Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 942-951.doi: 10.3724/SP.J.1006.2022.14045


Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types

LI Rui-Dong1(), YIN Yang-Yang1, SONG Wen-Wen2, WU Ting-Ting2, SUN Shi2, HAN Tian-Fu2, XU Cai-Long2,*(), WU Cun-Xiang2,*(), HU Shui-Xiu1,*()   

  1. 1College of Agriculture, Jiangxi Agricultural University / Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education / Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding / Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Nanchang 330045, Jiangxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Soybean Industrial Technology R & D Center, Beijing 100081, China
  • Received:2021-03-18 Accepted:2021-07-12 Online:2022-04-12 Published:2021-07-27
  • Contact: XU Cai-Long,WU Cun-Xiang,HU Shui-Xiu E-mail:18511755808@163.com;xucailong@caas.cn;wucunxiang@caas.cn;hushuixiu@163.com
  • Supported by:
    National Key Research and Development Program of China(2020YFD1000903)


To investigate the effects of planting density on leaf area index, dry matter accumulation and distribution, and yield components of different varieties, field experiments were conducted using two soybean varieties with different branching types (Zhongzuo XA12938, a main stem type variety; Zhonghuang 13, a branched type variety) under six planting densities (D1: 13.5×104 plants hm-2; D2: 18.0×104 plants hm-2; D3: 22.5×104 plants hm-2; D4: 27.0×104 plants hm-2; D5: 31.5×104 plants hm-2; D6: 36.0×104 plants hm-2). The results showed that as planting densities increased, soybean LAI reached the highest values (>4) earlier, from 47.0 d and 54.6 d (D1) to 31.0 d and 32.9 d (D6) after seedling emergence for Zhongzuo XA12938 and Zhonghuang 13, respectively. Compared to Zhonghuang 13, the high LAI values in Zhongzuo XA12938 lasted longer and decreased less at the middle and late stages. The degree of increase in dry matter with density varied between treatments. At podding stage, dry weight increased by 77.53% and 51.21% in the high-density treatment (D6) compared to the low-density treatment (D1) for Zhongzuo XA12938 and Zhonghuang 13, respectively. The percentage of dry matter in reproductive organs at maturity stage increased and then decreased with increasing density. The highest yields were achieved under D5 (5000.45 kg hm-2) treatment and remained stable at increasing densities for Zhongzuo XA12938. The highest yields for both years were achieved under D4 (4477.90 kg hm-2) and D5 (3935.30 kg hm-2) treatments for Zhonghuang 13. The average yield of Zhongzuo XA12938 was significantly higher by 22.37% than that of Zhonghuang 13. Grey correlation analysis revealed that plant height and effective pods per unit area were closely related to yield in Zhongzuo XA12938, while effective grains per unit area and height of centre of gravity were more highly correlated with yield in Zhonghuang 13. Zhongzuo XA12938 moderate increase in density can increase the LAI and prolong the duration of its high value, promote dry matter accumulation, increase the proportion of reproductive organs, and improve the yield in soybean. Varieties with strong meristem regulation can be used to improve yields and increase benefits by appropriately increasing planting density in production.

Key words: soybean, plant types, planting density, assimilate accumulation, yield

Table 1

Effects of planting density on yield and its composition of different branching types of soybean"

