Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1806-1815.doi: 10.3724/SP.J.1006.2021.04162

• RESEARCH NOTES • Previous Articles     Next Articles

Fungi diversity analysis of rhizosphere under drought conditions in cotton

YUE Dan-Dan(), HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan*   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2020-07-20 Accepted:2021-01-21 Online:2021-09-12 Published:2021-02-25
  • Contact: YANG Xi-Yan E-mail:ddyue@webmail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000907)


Plant rhizosphere microorganisms play important roles in plant growth and the adaptability of plants to adverse environmental stresses. In this study, cotton rhizosphere fungal communities were analyzed under drought conditions, aiming to explore the effects of drought stress on the diversity and community structures of cotton rhizosphere fungi, and to provide a theoretical basis for improving cotton water use efficiency by using beneficial microorganisms. Drought stress was applied to upland cotton (Gossypium hirsutum cv. Jin 668) at flowering stage (SDP), while the soil without plants was also subjected to drought (SOPD). Simultaneously, the plants (SPN) and pots without plants (SNPN) regularly watered were used as controls. The soil samples were collected, the microbial DNA was isolated, and Illumina Miseq was conducted for a high-throughput sequencing of fungi ITS1 regions to study the diversity of the rhizosphere fungal communities. As a result, a total of 970 OTUs were identified, and the numbers of fungal OTUs in the samples of SNPN, SOPD, SPN, and SDP were 481, 528, 743, and 752, respectively, among which 288 OTUs were shared by all samples. The OTUs were classified to different levels of phyla, class, order, family, and genus of fungi. The rhizosphere fungal community of cotton was predominantly consisted of the phyla Ascomycota (82.70%) and Basidiomycota (10.15%). The abundance of Sordariomycetes, Sordariales, and Chaetomiaceae decreased, while the abundance of Eurotiales, Trichocomaceae, Aspergillus, and Penicillum increased significantly under drought stress. Moreover, the diversity of fungal community in the soil with cotton plants significantly higher than that in the soil without cotton plants. Meanwhile, the fungi community structures of SPN and SDP resembling each other and differing greatly from SNPN and SOPD. These results revealed that the cotton rhizosphere had a rich pool of fungal communities, and drought stress had a significant effect on the abundances and diversity of fungi in cotton rhizosphere. This study provided new insights for the researches of improving drought tolerance of cotton in terms of soil microorganisms.

Key words: cotton, drought, fungal community diversity, rhizosphere, high-throughput sequencing

Fig. 1

OTU classification of microbial communities A: Venn diagram of sample OTUs quantity; B: the number of OTUs of sample at different classification level. SNPN: normally watered soil without plants; SOPD: drought treated soil without plants; SPN: normally watered plant rhizosphere soil; SDP: drought treated plant rhizosphere soil."

Fig. 2

Alpha diversity analysis of soil fungi under normal and drought conditions A: sparse curves, B: species cumulative curve; C: rank abundance curve. Abbreviations are the same as those given inFig. 1. "

Table 1

Microbial diversity index"

Chao1 index
ACE index
Simpson index
Shannon index
SNPN 304.33±15.04 b 316.50±19.09 b 0.79±0.11 b 4.14±0.29 b
SOPD 334.50±12.02 b 334.50±12.02 b 0.89±0.00 b 4.50±0.09 b
SPN 544.40±14.91 a 567.03±15.54 a 0.90±0.02 a 4.58±0.19 a
SDP 525.31±17.30 a 527.92±14.83 a 0.92±0.01 a 5.01±0.10 a

Table 2

Microbial groups at each classification level"







SNPN 9.00±0.00 a 15.00±1.00 b 39.33±2.89 b 62.50±3.54 a 88.50±2.12 b 158.00±2.83 d
SOPD 8.67±1.15 a 15.67±3.06 ab 43.00±5.00 ab 67.00±2.00 a 95.67±4.04 a 168.00±1.41 c
SPN 9.00±0.00 a 18.67±1.53 ab 45.00±4.58 a 68.67±2.08 a 103.50±2.83 a 182.00±1.41 b
SDP 9.00±0.00 a 20.00±1.00 a 51.00±4.58 a 70.00±0.00 a 109.00±2.83 a 194.00±1.41 a

