Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (5): 1051-1058.doi: 10.3724/SP.J.1006.2022.14116

• REVIEWS • Previous Articles     Next Articles

Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton

ZHOU Jing-Yuan1,2(), KONG Xiang-Qiang2, ZHANG Yan-Jun2, LI Xue-Yuan3, ZHANG Dong-Mei2, DONG He-Zhong1,2,*()   

  1. 1College of Life Science, Shandong Normal University, Jinan 250014, Shandong, China
    2Institute of Industrial Crops / Shandong Key Laboratory for Cotton Culture and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China
    3Institute of Cash Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
  • Received:2021-06-07 Accepted:2021-10-09 Online:2022-05-12 Published:2021-10-20
  • Contact: DONG He-Zhong E-mail:zhoujingyuan0107@163.com;donghezhong@163.com
  • Supported by:
    National Key Research and Development Program of China(2020YFD1001002);National Natural Science Foundation of China(31771718);National Natural Science Foundation of China(31801307);China Agriculture Research System(CARS-15-15)

Abstract:

Realizing full and strong stand establishment of seedlings is the basis for achieving high yields and bump harvests in cotton. However, cotton is a dicotyledonous plant whose cotyledons are successfully all unearthed for standing. Seedling emergence is susceptible to environmental conditions and seeding techniques. Therefore, it is generally more difficult for cotton to get full and strong stand establishment than other major crops. The apical hook formation and the hypocotyl growth at seed germination and emergence stages play key roles in seedling emergence and stand establishment. Here we systemically reviewed the regulation mechanism of cotton seedling growth for the first time and put forward the key agronomic cultivation techniques to promote cotton seedling growth, focusing on the physiological and molecular mechanism of hook formation and hypocotyl growth and their influencing factors. Precision monoseeding can improve timely and moderate expression of the key genes HLS1 and COP1 related to hypocotyl elongation and hook formation, which assures better stand establishment by timely formation and expansion of the hooks and timely shedding of seed shells. The hypocotyl can grow steadily and form strong seedings by regulating the expression of key genes HY5 and ARF2 related to hypocotyl growth under precision monoseeding. In this paper, the key cultivation techniques of cotton precision monoseedling, combined with fine soil preparation, improving seed quality, plastic mulching, and drip irrigation under mulching were summarized and reviewed. This review provides important reference and guidance for the improvement and development of cotton sowing and cultivation technology in cotton.

Key words: cotton, emergence, strong seedling, regulation mechanism, curved hook formation, hypocotyl growth

Fig. 1

Mechanism of stand establishment improvements through regulating the apical hook formation and hypocotyl growth in cotton[3,10,27] Environmental signals such as mechanical pressure and light interact with hormone signals such as ethylene and gibberellin, which ultimately affects the synthesis and transport of auxin and regulates the asymmetric distribution of auxin during the apical hook formation and hypocotyl elongation. The normal arrow indicates positive regulation, the T-shaped arrow indicates negative regulation, and the dotted arrow indicates that the specific mechanism is unknown."

