Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (2): 497-510.doi: 10.3724/SP.J.1006.2022.04277

Previous Articles     Next Articles

Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton

ER Chen1(), LIN Tao2,3,4, XIA Wen1, ZHANG Hao1, XU Gao-Yu1, TANG Qiu-Xiang1,*()   

  1. 1College of Agronomy, Xinjiang Agricultural University/Engineering Research Centre of Cotton of Ministry of Education, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang, China
    3Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    4Key Laboratory of Crop Physiological Ecology and Cultivation in Desert Oasis Region, Ministry of Agriculture and Rural Affairs, Urumqi 830091, Xinjiang, China
  • Received:2020-12-16 Accepted:2021-06-16 Online:2022-02-12 Published:2021-07-14
  • Contact: TANG Qiu-Xiang E-mail:1193270894@qq.com;tangqiuxiang2004_2@163.com
  • Supported by:
    This study was supported by the Xinjiang Uygur Autonomous Region Science and Technology Support Xinjiang Project(2017E0251);the Xinjiang Uygur Autonomous Region University Research project(XJEDU20191012);the Nanjing Agricultural University-Xinjiang Agricultural University Joint Fund Project(KYYJ201802);the General Project of Nature Fund of Xinjiang Uygur Autonomous Region(2018D01A51);the Xinjiang Uygur Autonomous Region Major Science and Technology Project(2020A01002-4);the Xinjiang Academy of Agricultural Sciences and Technology Innovation Key Cultivation Special Project, the Xinjiang Academy of Agricultural Sciences Agricultural Science and Technology Innovation Platform Capacity Enhancement Special Project-Key Laboratory of Crop Physiology, Ecology and Cultivation of Desert Oasis, Ministry of Agriculture Open Project(25107020-202001);the Xinjiang Uygur Autonomous Region Tianshan Talent Training Program


The shortage of water resources and the excessive investment of fertilizer are the bottlenecks that restrict the sustainable and healthy development of agriculture and force farmers to develop and adopt sustainable production technologies. The mechanism of water movement and the residual behavior of nitrogen fertilizer are important scientific issues to evaluate the level of agricultural water and fertilizer management in arid areas. Improving the water and nitrogen utilization efficiency was an important way to reduce environmental pollution. An experiment was conducted using a split plot design with the main area for total irrigation of 2250 (W1, non-sufficient drip irrigation), 3450 (W2, conventional drip irrigation), 4650 m 3 hm -2 (W3, saturated drip irrigation), and the deputy area of nitrogen (pure N) including 0 (N1, no fertilizer), 300 (N2, conventional fertilization), 600 kg hm -2 (N3, excess fertilization) in arid area of northwest China cotton region from 2018 to 2019. The effects of irrigation and nitrogen levels on water distribution, nitrate nitrogen residue, seed cotton, irrigation water, and N fertilizer productive efficiency were evaluated. The results revealed that irrigation and coupling effects of irrigation and nitrogen levels were the influencing factors on seed cotton and water utilization efficiency, among which irrigation was the main effect. Two-year average values demonstrated that the irrigation was W1, nitrogen fertilization amount increased from N1 to N3, and the average soil moisture content of 0-80 cm during the whole growth period increased first and then decreased. Compared with N1 fertilization application, seed cotton yield was 13.8% and 7.6% higher and irrigation water productive efficiency were 13.6% and 6.8% higher under N2 and N3 fertilization application, respectively. When the irrigation was W2 and W3, the nitrogen fertilization amount increased from N1 to N3, and there was no significant difference in the average soil moisture content of 0-80 cm during the whole growth period. Compared with N1 fertilization application, seed cotton yield was 11.4% and 11.5% higher and irrigation water productive efficiency were 13.6% and 6.8% higher under N2 and N3 fertilization application, respectively. With the increase of irrigation, the total average value of 0-80 cm during the whole growth period gradually increased. Irrigation was the main effect on soil nitrate nitrogen accumulation in the main distribution area of 0-40 cm roots, and coupling effects of irrigation and nitrogen levels was the main factor leading to nitrate nitrogen leaching. When the irrigation was W1, nitrate nitrogen accumulated in the 0-40 cm with the increase of nitrogen. And when the irrigation was W3, nitrate nitrogen accumulated in the 40-60 cm with the increase of nitrogen. In conclusion, if the irrigation was higher than 3450 m 3 hm -2 and nitrogen was higher than 300 kg hm -2, the continued increase of water and nitrogen input failed to increase production, which might result in resource waste and potential pollution to the environment. Therefore, we suggest that water and nitrogen optimization strategies can improve resource utilization efficiency, reduce water and fertilizer input, and healthy development of agriculture.