Fig. 3

Distribution and abundance of taxa A-E represent the percentage of taxa at phylum, class, order, family, and genus level, respectively. Abbreviations are the same as those given in Fig. 1. "

Fig. 4

Taxonomic analysis of phylogenetic tree and heat map A: the classification hierarchy tree shows the hierarchical relationships of all taxa from the phylum to the genus level in the sample population; B: combined heat level map of the community composition with cluster analysis. Abbreviations are the same as those given inFig. 1. "

Fig. 5

Beta diversity analysis A: two-dimensional ranking of the PCA analysis; B: weighted UniFrac PCoA analysis; C: multiple sets of box plots for the weighted UniFrac distance; D: PLS-discriminant analysis. Abbreviations are the same as those given in Fig. 1. "

[1] Rapparini F, Peñuelas J. Use of Microbes for the Alleviation of Soil Stresses, New York: Springer, 2014. pp 21-42.
[2] Parida A K, Dagaonkar V S, Phalak M S, Umalkar G V, Aurangabadkar L P. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep, 2007, 1:37-48.
doi: 10.1007/s11816-006-0004-1
[3] Ullah A, Sun H, Yang X Y, Zhang X L. Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J, 2017, 15:271-284.
doi: 10.1111/pbi.12688 pmid: 28055133
[4] Rovira A D. Plant root exudates. Bot Rev, 1969, 35:35-57.
doi: 10.1007/BF02859887
[5] Bai Y, Muller D B, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Munch P C, Spaepen S, Remus-Emsermann M, Huttel B, McHardy A C, Vorholt J A, Schulze-Lefert P. Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 2015, 528:364-369.
doi: 10.1038/nature16192
[6] Wei F, Zhao L, Xu X, Feng H, Shi Y, Deakin G, Feng Z, Zhu H. Cultivar-dependent variation of the cotton rhizosphere and endosphere microbiome under field conditions. Front Plant Sci, 2019, 10:1659.
doi: 10.3389/fpls.2019.01659 pmid: 31921274
[7] Toju H, Peay K G, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers E T. Core microbiomes for sustainable agroecosystems. Nat Plants, 2018, 4:247-257.
doi: 10.1038/s41477-018-0139-4
[8] Lau J A, Lennon J T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA, 2012, 109:14058-14062.
doi: 10.1073/pnas.1202319109
[9] Niu X, Song L, Xiao Y, Ge W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol, 2017, 8:2580.
doi: 10.3389/fmicb.2017.02580
[10] de Zelicourt A, Al-Yousif M, Hirt H. Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant, 2013, 6:242-245.
doi: 10.1093/mp/sst028 pmid: 23475999
[11] Yang J, Kloepper J W, Ryu C M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci, 2009, 14:1-4.
doi: 10.1016/j.tplants.2008.10.004
[12] 赵卫松, 郭庆港, 李社增, 王培培, 鹿秀云, 苏振贺, 张晓云, 马平. 花铃期棉花黄萎病抗病与感病品种对土壤细菌群落结构的影响. 中国农业科学, 2020, 53:942-954.
Zhao W S, Guo Q G, Li S Z, Wang P P, Lu X Y, Su Z H, Zhang X Y, Ma P. Effect of wilt-resistant and wilt-susceptible cotton on soil bacterial community structure at flowering and boll stage. Sci Agric Sin, 2020, 53:942-954 (in Chinese with English abstract).
[13] Edwards J, Johnson C, Santos-Medellín C, Lurie E, Sundaresan V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA, 2015, 112:911-920.
doi: 10.1073/pnas.1423603112
[14] Walters W A, Jin Z, Youngblut N, Wallace J G, Sutter J, Zhang W, González-Peña A, Peiffer J, Koren O, Shi Q, Knight R, Glavina Del Rio T, Tringe S G, Buckler E S, Dangl J L, Ley R E. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci USA, 2018, 115:7368-7373.
doi: 10.1073/pnas.1800918115
[15] Zolla G, Badri D V, Bakker M G, Manter D K, Vivanco J M. Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol, 2013, 68:1-9.
