chem, 2016, 64:3473-3483.
doi: 10.1021/acs.jafc.6b00167 |
[37] |
Li X Y, Xue H, Zhang K X, Li W B, Fang Y L, Qi Z Y, Wang Y, Tian X C, Song J, Li W X, Ning H L. Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population. J Agric Sci, 2019, 157:659-675.
doi: 10.1017/S0021859620000040 |
[38] |
Choi I, Hyten D L, Matukumalli L K, Song Q J, Chaky J M, Quigley C V, Chase K, Lark K G, Reiter R S, Yoon M, Hwang E, Yi S, Young N D, Shoemaker R C, Tassell C P, Specht J E, Cregan P B. A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics, 2007, 176:685-696.
doi: 10.1534/genetics.107.070821 |
[39] |
Liu N X, Li M, Hu X B, Ma Q B, Ma Y H, Tan Z Y, Xia Q J, Zhang G Y, Nian H. Construction of high-density genetic map and QTL mapping of yield-related and two quality traits in soybean RILs population by RAD-sequencing. BMC Genomics, 2017, 18:466-478.
doi: 10.1186/s12864-017-3854-8 |
[40] |
Zhang X, Hina A, Song S Y, Kong J J, Bhat J A, Zhao T J. Whole-genome mapping identified novel “QTL hotspots regions” for seed storability in soybean (Glycine max L.). BMC Genomics, 2019, 20:499-512.
doi: 10.1186/s12864-019-5897-5 pmid: 31208334 |
[41] |
Li B, Fan S X, Yu F K, Chen Y, Zhang S R, Han F X, Yan S R, Wang L Z, Sun J M. High-resolution mapping of QTL for fatty acid composition in soybean using specific-locus amplified fragment sequencing. Theor Appl Genet, 2017, 130:1467-1479.
doi: 10.1007/s00122-017-2902-8 |
[42] |
Silva M P, Klepadlo M, Gbur E E, Pereira A, Mason R E, Rupe J C, Bluhm B H, Wood L, Mozzoni L A, Chen P Y. QTL mapping of charcoal rot resistance in PI 567562A soybean accession. Crop Sci, 2019, 59:474-479.
doi: 10.2135/cropsci2018.02.0145 |
[43] |
Shim S, Kim M Y, Ha J, Lee Y H, Lee S H. Identification of QTLs for branching in soybean [Glycine max(L.) Merrill]. Euphytica, 2017, 213:225-233.
doi: 10.1007/s10681-017-2016-z |
[44] |
Li X Y, Zhang K X, Sun X, Huang S S, Wang J J, Yang C, Siyal M, Wang C, Guo C L, Hu X Y, Li W X, Ning H L. Detection of QTL and QTN and candidate genes for oil content in soybean using a combination of four-way-RIL and germplasm populations. Crop J, 2020, 8:802-811.
doi: 10.1016/j.cj.2020.07.004 |
[45] |
Wang J, Chu S S, Zhang H R, Zhu Y, Cheng H, Yu D Y. Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep, 2016, 6:20728.
doi: 10.1038/srep20728 |
[46] | Song Q J, Hyten D L, Jia G F, Quigly C V, Fickus E W, Nelson R L, Cregan P B. Development and evaluation of SoySNP50K, a high density genotyping array for soybean. PLoS One, 2013, 8:e54985. |
[47] |
Song Q J, Jenkins J, Jia G F, Hyten D L, Pantalone V, Jackson S A, Schmutz J, Cregan P B. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016, 17:33-43.
doi: 10.1186/s12864-015-2344-0 |
[48] |
Boehm J D, Nguyen V, Tashiro R M, Anderson D T, Shi C, Wu X G, Woodrow L, Yu K F, Cui Y H, Li Z L. Genetic mapping and validation of the loci controlling 7S α’ and 11S a‑type storage protein subunits in soybean [Glycine max(L.) Merr.]. Theor Appl Genet, 2018, 131:659-671.
doi: 10.1007/s00122-017-3027-9 |
[49] |
Song Q J, Yan L, Quigley C, Fickus E, Wei H, Chen L F, Dong F M, Araya S, Liu J L, Hyten D, Pantalone V, Nelson R L. Soybean BARCSoySNP6K: an assay for soybean genetics and breeding research. Plant J, 2020, 104:800-811.
doi: 10.1111/tpj.v104.3 |
[50] |
Lee S, Freewalt K R, McHale L K, Song Q J, Jun T, Michel A P, Dorrance A E, Rouf Mian M A. A high-resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6K. Mol Breed, 2015, 35:58.
doi: 10.1007/s11032-015-0209-5 |
[51] |
Bhusal S J, Jiang G L, Song Q J, Cregan P B, Wright D, Jose L, Hernandez G. Genome-wide detection of genetic loci associated with soybean aphid resistance in soybean germplasm PI603712. Euphytica, 2017, 213:144-159.