Key words: machine-harvested cotton, coupling effects of irrigation and nitrogen levels, yield, water distribution, nitrate nitrogen residue

Table 1

Basic nutrient content the experimental soil"

Organic matter
(g kg-1)
Total nitrogen
(g kg-1)
nitrogen (mg kg-1)
Available phosphorus
(mg kg-1)
Available potassium
(mg kg-1)
2018 7.7 0.60 50.3 19.6 108.0
2019 8.3 0.48 58.4 35.4 130.7

Table 2

Content of NO3--N and NH4+-N in 0-100 cm soil profile before sowing (mg kg-1)"

Soil layers
2018 2019
0-10 33.8 7.2 28.9 6.3
10-20 35.9 6.8 32.7 6.5
20-30 39.7 6.9 39.1 5.4
30-40 40.6 5.7 40.9 4.7
40-50 34.8 5.3 36.1 4.8
50-60 24.8 5.6 20.2 5.1
60-70 33.9 4.7 24.5 4.2
70-80 22.4 5.3 21.6 3.5
80-90 28.2 5.4 23.4 4.6
90-100 24.2 5.1 26.1 3.0

Fig. 1

Schematic drawing of moisture measuring sites"

Table 3

Effects of different irrigation and fertilization treatments on seed cotton, irrigation water productive efficiency, and N fertilizer productive efficiency in cotton"

Irrigation rate
(m3 hm-2)
Fertilizer rate
(kg hm-2)
Dry matter of total biomass
(g plant-1)
Seed cotton
(kg hm-2)
Irrigation water productive efficiency
(kg m-3)
N fertilizer productive efficiency
(kg kg-1 N-1)
2018 2019 2018 2019 2018 2019 2018 2019
W1 N1 65.8 c 56.1 d 4213.8 e 4525.0 f 1.9 b 2.5 b
N2 82.1 b 90.3 c 4946.5 cd 4999.6 e 2.2 a 2.8 a 2.2 ab 2.0 b
N3 79.0 bc 56.8 d 4508.4 de 4895.5 e 2.0 b 2.7 a 0.7 c 0.8 d
W2 N1 84.7 b 72.0 d 5098.7 bc 5526.9 d 1.5 d 2.0 d
N2 129.7 a 120.0 a 5540.1 ab 6023.8 c 1.6 cd 2.2 c 1.5 bc 2.1 b
N3 98.0 b 124.1 a 5722.5 a 6131.3 bc 1.7 c 2.2 c 1.4 bc 1.3 c
W3 N1 95.5 b 96.8 b 4990.2 c 5697.4 d 1.1 f 1.5 f
N2 114.2 a 128.9 a 5849.2 a 6294.3 ab 1.3 e 1.7 e 2.9 a 2.5 a
N3 115.2 a 118.1 a 5633.5 a 6374.4 a 1.2 e 1.7 e 1.4 bc 1.4 c
二因素分析 (F值) Two-way ANOVA (F-value)
年份 Year (Y) 61.3*** 29.3*** 3485.8*** 0.1ns
灌溉量 Irrigation rate (W) 89.3*** 678.7*** 3296.6*** 17.2***
施肥量 Fertilizer rate (N) 38.8*** 217.7*** 188.9*** 140.2***
年份×灌溉量 Y×W 2.6* 1.5ns 3.6 ns 2.3ns
年份×施肥量 Y×N 3.7* 1.9ns 4.4* 0.1ns
灌溉量×施肥量 W×N 5.6** 8.1*** 11.8*** 12.1***
年份×灌溉量×施肥量Y×W×N 3.3* 3.9* 2.0ns 4.8*

Table 4

Effects of different irrigation and fertilization treatments on the average contents of soil moisture water in 0-80 cm soil profile"