doi: 10.1016/j.apsoil.2013.03.007
[16] Carvalhais L C, Dennis P G, Badri D V, Kidd B N, Vivanco J M, Schenk P M. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact, 2015, 28:1049-1058.
doi: 10.1094/MPMI-01-15-0016-R
[17] 吴会会, 邹英宁, 吴强盛. 干旱胁迫下菌根真菌对枳根系形态、内源激素和土壤结构的影响. 中国南方果树, 2018, 47(3):14-17.
Wu H H, Zou Y N, Wu J S. Effects of mycorrhizal fungi on root morphology, endogenous hormones and soil structure of trifoliate orange under drought stress. South China Fruits, 2018, 47(3):14-17 (in Chinese with English abstract).
[18] Pieterse C M, Zamioudis C, Berendsen R L, Weller D M, Van Wees S C, Bakker P A. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol, 2014, 52:347-375.
doi: 10.1146/annurev-phyto-082712-102340 pmid: 24906124
[19] Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation. Biochem J, 2012, 444:11-25.
doi: 10.1042/BJ20120245
[20] Finkel O M, Castrillo G, Herrera Paredes S, Salas Gonzalez I, Dangl J L. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol, 2017, 38:155-163.
doi: S1369-5266(17)30015-8 pmid: 28622659
[21] Lundberg D S, Lebeis S L, Paredes S H, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio T G D. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488:86-90.
doi: 10.1038/nature11237 pmid: 22859206
[22] 薛英龙, 李春越, 王苁蓉, 王益, 刘津, 常顺, 苗雨, 党廷辉. 丛枝菌根真菌促进植物摄取土壤磷的作用机制. 水土保持学报, 2019, 33(6):10-20.
Xue Y L, Li C Y, Wang C R, Wang Y, Liu J, Chang S, Miao Y, Dang T H. Mechanisms of phosphorus uptake from soils by arbuscular mycorrhizal fungi. J Soil Water Conserv, 2019, 33(6):10-20 (in Chinese with English abstract).
[23] Rapparini F, Peñuelas J. Use of Microbes for the Alleviation of Soil Stresses, New York: Springer, 2014. pp 165-174.
[24] Uehlein N, Fileschi K, Eckert M, Bienert G P, Bertl A, Kaldenhoff R. Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry, 2007, 68:122-129.
doi: 10.1016/j.phytochem.2006.09.033
[25] Miller S H, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey J P, O’Gara F. Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep, 2010; 2:403-411.
doi: 10.1111/j.1758-2229.2009.00105.x
[26] Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G, Zhang H, Ma C, Zhang J. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci Rep, 2017, 7:3940.
doi: 10.1038/s41598-017-04213-7
[27] Xi H, Shen J, Qu Z, Yang D, Liu S, Nie X, Zhu L. Effects of long-term cotton continuous cropping on soil microbiome. Sci Rep, 2019, 9:18297.
doi: 10.1038/s41598-019-54771-1
[28] Ullah A, Akbar A, Luo Q, Khan A H, Manghwar H, Shaban M, Yang X. Microbiome diversity in cotton rhizosphere under normal and drought conditions. Microb Ecol, 2019, 77:429-439.
doi: 10.1007/s00248-018-1260-7 pmid: 30196314
[29] Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010, 7:335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131
[30] Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27:2194-2200.
doi: 10.1093/bioinformatics/btr381
[31] Koljalg U, Nilsson R H, Abarenkov K, Tedersoo L, Taylor A F, Bahram M, Bates S T, Bruns T D, Bengtsson-Palme J, Callaghan T M, Douglas B, Drenkhan T, Eberhardt U, Duenas M, Grebenc T, Griffith G W, Hartmann M, Kirk P M, Kohout P, Larsson E, Lindahl B D, Lucking R, Martin M P, Matheny P B, Nguyen N H, Niskanen T, Oja J, Peay K G, Peintner U, Peterson M, Poldmaa K, Saag L, Saar I, Schussler A, Scott J A, Senes C, Smith M E, Suija A, Taylor D L, Telleria M T, Weiss M, Larsson K H. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol, 2013, 22:5271-5277.