doi: 10.1007/s10681-017-1933-1 |
[52] |
Stasko A K, Wickramasinghe D, Nauth B J, Acharya B, Ellis M L, Taylor C G, Mchale L K, Dorrance A E. High-density mapping of resistance QTL toward Phytophthora sojae, Pythium irregulare, and Fusarium graminearum in the same soybean population. Crop Sci, 2016, 56:2476-2492.
doi: 10.2135/cropsci2015.12.0749 |
[53] |
Do T D, Vuong T D, Dunn D, Smothers S, Patil G, Yungbluth D C, Chen P Y, Scaboo A, Xu D, Carter T E, Nguyen H T, Shannon J G. Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theor Appl Genet, 2018, 131:513-524.
doi: 10.1007/s00122-017-3015-0 |
[54] |
Beche E, Gillman J D, Song Q J, Nelson R, Beissinger T, Decker J, Shannon G, Scaboo A M. Nested association mapping of important agronomic traits in three interspecific soybean populations. Theor Appl Genet, 2020, 133:1039-1054.
doi: 10.1007/s00122-019-03529-4 |
[55] |
Contreras-Soto R I, Oliveira M D, Costenaro-Da-Silva D, Scapim C A, Schuster I. Population structure, genetic relatedness and linkage disequilibrium blocks in cultivars of tropical soybean (Glycine max). Euphytica, 2017, 213:173-184.
doi: 10.1007/s10681-017-1966-5 |
[56] |
Lee S, Jun T H, McHale L K, Miche A P, Dorrance A E, Song Q J, Mian M A R. Registration of Wyandot × PI 567301B soybean recombinant inbred line population. J Plant Regist, 2017, 11:324-327.
doi: 10.3198/jpr2016.09.0042crmp |
[57] |
Lee Y G, Jeong N, Kim J H, Lee K, Kim K H, Pirani A, Ha B K, Kang S T, Park B S, Moon J K, Kim N, Jeong S C. Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J, 2015, 81:625-636.
doi: 10.1111/tpj.2015.81.issue-4 |
[58] |
Lee J S, Kim S M, Kang S. Fine mapping of quantitative trait loci for sucrose and oligosaccharide contents in soybean [Glycine max(L.) Merr.] using 180 K Axiom® SoyaSNP genotyping platform. Euphytica, 2016, 208:195-203.
doi: 10.1007/s10681-015-1622-x |
[59] |
Lee J S, Kim K R, Ha B K, Kang S. Identification of SNPs tightly linked to the QTL for pod shattering in soybean. Mol Breed, 2017, 37:54-63.
doi: 10.1007/s11032-017-0656-2 |
[60] |
Seo J H, Kim K S, Ko J M, Choi M S, Kang B K, Kwon S W, Jun T H. Quantitative trait locus analysis for soybean (Glycine max) seed protein and oil concentrations using selected breeding populations. Plant Breed, 2019, 138:95-104.
doi: 10.1111/pbr.2019.138.issue-1 |
[61] |
Orf J H, Chase K, Jarvik T, Mansur M L, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39:1642-1651.
doi: 10.2135/cropsci1999.3961642x |
[62] |
Anantharaman V, Aravind L. Novel eukaryotic enzymes modifying cell-surface biopolymers. Biol Direct, 2010, 5:1.
doi: 10.1186/1745-6150-5-1 pmid: 20056006 |
[63] |
Bischoff V, Selbig J, Scheible W. Involvement of TBL/DUF231 proteins into cell wall biology. Plant Signal Behav, 2010, 5:1057-1059.
doi: 10.4161/psb.5.8.12414 pmid: 20657172 |
[64] | Lefebvre V, Fortabat M N, Ducamp A, North H M, Maia-Grondard A, Trouverie J, Boursiac Y, Mouille G, Durand-Tardif M. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport. PLoS One, 2011, 6:e16645. |
[65] |
Herr A J, Molnàr A, Jones A, Baulcombe D C. Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc Natl Acad Sci USA, 2006, 103:14994-15001.
doi: 10.1073/pnas.0606536103 |
[66] |
Howles P A, Gebbie L K, Collings D A, Varsani A, Broad R C, Ohms S, Birch R J, Cork A H, Arioli T, Williamson R E. A temperature-sensitive allele of a putative mRNA splicing helicase down-regulates many cell wall genes and causes radial swelling in Arabidopsis thaliana. Plant Mol Biol, 2016, 91:1-13.
doi: 10.1007/s11103-016-0428-0 pmid: 27008640 |
[67] |
He Y H, Doyle M R, Amasino R M. PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev, 2004, 18:2774-2784.
doi: 10.1101/gad.1244504 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[3] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[4] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[5] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[6] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[7] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[8] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[9] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[10] | LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564. |
[11] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[12] | FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589. |
[13] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[14] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[15] | ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352. |
|