Irrigation rate
(m3 hm-2)
Fertilizer rate
(kg hm-2)
土壤体积含水量 Soil volumetric water content (%)
0-10 (cm) 10-20 (cm) 20-30 (cm) 30-40 (cm) 40-50 (cm) 50-60 (cm) 60-70 (cm) 70-80 (cm) 0-80 (cm) Average
2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019
W1 N1 10.3 c 14.3 d 13.2 d 15.7 f 14.8 d 17.1 c 16.7 bc 21.8 ab 18.0 a 23.7 a 19.1 ab 24.6 a 21.6 cd 26.4 d 24.4 cd 24.1 c 17.3 e 20.2 c
N2 12.7 b 16.1 bc 16.1 bc 18.8 de 16.2 c 20.2 bc 16.0 c 21.0 b 16.7 b 23.6 a 18.4 b 25.6 a 21.4 cd 26.0 d 24.0 d 26.0 c 17.7 de 22.2 b
N3 10.2 c 15.3 cd 13.0 d 16.9 ef 14.4 d 17.3 c 15.0 d 16.9 c 17.5 ab 21.9 b 18.4 b 25.6 a 20.8 d 27.3 cd 23.6 d 22.4 c 16.6 f 21.1 c
W2 N1 14.6 a 17.9 a 17.3 a 21.8 abc 16.4 bc 20.3 abc 17.4 ab 23.5 ab 17.6 ab 25.3 a 19.0 ab 26.1 a 21.5 cd 30.2 bcd 25.1 c 35.2 ab 18.6 b 25.0 a
N2 14.1 a 17.9 a 16.3 abc 21.5 abc 16.6 bc 21.7 ab 17.1 bc 22.4 ab 18.0 a 24.8 a 18.3 b 27.1 a 21.1 cd 32.5 ab 24.5 cd 33.9 ab 18.2 bc 25.2 a
N3 12.0 b 17.1 ab 15.7 c 19.5 cd 17.4 ab 23.7 ab 16.8 bc 20.6 b 17.7 a 24.4 a 18.7 ab 26.0 a 21.9 c 33.8 ab 23.9 d 32.2 b 18.0 bcd 24.7 ab
W3 N1 14.5 a 16.9 ab 16.6 abc 21.1 bcd 16.5 bc 19.8 bc 17.1 abc 22.9 ab 18.2 a 24.3 a 19.7 a 25.7 a 25.3 a 35.8 a 29.6 a 37.1 a 19.7 a 25.5 a
N2 14.4 a 17.7 a 17.2 ab 22.1 ab 17.1 abc 22.4 ab 17.5 ab 22.7 ab 18.4 a 25.4 a 19.1 ab 28.0 a 24.6 ab 35.0 ab 28.0 b 34.9 ab 19.5 a 26.0 a
N3 14.9 a 17.7 a 17.4 a 23.4 a 17.6 a 24.3 ab 18.3 a 24.6 a 18.4 a 26.8 a 18.9 ab 27.7 a 24.3 b 32.1 abc 27.8 b 33.6 ab 19.7 a 26.3 a
二因素分析 (F值) Two-way ANOVA (F value)
年份 Year (Y) 287.3*** 225.0*** 84.6*** 138.2*** 87.2*** 83.3*** 220.6*** 148.4*** 407.9***
Irrigation rate (W)
67.5*** 72.9*** 14.7*** 13.5*** 2.5ns 0.7ns 31.9*** 105.9*** 58.0***
施肥量 Fertilizer rate (N) 6.5*** 6.1*** 4.9* 2.7ns 0.0ns 0.1ns 0.0ns 7.1** 1.0ns
年份×灌溉量 Y×W 3.9* 4.8* 1.9ns 1.5ns 0.7ns 0.2ns 8.2** 3.9* 0.2ns
年份×施肥量 Y×N 2.3ns 0.6ns 1.8ns 1.4ns 0.1ns 0.6ns 0.2ns 1.7ns 1.1ns
灌溉量×施肥量 W×N 6.8*** 8.8*** 2.2ns 4.2** 0.3ns 0.0ns 1.7ns 1.0ns 1.0ns
年份×灌溉量×施肥量Y×W×N 0.9ns 0.9ns 0.3ns 0.9ns 0.3ns 0.1ns 1.0ns 0.4ns 0.2ns

Fig. 2

Spatial and temporal variation of soil water under different irrigation and fertilization treatments in 2018 SS:seedling stage; BS:bud stage; FS:flowering stage; FBS:full bolling stage; BOS:boll opening stage. Treatments are the same as those given in Table 3."

Fig. 3

Spatial and temporal variation of soil water under different irrigation and fertilization treatments in 2019 SS:seedling stage; BS:bud stage; FS:flowering stage; FBS:full bolling stage; BOS:boll opening stage. Treatments are the same as those given in Table 3."