doi: 10.1111/mec.12481
[32] Chao A, Shen T J. Nonparametric prediction in species sampling. J Agric Biol Environ Statist, 2004, 9:253-269.
doi: 10.1198/108571104X3262
[33] Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. Plant J, 2021, 105:518-541.
doi: 10.1111/tpj.v105.2
[34] Verbon E H, Liberman L M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci, 2016, 21:218-229.
doi: S1360-1385(16)00028-5 pmid: 26875056
[35] Yu C, Hu X M, Deng W, Li Y, Xiong C, Ye C H, Han G M, Li X. Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding mulberry subjected to long-term fertilization. Appl Soil Ecol, 2015, 86:30-40.
doi: 10.1016/j.apsoil.2014.09.013
[36] 赵存鹏, 郭宝生, 刘素恩, 王兆晓, 昭耿, 王凯辉, 耿军义. 粮棉轮作对土壤中养分及真菌多样性的影响. 华北农学报, 2017, 32(6):139-146.
Zhao B C, Guo B S, Liu S E, Wang Z X, Zhao G, Wang K H, Geng J Y. Effect of cotton and grain crops rotation on nutrients contents and diversity of fungi in the soil. Acta Agric Boreali-Sin, 2017, 32(6):139-146 (in Chinese with English abstract).
[37] Rousk J, Brookes P C, Bååth E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol Ecol, 2011, 76:89-99.
doi: 10.1111/fem.2011.76.issue-1
[38] 刘宇, 韩淑梅, 宋希强, 丁琼, 王鹏, 赵莹. 不同海拔下海南凤仙花可培养根际真菌和细菌群落的季节性变化. 热带生物学报, 2018, 9(1):50-56.
Liu Y, Han S M, Song X Q, Ding Q, Wang P, Zhao Y. Seasonal variation of microbial communities in the rhizosphere of Impatiens hainanensis (Balsaminaceae) at different altitudes. J Trop Biol, 2018, 9(1):50-56 (in Chinese with English abstract).
[39] Butinar L, Zalar P, Frisvad J C, Gunde-Cimerman N. The genus Eurotium members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol, 2005, 51:155-166.
pmid: 16329864
[40] Beever R E, Laracy E P. Osmotic adjustment in the filamentous fungus Aspergillus nidulans. J Bacteriol, 1986, 168:1358-1365.
pmid: 3536874
[41] Araújo C A S, Ferreira P C, Pupin B, Dias L P, Avalos J, Edwards J, Hallsworth J E, Rangel D E N. Osmotolerance as a determinant of microbial ecology: a study of phylogenetically diverse fungi. Fungal Biol, 2020, 124:273-288.
doi: 10.1016/j.funbio.2019.09.001
[42] Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan F A, Khan F, Chen Y, Wu C, Tabassum M A, Chun M X, Afzal M, Jan A, Jan M T, Huang J. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res Int, 2015, 22:4907-4921.
doi: 10.1007/s11356-014-3754-2
[43] Qiao Q, Zhang J, Ma C, Wang F, Chen Y, Zhang C, Zhang H, Zhang J. Characterization and variation of the rhizosphere fungal community structure of cultivated tetraploid cotton. PLoS One, 2019, 14:e0207903.
doi: 10.1371/journal.pone.0207903
[44] Yan N, Marschner P, Cao W, Zuo C, Qin W. Influence of salinity and water content on soil microorganisms. Int Soil Water Conserv, 2015, 3:316-323.
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[4] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[5] WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287.
[6] SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090.
[7] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[8] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[9] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[10] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[11] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[12] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[13] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[14] ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409.
[15] ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510.
Full text



No Suggested Reading articles found!