[1] 王荣栋, 尹经章. 作物栽培学. 北京: 高等教育出版社, 2015. pp 258-297.
Wang R D, Yin J Z. Crop Cultivation and Management. Beijing: Higher Education Press, 2015. pp 258-297(in Chinese).
[2] 董合忠. 棉花重要生物学和栽培特性及其在丰产简化栽培中的应用. 中国棉花, 2013, 40(9):1-4.
Dong H Z. Major biological characteristics of cotton and their application in extensive high-yielding cultivation. China Cotton, 2013, 40(9):1-4 (in Chinese with English abstract).
[3] 刘旦梅, 裴雁曦. 双子叶植物幼苗顶端弯钩发育的分子机制. 中国生物化学与分子生物学报, 2018, 34:1138-1145.
Liu D M, Pei Y X. Molecular mechanism of the development of dicotyledonous seedling apical hook. Chin J Biochem Mol Biol, 2018, 34:1138-1145 (in Chinese with English abstract).
[4] McNellis T W, Deng X W. Light control of seedling morphogenetic pattern. Plant Cell, 1995, 7:1749-1761.
pmid: 8535132
[5] Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annu Rev Genet, 2004, 38:87-117.
doi: 10.1146/genet.2004.38.issue-1
[6] 董合忠, 李维江, 张晓洁. 棉花种子学. 北京: 科学出版社, 2004. pp 25-297.
Dong H Z, Li W J, Zhang X J. Science and Technology of Cotton seed. Beijing: Science Press, 2004. pp 25-297(in Chinese).
[7] Rehman A, Farooq M. Cotton Production. Hoboken: Wiley Online Library, 2019. pp 23-46.
[8] Reddy K R, Reddy V R, Hodges H F. Temperature effects on early season cotton growth and development. Agron J, 1992, 84:229-237.
doi: 10.2134/agronj1992.00021962008400020021x
[9] Zhang Y J, Dong H Z. Yield and fiber quality of cotton. Encycl Renew Sustain Materials, 2020, 2:356-364.
[10] Abbas M, Alabadí D, Blazquez M A. Differential growth at the apical hook: all roads lead to auxin. Front Plant Sci, 2013, 4:441.
[11] Mazzella M A, Casal J J, Muschietti J P, Fox A R. Hormonal networks involved in apical hook development in darkness and their response to light. Front Plant Sci, 2014, 5:52.
doi: 10.3389/fpls.2014.00052 pmid: 24616725
[12] 姜楠, 王超, 潘建伟. 拟南芥下胚轴伸长与向光性的分子调控机制. 植物生理学报, 2014, 50:1435-1444.
Jiang N, Wang C, Pan J W. Molecular regulatory mechanisms of hypocotyl elongation and phototropism in Arabidopsis. Acta Phytophysiol Sin, 2014, 50:1435-1444 (in Chinese with English abstract).
[13] 王红飞, 尚庆茂. 被子植物下胚轴细胞伸长的分子机制. 植物学报, 2018, 53:276-287.
Wang H F, Shang Q M. Molecular mechanism of hypocotyl cell elongation in angiosperms. Chin Bull Bot, 2018, 53:276-287 (in Chinese with English abstract).
[14] Sliwinska E, Bassel G W, Bewley J D. Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. J Exp Bot, 2009, 60:3587-3594.
doi: 10.1093/jxb/erp203 pmid: 19620183
[15] Zadníkova P, Petrasek J, Marhavy P, Raz V, Vandenbussche F, Ding Z J, Schwarzerová K, Morita M T, Tasaka M, Hejátko J, van Der Straeten D, Friml J, Benková E. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development, 2010, 137:607-617.
doi: 10.1242/dev.041277
[16] Villalobos L I A C, Lee S, De-Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard L B, Tan X, Parry G, Mao H. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol, 2012, 8:477-485.
doi: 10.1038/nchembio.926 pmid: 22466420
[17] Tiwari S B, Hagen G, Guilfoyle T. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell, 2003, 15:533-543.
pmid: 12566590
[18] Bleecker A B. Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci, 1999, 4:269-274.
doi: 10.1016/S1360-1385(99)01427-2
[19] Wang Y, Guo H. On hormonal regulation of the dynamic apical hook development. New Phytol, 2019, 222:1230-1234.
doi: 10.1111/nph.2019.222.issue-3
[20] De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D. Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol, 2005, 46:827-836.
doi: 10.1093/pcp/pci111
[21] Lehman A, Black R, Ecker J R. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell, 1996, 85:183-194.
pmid: 8612271
[22] Zhang X, Ji Y, Xue C, Ma H H, Xi Y L, Huang P X, Wang H, An F Y, Li B S, Wang Y C, Guo H W. Integrated regulation of apical hook development by transcriptional coupling of EIN3/EIL1 and PIFs in Arabidopsis. Plant Cell, 2018, 30:1971-1988.
doi: 10.1105/tpc.18.00018
[23] Gallego-Bartolomé J, Arana M V, Vandenbussche F, Minguet P Ž, Minguet E G, Guardiola V, Straeten D V D, Benkova E, Alabadí D, Blázquez M A. Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant J, 2011, 67:622-634.