Table 5

Effects of different irrigation and fertilization treatments on inorganic nitrogen content in soil"

Growth stages
灌溉量Irrigation rate
(m3 hm-2)
施肥量Fertilizer rate (kg hm-2) 硝态氮
NO3--N (mg kg-1)
NH4+-N (mg kg-1)
Inorganic nitrogen (mg kg-1)
2018 2019 2018 2019 2018 2019
Flowering stage
W1 N1 180.3 bcd 169.0 bc 29.1 a 28.7 bc 209.4 bcd 197.7 bcd
N2 164.7 cd 175.9 bc 26.2 abc 30.7 abc 190.9 cd 206.6 bc
N3 204.0 bc 192.7 b 28.0 a 26.5 cd 232.0 bc 219.2 ab
W2 N1 152.3 d 144.3 c 21.4 bc 31.6 ab 173.7 d 175.9 cd
N2 222.4 ab 233.5 a 20.4 c 21.8 d 242.8 ab 255.3 a
N3 264.8 a 146.9 c 21.0 c 13.7 e 285.7 a 160.6 d
W3 N1 188.2 bcd 82.1 d 27.3 ab 29.5 bc 215.5 bcd 111.6 e
N2 193.3 bcd 175.9 bc 23.5 abc 33.0 ab 216.8 bcd 208.9 bc
N3 215.0 b 178.2 bc 25.5 abc 35.4 a 240.6 ab 213.6 b
Bool stage
W1 N1 193.6 bc 119.9 cd 10.1 d 16.0 e 203.7 bc 135.9 d
N2 278.1 a 195.3 b 21.8 bc 23.1 cd 299.9 a 218.4 b
N3 264.5 a 273.4 a 22.7 ab 21.1 de 287.2 a 294.5 a
W2 N1 163.3 d 102.8 de 23.2 ab 18.5 de 186.5 cd 121.3 d
N2 203.0 b 149.1 c 24.1 ab 27.0 bc 227.0 b 176.0 c
N3 203.0 b 186.1 b 25.1 a 27.3 bc 228.1 b 213.4 b
W3 N1 133.6 e 89.0 e 22.6 ab 29.4 b 156.2 e 118.4 d
N2 166.2 cd 180.0 b 24.4 ab 38.7 a 190.6 cd 218.8 b
N3 146.5 de 181.4 b 19.1 c 34.7 a 165.6 de 216.0 b
Boll opening stage
W1 N1 163.8 bc 125.7 e 21.2 de 21.2 d 185.0 bc 146.9 e
N2 159.4 bc 173.8 bc 23.4 cd 30.8 bc 182.7 bc 204.5 bc
N3 199.6 a 189.5 a 24.0 bc 29.5 bc 223.5 a 219.1 a
W2 N1 116.1 d 108.6 f 27.5 a 24.7 cd 143.6 d 133.2 f
N2 135.7 c 178.4 abc 25.7 ab 20.2 d 161.4 c 198.6 c
N3 150.0 bc 183.3 ab 22.9 cd 32.2 ab 172.9 c 215.5 ab
W3 N1 105.9 d 143.7 d 19.2 e 22.1 d 125.1 d 165.8 d
N2 116.0 d 114.1 ef 27.1 a 23.9 cd 143.1 d 138.0 ef
N3 176.0 b 164.4 c 20.3 e 38.0 a 196.3 b 202.3 c

Fig. 4

Distribution of residual NO3-N in the soil profile under different irrigation and fertilization treatments in 2018 a:flowering stage; b:full bolling stage; c:boll opening stage. Treatments are the same as those given in Table 3."

Fig. 5

Distribution of residual NO3-N in the soil profile under different irrigation and fertilization treatments in 2019 a:flowering stage; b:full bolling stage; c:boll opening stage. Treatments are the same as those given in Table 3."