per plant
Seeds per m2
per plant
Pods per m2
100-seed weight (g)
(kg hm-2)
2018 中作XA12938
Zhongzuo XA12938
D1 200.1 a 2700.4 c 88.0 a 1187.7 b 16.7 c 3548.3 c
D2 170.0 b 3057.6 bc 74.8 b 1345.0 ab 16.6 c 3925.1 bc
D3 162.2 b 3646.6 a 70.0 b 1563.0 a 17.0 bc 4136.6 b
D4 120.8 c 3260.0 ab 51.5 c 1389.8 ab 17.1 ab 4367.6 ab
D5 106.5 cd 3352.0 ab 44.7 cd 1407.3 ab 17.3 a 5071.5 a
D6 86.3 d 3106.4 bc 37.0 d 1331.3 ab 17.1 ab 4996.9 a
Zhonghuang 13
D1 119.0 a 1607.4 d 54.1 a 730.6 d 21.1 d 2592.1 e
D2 116.0 a 2086.2 c 52.7 a 948.3 c 21.4 cd 3345.5 d
D3 114.7 a 2581.5 ab 52.2 a 1173.4 ab 22.0 bcd 4185.1 b
D4 102.5 b 2766.6 a 46.6 b 1257.5 a 22.5 abc 4477.9 a
D5 79.4 c 2501.1 ab 36.1 c 1136.9 ab 22.9 ab 4013.8 c
D6 67.9 c 2444.4 b 30.9 c 1111.1 b 23.7 a 3964.4 c
2019 中作XA12938
Zhongzuo XA12938
D1 221.3 a 2986.7 b 79.0 a 1066.7 b 15.8 c 3406.2 e
D2 184.5 b 3320.8 b 67.1 b 1207.6 b 16.4 b 3920.1 d
D3 171.3 b 3852.9 a 63.4 b 1427.0 a 16.4 b 4431.1 c
D4 147.0 c 3968.8 a 55.9 c 1509.1 a 16.8 a 4735.4 bc
D5 118.0 d 3716.8 a 45.2 d 1424.1 a 17.0 a 4929.4 ab
D6 105.5 d 3797.8 a 42.2 d 1519.1 a 17.1 a 5200.3 a
Zhonghuang 13
D1 115.8 a 1562.5 d 46.3 a 625.0 e 25.6 c 2664.2 d
D2 108.0 b 1943.9 c 44.4 ab 800.0 d 26.3 b 2995.1 cd
D3 103.5 b 2328.6 b 45.0 a 1012.4 c 26.4 b 3294.0 bc
D4 94.3 c 2544.6 ab 43.0 ab 1161.9 b 27.1 a 3680.0 ab
D5 81.8 d 2575.0 a 41.3 b 1300.5 a 27.2 a 3894.5 a
D6 65.3 e 2348.9 ab 34.3 c 1236.3 ab 27.5 a 3935.3 a
年份Year (Y) *** *** *** ** *** ns
品种Cultivar (C) *** *** *** *** *** ***
密度Density (D) *** *** *** *** *** ***
Y × C *** *** ns ns ns ***
Y × D ** *** *** *** *** ***
C × D *** *** *** *** *** ***
Y × C × D ** *** ** *** ns ***

Fig. 1

Leaf area index (LAI) of soybeans with different branching types under close planting A: Zhongzuo XA12938; B: Zhonghuang 13; V3: the third trifoliate; R1: beginning bloom; R3: beginning pod; R5: beginning seed; R7: beginning maturity; R8: full maturity. Different lowercase letters above the bars indicate significant difference among treatments at the 0.05 probability level. Treatments are the same as those given in Table 1."

Table 2

Effect of planting density on duration of high leaf area values in different branching types of soybean"

Regression equation
R2 叶面积指数为4的起始天数
Starting days with leaf area index of
4 from seedling emergence date (d)
Days with leaf area index higher than 4 (d)
Zhongzuo XA12938
D1 y= -0.0026x2+0.321x-5.341 0.992 46.9662 76.4954 29.53
D2 y= -0.0032x2+0.384x-6.208 0.992 39.6569 80.4368 40.78
D3 y= -0.0033x2+0.405x-6.434 0.986 36.7681 85.9894 49.22
D4 y= -0.0044x2+0.517x-8.405 0.986 33.6378 83.8168 50.18
D5 y= -0.0048x2+0.568x-9.262 0.992 31.9555 86.4612 54.51
D6 y= -0.0054x2+0.634x-10.481 0.988 31.0431 86.3828 55.34
Zhonghuang 13
D1 y= -0.0024x2+0.307x-5.601 0.863 54.5767 73.2983 18.72
D2 y= -0.0026x2+0.327x-5.698 0.927 47.9622 77.7686 29.81
D3 y= -0.0029x2+0.358x-6.089 0.953 43.3327 80.2880 36.96
D4 y= -0.0033x2+0.409x-6.813 0.960 38.2797 85.5990 47.32
D5 y= -0.0038x2+0.452x-7.244 0.982 35.3915 83.6085 48.22
D6 y= -0.0043x2+0.520x-8.445 0.968 32.8645 88.0658 55.20

Fig. 2

Effect of planting density on dry matter accumulation in different branching types of soybean A: Zhongzuo XA12938; B: Zhonghuang 13; V3: the third trifoliate; R1: beginning bloom; R3: beginning pod; R5: beginning seed; R7: beginning maturity; R8: full maturity. Different lowercase letters above the bars significant difference among treatments at the 0.05 probability level. Treatments are the same as those given in Table 1."