doi: 10.1111/tpj.2011.67.issue-4
[24] Willige B C, Eri O T, Zourelidou M, Schwechheimer C. WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5. Development(Cambridge, England), 2012, 139:4020-4028.
doi: 10.1242/dev.081240 pmid: 22992959
[25] Achard P, Vriezen W H, Van Der Straeten D, Harberd N P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell, 2003, 15:2816-2825.
doi: 10.1105/tpc.015685
[26] Lyu M, Shi H, Li Y L, Kuang K Y, Yang Z X, Li J, Chen D, Li Y, Kou X X, Zhong S G. Oligomerization and photo-deoligomerization of HOOKLESS1 controls plant differential cell growth. Dev Cell, 2019, 51:78-88.
doi: 10.1016/j.devcel.2019.08.007
[27] Kong X Q, Li X, Lu H Q, Li Z H, Xu S Z, Li W J, Zhang Y J, Zhang H, Dong H Z. Monoseeding improves stand establishment through regulation of apical hook formation and hypocotyl elongation in cotton. Field Crops Res, 2018, 222:50-58.
doi: 10.1016/j.fcr.2018.03.014
[28] Yang H Q, Wu Y J, Tang R H, Liu D M, Liu Y, Cashmore A R. The C termini of Arabidopsis crytochromes mediate a constitutive light response. Cell, 2000, 103:815-827.
pmid: 11114337
[29] Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003, 15:1749-1770.
pmid: 12897250
[30] Leivar P, Monte E. PIFs: systems integrators in plant development. Plant Cell, 2014, 26:56-78.
doi: 10.1105/tpc.113.120857
[31] De Lucas M, Prat S. PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytol, 2014, 202:1126-1141.
doi: 10.1111/nph.2014.202.issue-4
[32] Nozue K, Covington M F, Duek P D, Lorrain S, Fankhauser C, Harmer S L, Maloof J N. Rhythmic growth explained by coincidence between internal and external cues. Nature, 2007, 448:358-361.
doi: 10.1038/nature05946
[33] Shen Y, Khanna R, Carle C M, Quail P H. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red light activation. Plant Physiol, 2007, 145:1043-1105.
pmid: 17827270
[34] Willige B C, Ghosh S, Nill C, Zourelidou M, Dohmann M N, Maier A, Schwechheimer C. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19:1209-1220.
pmid: 17416730
[35] Feng S, Martinez C, Gusmaroli G. Coordinated regulation of Arabidopsis thaliana development by light and gibber ellins. Nature, 2008, 451:475-479.
doi: 10.1038/nature06448
[36] Kunihiro A, Yamashino T, Mizuno T. PHYTOCHROMEINTERA CTING FACTORS PIF4 and PIF5 are implicated in the regulation of hypocotyl elongation in response to blue light in Arabidopsis thaliana. Jpn Soc Biosci Biotechnol Agrochem, 2010, 74:2538-2541.
[37] Ariizumi T, Murase K, Steber S C M. Proteolysis-independent downregulation of DELLA repression in Arabidopsis by the gibberellin receptor GIBBERELLIN INSENSITIVE DWARF1. Plant Cell, 2008, 20:2447-2459.
doi: 10.1105/tpc.108.058487 pmid: 18827182
[38] Ueguchitanaka M, Nakajima M, Motoyuki A, Matsuoka M. Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol, 2007, 58:183-198.
pmid: 17472566
[39] Osterlund M T, Hardtke C S, Wei N, Deng X W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 2000, 405:462-466.
doi: 10.1038/35013076
[40] Reed J W, Nagpal P, Poole D S, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell, 1993, 5:147-157.
pmid: 8453299
[41] Saijo Y. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev, 2003, 17:2642-2647.
doi: 10.1101/gad.1122903
[42] Oyama T, Shimura Y, Okada K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev, 1997, 11:2983-2995.
doi: 10.1101/gad.11.22.2983
[43] Boron A K, Vissenberg K. The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellular expansion. Plant Cell Rep, 2014, 33:697-706.
doi: 10.1007/s00299-014-1591-x
[44] 于延文. 乙烯调控拟南芥HY5蛋白稳定性和幼苗下胚轴生长. 中国农业科学院硕士学位论文, 北京, 2013.
Yu Y W. Ethylene Regulates the Stability of HY5 and Hypocotyl Growth in Arabidopsis thaliana. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2013 (in Chinese with English abstract)
[45] 张冬梅, 张艳军, 李存东, 董合忠. 论棉花轻简化栽培. 棉花学报, 2019, 31:163-168.
Zhang D M, Zhang Y J, Li C D, Dong H Z. On light and simplified cotton cultivation. Cotton Sci, 2019, 31:163-168 (in Chinese with English abstract)