[1] Hui Y A, Ta S D . Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric Water Manage, 2017,79:193-204.
[2] Malavolta E, Nogueira N G, Heinrichs R, Higashi E N, Rodriguez V, Guerra E . Evaluation of nutritional status of the cotton plant with respect to nitrogen. Commun Soil Sci Plan, 2004,35:1007-1019.
[3] Aujla M S, Thind H S, Buttar G S . Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting. Agric Water Manage, 2005,71:167-179.
[4] 赵士诚, 裴雪霞, 何萍, 张秀芝, 李科江, 周卫, 梁国庆, 金继运 . 氮肥减量后移对土壤氮素供应和夏玉米氮素吸收利用的影响. 植物营养与肥料学报, 2010,16:492-497.
Zhao S C, Pei X X, He P, Zhang X Z, Li K J, Zhou W, Liang G Q, Jin J Y . Effects of reducing and postponing nitrogen application on soil N supply, plant N uptake and utilization of summer maize. Plant Nutr Fert Sci, 2010,16:492-497 (in Chinese with English abstract).
[5] Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010,327:1008-1010.
[6] 赵波, 王振华, 李文昊 . 滴灌方式及定额对北疆冬灌棉田土壤水盐分布及次年棉花生长的影响. 农业工程学报, 2016,32(6):139-148.
Zhao B, Wang Z H, Li W H . Effects of winter drip irrigation mode and quota on water and salt distribution in cotton field soil and cotton growth next year in northern Xinjiang. Trans CSAE, 2016,32(6):139-148 (in Chinese with English abstract).
[7] 宰松梅, 仵峰, 范永申, 温季, 韩启彪, 孙浩 . 不同滴灌形式对棉田土壤理化性状的影响. 农业工程学报, 2011,27(12):84-89.
Zai S M, Wu F, Fan Y S, Wen J, Han Q B, Sun H . Effects of drip irrigation patter on soil properties in cotton field. Trans CSAE, 2011,27(12):84-89 (in Chinese with English abstract).
[8] Kang S Z, Hao X M, Du T S, Tong L, Sun X L, Lu H N, Li X L, Huo Z L, Li S E, Ding R S . Improving agricultural water productivity to ensure food security in China under changing environment:from research to practice. Agric Water Manage, 2017,179:5-17.
[9] 罗宏海, 李俊华, 勾玲, 张旺锋, 何在菊, 杨新军 . 膜下滴灌对不同土壤水分棉花花铃期光合生产、分配及籽棉产量的调节. 中国农业科学, 2008,41:1955-1962.
Luo H H, Li J H, Gou L, Zhang W F, He Z J, Yang X J . Regulation of under-mulch-drip irrigation on production and distribution of photosynthetic assimilate and cotton yield under different soil moisture contents during cotton flowering and boll-setting stage. Sci Agric Sin, 2008,41:1955-1962 (in Chinese with English abstract).
[10] 李鹏程, 董合林, 刘爱忠, 刘敬然, 李如义, 孙淼, 李亚兵, 毛树春 . 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响. 植物营养与肥料学报, 2015,21:81-91.
Li P C, Dong H L, Liu A Z, Liu J R, Li R Y, Sun M, Li Y B, Mao S C . Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton. J Plant Nutr Fert, 2015,21:81-91 (in Chinese with English abstract).
[11] 胡晓棠, 陈虎, 王静, 蒙晓斌, 陈福宏 . 不同土壤湿度对膜下滴灌棉花根系生长和分布的影响. 中国农业科学, 2009,42:1682-1689.
Hu X T, Chen H, Wang J, Meng X B, Chen F H . Effects of soil water content on cotton root growth and distribution under mulched drip irrigation. Sci Agric Sin, 2009,42:1682-1689 (in Chinese with English abstract).
[12] 马忠明, 陈娟, 刘婷婷, 吕晓东 . 水氮耦合对固定道垄作栽培春小麦根长密度和产量的影响. 作物学报, 2017,43:1705-1714.
Ma Z M, Chen J, Liu T T, Lyu X D . Effects of water and nitrogen coupling on root length density and yield of spring wheat in permanent raised-bed cropping system. Acta Agron Sin, 2017,43:1705-1714 (in Chinese with English abstract).
[13] Wang C Y, Liu W X, Li Q X, Ma D Y, Lu H F, Feng W, Xie Y X, Zhu Y J, Guo T C . Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res, 2014,165:138-149.