Table 3

Dry matter allocation at mature stage of different branching types of soybeans under close planting density"

Leaf weight
Petiole weight
Stem weight
Pod weight
Seed weight
中作XA12938 D1 0.24±0.001 a 0.09±0.007 a 0.16±0.006 b 0.22±0.006 a 0.29±0.017 c
Zhongzuo XA12938 D2 0.23±0.010 ab 0.08±0.007 ab 0.17±0.009 b 0.23±0.017 a 0.30±0.009 bc
D3 0.20±0.003 bc 0.08±0.008 ab 0.17±0.011 b 0.23±0.049 a 0.32±0.041 bc
D4 0.18±0.010 cd 0.07±0.006 ab 0.18±0.006 ab 0.21±0.006 a 0.36±0.015 ab
D5 0.15±0.013 d 0.06±0.002 ab 0.18±0.004 ab 0.20±0.007 a 0.40±0.014 a
D6 0.16±0.013 d 0.06±0.010 b 0.20±0.010 a 0.22±0.015 a 0.36±0.005 ab
中黄13 D1 0.24±0.014 a 0.12±0.013 a 0.17±0.005 b 0.21±0.009 a 0.27±0.022 c
Zhonghuang 13 D2 0.19±0.009 b 0.10±0.002 a 0.17±0.004 b 0.23±0.008 a 0.31±0.002 bc
D3 0.15±0.013 c 0.10±0.003 a 0.17±0.013 b 0.24±0.030 a 0.34±0.016 ab
D4 0.13±0.003 c 0.09±0.005 a 0.17±0.005 b 0.24±0.004 a 0.37±0.009 a
D5 0.15±0.008 c 0.11±0.013 a 0.18±0.008 ab 0.25±0.015 a 0.31±0.018 bc
D6 0.14±0.007 c 0.11±0.007 a 0.21±0.015 a 0.25±0.002 a 0.30±0.005 bc

Table 4

Grey correlation analysis of agronomic characters and yield of soybean with different branching types under close planting density"