[46] 董建军, 代建龙, 李霞, 李维江, 董合忠. 黄河流域棉花轻简化栽培技术评述. 中国农业科学, 2017, 50:4290-4298.
Dong J C, Dai J L, Li X, Li W J, Dong H Z. Review of light and simplified cotton cultivation technology in the Yellow River Valley. Sci Agric Sin, 2017, 50:4290-4298 (in Chinese with English abstract).
[47] Ram L J, Philippe D, Christian S, You M P, Barbetti M J, Jean-Nol A. Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. Plant Soil, 2018: 432:1-28.
doi: 10.1007/s11104-018-3780-9
[48] You M P, Barbetti M J. Severity of phytophthora root rot and pre-emergence damping-off in subterranean clover influenced by moisture, temperature, nutrition, soil type, cultivar and their interactions. Plant Pathol, 2017, 66:1162-1181.
doi: 10.1111/ppa.2017.66.issue-7
[49] Markus B. The role of temperature in the regulation of dormancy and germination of two related summer-annual mudflat species. Aquat, 2003, 79:15-32.
[50] Dai J L, Dong H Z. Intensive cotton farming technologies in China: achievements, challenges and countermeasures. Field Crops Res, 2014, 155:99-110.
doi: 10.1016/j.fcr.2013.09.017
[51] 辛承松, 卢合全, 罗振, 孔祥强, 张祥宗. 黄河三角洲盐碱地棉花“适密简”种植模式及技术规程. 中国棉花, 2020, 47(8):40-42.
Xin C S, Lu H Q, Luo Z, Kong X Q, Zhang X Z. “Proper Density and Simple” Cultivation model and technical regulations of cotton in saline-alkali land in the Yellow River Delta. China Cotton, 2020, 47(8):40-42 (in Chinese with English abstract).
[52] 董合忠. 滨海盐碱地棉花成苗的原理与技术. 应用生态学报, 2012, 23:566-572.
Dong H Z. Underlying mechanisms and related techniques of stand establishment of cotton on coastal saline-alkali soil. Chin J Appl Ecol, 2012, 23:566-572 (in Chinese with English abstract).
[53] Dong H Z. Cotton Farming in Saline Soil. Beijing: Science Press, 2010. pp 179-190.
[54] Dong H Z, Li W Z, Li Z H, Zhang D M. Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crops Res, 2009, 111:269-275.
doi: 10.1016/j.fcr.2009.01.001
[55] 罗振, 辛承松, 李维江, 张冬梅, 董合忠. 部分根区灌溉与合理密植对旱区棉花产量和水分生产率的影响. 应用生态学报, 2019, 30:3137-3146.
Luo Z, Xin C S, Li W J, Zhang D M, Dong H Z. Effects of partial root-zone irrigation and rational close planting on yield and water Effects of partial root-zone irrigation and rational close planting on yield and water productivity of cotton in arid area. Chin J Appl Ecol, 2019, 30:3137-3146 (in Chinese with English abstract).
[56] Li X, Kong X Q, Zhou J Y, Luo Z, Lu H Q, Li W J, T W, Zhang D M, Ma C L, Zhang H, Dong H Z. Seeding depth and seeding rate regulate apical hook formation by inducing GhHLS1 expression via ethylene during cotton emergence. Plant Physiol Biochem, 2021, 164:92-100.
doi: 10.1016/j.plaphy.2021.04.030
[1] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[2] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[3] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[4] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[5] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[6] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
[7] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[8] YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815.
[9] ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623.
[10] GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247.
[11] MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826.
[12] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[13] ZHOU Guan-Tong, LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong. Efficient screening system of effective sgRNA for cotton CRISPR/Cas9 gene editing [J]. Acta Agronomica Sinica, 2021, 47(3): 427-437.
[14] HAN Bei, WANG Xu-Wen, LI Bao-Qi, YU Yu, TIAN Qin, YANG Xi-Yan. Association analysis of drought tolerance traits of upland cotton accessions (Gossypium hirsutum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 438-450.
[15] LU He-Quan, TANG Wei, LUO Zhen, KONG Xiang-Qiang, LI Zhen-Huai, XU Shi-Zhen, XIN Cheng-Song. Effects of commercial organic fertilizer substituting chemical fertilizer partially on soil nutrients, plant development, and yield in cotton [J]. Acta Agronomica Sinica, 2021, 47(12): 2511-2521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!