[14] Cabangon R J, Tuong T P, Castillo E G, Bao L X, Lu G A, Wang G H, Cui Y L, Bouman B M, Li Y H, Chen C D, Wang J Z . Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ, 2004,2:195-206.
[15] Du T S, Kang S Z, Zhang J H, Li F S, Hu X T . Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China. Agric Water Manage, 2006,84:41-52.
[16] 石洪亮, 严青青, 张巨松, 李春燕, 窦海涛 . 氮肥对非充分灌溉下棉花花铃期光合特性及产量的补偿作用. 作物学报, 2018,44:1196-1204.
Shi H L, Yan Q Q, Zhang J S, Li C Y, Dou H T . Compensation effect of nitrogen fertilizer on photosynthetic characteristics and yield during cotton flowering boll-setting stage under non-sufficient drip irrigation. Acta Agron Sin, 2018,44:1196-1204 (in Chinese with English abstract).
[17] 任书杰, 张雷明, 张岁岐, 上官周平 . 氮素营养对小麦根冠协调生长的调控. 西北植物学报, 2003,23:395-400.
Ren S J, Zhang L M, Zhang S Q, Shang-Guan Z P,. The effect of nitrogennutrition on coordinate growth of root and shoot of winter wheat. Acta Bot Boreali-Occident Sin, 2003,23:395-400 (in Chinese with English abstract).
[18] Zhang H X, Chi D C, Wang Q, Fang J, Fang X Y . Yield and quality response of cucumber to irrigation and nitrogen fertilization under subsurface drip irrigation in solar greenhouse. Agric Sci China, 2011,6:921-930.
[19] Rajput T B S, Neelam P . Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agric Water Manage, 2006,79:293-311.
[20] 王艳哲, 刘秀位, 孙宏勇, 张喜英, 张连蕊 . 水氮调控对冬小麦根冠比和水分利用效率的影响研究. 中国生态农业学报, 2013,21:282-289.
Wang Y Z, Liu X W, Sun H Y, Zhang X Y, Zhang L R . Effects of water and nitrogen on root/shoot ratio and water use efficiency of winter wheat. Chin J Eco-Agric, 2013,21:282-289 (in Chinese with English abstract).
[21] Janat M . Efficiency of nitrogen fertilizer for potato under fertigation utilizing a nitrogen tracer technique. Commun Soil Sci Plant Anal, 2007,38:2041-2422.
[22] 冯波, 孔令安, 张宾, 司纪升, 李升东, 王法宏 . 施氮量对垄作小麦氮肥利用率和土壤硝态氮含量的影响. 作物学报, 2012,38:1107-1114.
Feng B, Kong L A, Zhang B, Si J S, Li S D, Wang F H . Effect of nitrogen application level on nitrogen use efficiency in wheat and soil nitrate-N content under bed planting condition. Acta Agron Sin, 2012,38:1107-1114 (in Chinese with English abstract).
[23] 王丽英, 武雪萍, 张彦才, 李若楠, 陈丽莉, 陈清 . 适宜施氮量保证滴灌日光温室黄瓜番茄产量降低土壤盐分及氮残留. 农业工程学报, 2015,31(17):91-98.
Wang L Y, Wu X P, Zhang Y C, Li R N, Chen L L, Chen Q . Optimal nitrogen application rate to ensure cucumber and tomato yield with drip irrigation in greenhouse and to reduce soil salinity and nitrate residue. Trans CSAE, 2015,31(17):91-98 (in Chinese with English abstract).
[24] Rochester I O, Halloran J, Maas S, Sands D, Brotherton E . Monitoring nitrogen use efficiency in your region. Aust Cottongrower, 2017,28:24-27.
[25] 张忠学, 陈鹏, 聂堂哲, 姜浩, 孟翔燕, 杨军明 . 不同水氮调控模式对稻田土壤氮素分布与有效性的影响. 农业机械学报, 2018,49(11):210-219.
Zhang Z X, Chen P, Nie T Z, Jiang H, Meng X Y, Yang J M . Effects of different water and nitrogen regulation models on nitrogen distribution and availability in paddy soils. Trans CSAM, 2018,49(11):210-219 (in Chinese with English abstract).
[26] 栗丽, 洪坚平, 王宏庭, 谢英荷, 张璐, 邓树元, 单杰, 李云刚 . 施氮与灌水对夏玉米土壤硝态氮积累、氮素平衡及其利用率的影响. 植物营养与肥料学报, 2010,16:1358-1365.
Li L, Hong J P, Wang H T, Xie Y H, Zhang L, Deng S Y, Shan J, Li Y G . Effects of nitrogen application and irrigation on soil nitrate accumulation, nitrogen balance and use efficiency in summer maize. Plant Nutr Fert Sci, 2010,16:1358-1365 (in Chinese with English abstract).