中作XA12938 Zhongzuo XA12938 中黄13 Zhonghuang 13
Correlation degree
Relevance ranking
Correlation degree
Relevance ranking
单位面积有效荚数Effective pods per m2 0.8545 2 0.8163 6
单位面积有效粒数Effective seeds per m2 0.8311 4 0.8556 1
百粒重Hundred-seed weight (g) 0.8200 5 0.8262 5
重心Plant center of gravity 0.8441 3 0.8509 2
株高Plant height 0.8618 1 0.8496 3
分枝数Branch number 0.5473 7 0.5052 7
成熟期干物质重Dry matter weight at maturity 0.8198 6 0.8383 4
[1] 尹阳阳, 徐彩龙, 宋雯雯, 胡水秀, 吴存祥. 密植是挖掘大豆产量潜力的重要栽培途径. 土壤与作物, 2019, 8:361-367.
Yin Y Y, Xu C L, Song W W, Hu S X, Wu C X. Increasing planting density is an important approach to achieve the potential of soybean yield. Soils Crops, 2019, 8:361-367 (in Chinese with English abstract).
[2] Sun Z X, Su C, Yun J, Jiang Q, Wang L, Wang Y, Cao D, Zhao F, Zhao Q, Zhang M. Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnol J, 2019, 17:50-62.
doi: 10.1111/pbi.2019.17.issue-1
[3] 张瑞朋, 付连舜, 佟斌, 吴晓秋, 刘成元, 朱海荣, 孙国伟. 密度及行距对不同大豆品种农艺性状及产量的影响. 大豆科学, 2015, 34:52-55.
Zhang R P, Fu L S, Tong B, Wu X Q, Liu C Y, Zhu H R, Sun G W. Effect of plant density and row spacing on agronomic characteristics and yield for different soybeans. Soybean Sci, 2015, 34:52-55 (in Chinese with English abstract).
[4] Place G T, Reberg-Horton S C, Dunphy J E, Smith A N, Seeding rate effects on weed control and yield for organic soybean production. Weed Technol, 2009, 23:497-502.
doi: 10.1614/WT-08-134.1
[5] Carciochi W, Schwalbert R, Andrade H, Corassa G, Carter P, Gaspar P, Schmidt J, Ciampitti I. Soybean seed yield response to plant density by yield environment in North America. Agron J, 2019, 111:1923-1932.
doi: 10.2134/agronj2018.10.0635
[6] Walker E R, Mengistu A, Bellaloui N, Koger C H, Roberts R K, Larson J A. Plant population and row-spacing effects on maturity group III soybean. Agron J, 2010, 102:821-826.
doi: 10.2134/agronj2009.0219
[7] Suhre J, Weidenbenner N, Rowntree S, Wilson E, Naeve S, Conley S, Casteel S, Diers B, Esker P, Specht J. Soybean yield partitioning changes revealed by genetic gain and seeding rate interactions. Agron J, 2014, 106:1631-1642.
doi: 10.2134/agronj14.0003
[8] 张晓艳, 杜吉到, 郑殿峰. 密度对大豆群体冠层结构及光合特性的影响. 干旱地区农业研究, 2011, 29(4):75-80.
Zhang X Y, Du J D, Zheng D F. Effect of density on canopy structure and photosynthetic characteristics in soybean population. Agric Res Arid Areas, 2011, 29(4):75-80 (in Chinese with English abstract).
[9] Board J E, Harville B G. Growth dynamics during the vegetative period affects yield of narrow-row, late-planted soybean. Agron J, 1996, 88:575-579.
[10] Haile F J, Higley L G, Specht J E. Soybean leaf morphology and defoliation tolerance. Agron J, 1998, 90:353-362.
doi: 10.2134/agronj1998.00021962009000030007x
[11] Ma B L, Lianne M D, Costa C. Early prediction of soybean yield from canopy reflectance measurements. Agron J, 2001, 93:1227-1234.
doi: 10.2134/agronj2001.1227
[12] 张永强, 张娜, 王娜, 唐江华, 徐文修, 李亚杰. 种植密度对夏大豆光合特性及产量构成的影响. 核农学报, 2015, 29:1386-1391.
Zhang Y Q, Zhang N, Wang N, Tang J H, Xu W X, Li Y J. Effect of planting density on photosynthetic characteristics and yield components of summer soybean. J Nucl Agric Sci, 2015, 29:1386-1391 (in Chinese with English abstract).
[13] 贾珂珂, 不同大豆品种株型结构、花荚形成及产量对密度的响应. 新疆农业大学硕士学位论文,新疆乌鲁木齐, 2005.
Jia K K. Different Soybeans Plant Type Structure, Flower and Pod Formation and Yield Response to Densities. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang,China, 2015 (in Chinese with English abstract).
[14] 章建新, 翟云龙, 薛丽华. 密度对高产春大豆生长动态及干物质积累分配的影响. 大豆科学, 2006, 25:1-5.
Zhang J X, Zhai Y L, Xue L H. Effect of plant density on growth tendency, dry matter accumulation and distribution in high yield spring soybean. Soybean Sci, 2006, 25:1-5 (in Chinese with English abstract).
[15] 赵双进, 张孟臣, 杨春燕, 王文秀. 栽培因子对大豆生长发育及群体产量的影响: I. 播期、密度、行株距(配置方式)对产量的影响. 中国油料作物学报, 2002, 24:31-34.
Zhao S J, Zhang M C, Yang C Y, Wang W X. Effect of cultivation factors on soybean growth and development and population yield: I. Effect of sowing date, density and row spacing on yield. Chin J Oil Crop Sci, 2002, 24:31-34 (in Chinese with English abstract).
[16] 徐婷, 雍太文, 刘文钰, 刘小明, 董茜, 宋春, 杨峰, 王小春, 杨文钰. 播期和密度对玉米-大豆套作模式下大豆植株、干物质积累及产量的影响. 中国油料作物学报, 2014, 36:593-601.
Xu T, Yong T W, Liu W Y, Liu X M, Dong Q, Song C, Yang F, Wang X C, Yang W Y. Effects of sowing time and density on soybean agronomic traits, dry matter accumulation and yield in maize-soybean relay strip intercropping system. Chin J Oil Crop Sci, 2014, 36:593-601 (in Chinese with English abstract).
[17] Ethredge W J, Ashley D A, Woodruff J M. Row spacing and plant population effect on yield components of soybean. Agron J, 1989, 81:947-951.