[27] 高亚军, 李生秀, 李世清, 田霄鸿, 王朝辉, 郑险峰, 杜建军 . 施肥与灌水对硝态氮在土壤中残留的影响. 水土保持学报, 2005,19(6):61-64.
Gao Y J, Li S X, Li S Q, Tian X H, Wang Z H, Zheng X F, Du J J . Effect of fertilization and irrigation on residual nitrate N in soil. J Soil Water Conserv, 2005,19(6):61-64 (in Chinese with English abstract).
[28] Pilbean C J, McNeill A M, Harris H C, Swift R S. Effect of fertilizer rate and form on the recovery of 15N-labelled fertilizer applied to wheat in Syria . J Sci Food Agric, 1997,128:415-424.
[29] 张绍武, 胡田田, 刘杰, 冯璞玉, 张美玲 . 滴灌施肥下水肥用量对温室土壤硝态氮残留的影响. 灌溉排水学报, 2019,38(3):56-63.
Zhang S W, Hu T T, Liu J, Feng P Y, Zhang M L . Soil nitrate residue as affected by the amount of water and nitrogen applications under drip fertigation. J Irrig Draina, 2019,38(3):56-63 (in Chinese with English abstract).
[30] 王晓英, 贺明荣, 刘永环, 张洪华, 李飞, 华芳霞, 孟淑华 . 水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响. 生态学报, 2008,28:685-693.
Wang X Y, He M R, Liu Y H, Zhang H H, Li F, Hua F X, Meng S H . Interactive effects of irrigation and nitrogen fertilizer on nitrogen fertilizer recovery and nitrate-N movement across soil profile in a winter wheat field. Acta Ecol Sin, 2008,28:685-693 (in Chinese with English abstract).
[31] 鲍士旦 . 土壤农化分析. 北京: 中国农业科技出版社, 2000. pp 25-90.
Bao S D. Soil Agro-chemistrical Analysis. Beijing: China Agricultural Science and Technology Press, 2000. pp 25-90(in Chinese).
[32] 王小燕, 褚鹏飞, 于振文 . 水氮互作对小麦土壤硝态氮运移及水、氮利用效率的影响. 植物营养与肥料学报, 2009,15:992-1002.
Wang X Y, Chu P F, Yu Z W . Effects of irrigation and nitrogen interaction on soil NO3 --N transport, nitrogen use efficiency and water use efficiency in wheat . Plant Nutr Fert Sci, 2009,15:992-1002 (in Chinese with English abstract).
[33] 樊小林, 李玲, 何文勤, 尚浩博, 汪沛洪 . 氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应. 植物营养与肥料学报, 1998,4:131-137.
Fan X L, Li L, He W Q, Shang H B, Wang P H . Effect of nitrogen fertilizer, water stress and the genotypes on nitrogen uptake of winter wheat. Plant Nutr Fert Sci, 1998,4:131-137 (in Chinese with English abstract).
[34] 孙文涛, 孙占祥, 王聪翔, 宫亮, 张玉龙 . 滴灌施肥条件下玉米水肥耦合效应的研究. 中国农业科学, 2006,39:563-568.
Sun W T, Sun Z X, Wang C X, Gong L, Zhang Y L . Coupling effect of water and fertilizer on corn yield under drip fertigation. Sci Agric Sin, 2006,39:563-568 (in Chinese with English abstract).
[35] 吴程, 胡顺军, 赵成义 . 塔里木灌区膜下滴灌棉田土壤水分动态与耗水特性. 节水灌溉, 2016, (2):14-17.
Wu C, Hu S J, Zhao C Y . Dynamic change of soil moisture and water consumption of cotton under drip irrigation patterns in Tarim irrigation area. Water Sav Irrig, 2016, ( 2):14-17 (in Chinese with English abstract).
[36] 刘艳, 安景文, 华利民, 解占军, 周建斌, 汪仁 . 氮肥不同施用时期对春玉米早衰的影响. 土壤通报, 2011,42:902-905.
Liu Y, An J W, Hua L M, Xie Z J, Zhou J B, Wang R . Effects of N different fertilization time on early senescence of spring maize. Chin J Soil Sci, 2011,42:902-905 (in Chinese with English abstract).
[37] Liu X J, Ju Z T, Zhang F S, Pan J R, Christie P . Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China plain. Field Crops Res, 2003,83:111-124.
[38] Elrick D E, French L K . Miscible displacement patterns on disturbed and undisturbed soil cores. Soil Sci Soc Am Proc, 1966,30:153-156.
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Full text



No Suggested Reading articles found!