doi: 10.2134/agronj1989.00021962008100060020x
[18] Coulter J, Sheaffer C C, Haar M J, Wyse D L, Orf J H. Soybean cultivar response to planting date and seeding rate under organic management. Agron J, 2011, 103:1223-1229.
doi: 10.2134/agronj2011.0086
[19] Orlowski J, Gregg G L, Lee C D. Early-season lactofen application has limited effect on soybean branch and mainstem yield components. Crop Sci, 2016, 56:432-438.
doi: 10.2135/cropsci2015.08.0482
[20] 田艺心, 高凤菊, 徐冉. 种植密度对高蛋白大豆经济性状和产量的影响. 中国油料作物学报, 2017, 39:476-482.
Tian Y X, Gao F J, Xu R. Effect of planting density on economic characteristics and yield of different high protein soybean. Chin J Oil Crop Sci, 2017, 39:476-482 (in Chinese with English abstract).
[21] Xu C L, He Y Q, Sun S, Song W W, Wu T T, Han T F, Wu C X. Analysis of soybean yield formation differences across different production regions in China. Agron J, 2020, 112:4195-4206.
doi: 10.1002/agj2.v112.5
[22] Purcell L C, Ball R A, Reaper J D, Vories E D. Radiation use efficiency and biomass production in soybean at different plant population densities. Crop Sci, 2002, 42:172-177.
pmid: 11756269
[23] 董钻. 大豆产量生理(第2版). 北京: 中国农业出版社, 2011. pp 47-49.
Dong Z. Soybean Yield Physiology, 2nd edn. Beijing: China Agriculture Press, 2011. pp 47-49(in Chinese).
[24] 元明浩, 刘玉兰, 杨翠莲. 不同密度下有限结荚习性分枝型矮秆耐密大豆的株型变化规律. 大豆科学, 2009, 28:552-556.
Yuan M H, Liu Y L, Yang C L. Variation in plant size of dwarf densely tolerant soybean with limited pod set habit at different densities. Soybean Sci, 2009, 28:552-556 (in Chinese with English abstract).
[25] 马兆惠, 车仁君, 王海英, 张惠君, 谢甫绨. 种植密度和种植方式对超高产大豆根系形态和活力的影响. 中国农业科学, 2015, 48:1084-1094.
Ma Z H, Che R J, Wang H Y, Zhang H J, Xie F T. Effect of different seeding rates and planting patterns on root morphological traits and root vigor of super-high-yield soybean cultivars. Sci Agric Sin, 2015, 48:1084-1094 (in Chinese with English abstract).
[26] 郑伟, 谢甫绨, 郭泰, 王志新, 李灿东, 张振宇, 吴秀红, 张茂明, 王庆胜. 密度对不同类型大豆叶部性状的影响. 中国油料作物学报, 2014, 36:66-70.
Zheng W, Xie F T, Guo T, Wang Z X, Li C D, Zhang Z Y, Wu X H, Zhang M M, Wang Q S. Effect of density for different types of leaf traits on soybean. Chin J Oil Crop Sci, 2014, 36:66-70 (in Chinese with English abstract).
[27] 张银锁, 宇振荣, Driessen P M. 环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究. 作物学报, 2002, 28:104-109.
Zhang Y S, Yu Z R, Driessen P M. Experimental study of assimilate production, partitioning and translocation among plant organs in summer maize (Zea mays) under various environmental and management conditions. Acta Agron Sin, 2002, 28:104-109 (in Chinese with English abstract).
[28] Tollenaar M, Daynard T B. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1987, 62:855-860.
doi: 10.4141/cjps82-128
[29] Karlen D L, Sadler E J, Camp C R. Dry matter, nitrogen, phosphorus, and potassium accumulation rates by corn on norfolk loamy sand. Agron J, 1987, 79:649-656.
doi: 10.2134/agronj1987.00021962007900040014x
[30] 王士红, 杨中旭, 史加亮, 李海涛, 宋宪亮, 孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响. 作物学报, 2020, 46:395-407.
doi: 10.3724/SP.J.1006.2020.94074
Wang S H, Yang Z X, Shi J L, Li H T, Song X L, Sun X Z. Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton. Acta Agron Sin, 2020, 46:395-407 (in Chinese with English abstract).
[31] Rajcan J, Tollenaar M. Effect of source-sink ratio on dry matter accumulation and leaf senescence of maize. Can J Plant Sci, 1982, 62:855-860.
doi: 10.4141/cjps82-128
[32] Jones R J, Simmons S R. Effect of altered source-sink ratio on growth of maize kernels. Crop Sci, 1983, 23:129-134.
doi: 10.2135/cropsci1983.0011183X002300010038x
[33] 刘明, 卜伟召, 杨文钰, 武晓玲. 山东间作大豆产量与主要农艺性状关联分析. 中国油料作物学报, 2018, 40:344-351.
Liu M, Bu W Z, Yang W Y, Wu X L. Correlation analysis of yield and agronomic traits of soybean for intercropping in Shandong. Chin J Oil Crop Sci, 2018, 40:344-351 (in Chinese with English abstract).
[34] 舒文涛, 李金花, 耿臻, 杨青春, 李琼, 张东辉, 张保亮. 黄淮海夏大豆产量与主要农艺性状的灰色关联度分析. 中国农学通报, 2014, 30(27):48-51.
Shu W T, Li J H, Geng Z, Yang Q C, Li Q, Zhang D H, Zhang B L. Grey correlation degree analysis on main agronomic traits and yield of summer sowing soybean in Huanghuai River region. Chin Agric Sci Bull, 2014, 30(27):48-51 (in Chinese with English abstract).
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[10] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[11] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[12] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[13] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[14] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Full text



No Suggested Reading articles found!