Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1791-1805.doi: 10.3724/SP.J.1006.2021.04154

• RESEARCH PAPERS • Previous Articles     Next Articles

Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress

ZHANG Ming-Cong1(), HE Song-Yu1(), QIN Bin1, WANG Meng-Xue1, JIN Xi-Jun1, REN Chun-Yuan1, WU Yao-Kun2, ZHANG Yu-Xian1,*   

  1. 1College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, China
  • Received:2020-07-11 Accepted:2021-01-21 Online:2021-09-12 Published:2021-03-10
  • Contact: ZHANG Yu-Xian E-mail:zhangmingcong@163.com;1274167812@qq.com
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000905);China Postdoctoral Science Foundation(2016M591561);Natural Science Foundation of Heilongjiang Province(C2016042);Applied Technology Research and Development Project of Heilongjiang Province(GA19B101-02);Key Scientific Research Projects of Heilongjiang Farms and Land Reclamation administration(HKKY190206-01);Doctoral Scientific Research Start-up Foundation of Heilongjiang Bayi Agricultural University(XYB2014-04)

Abstract:

It is of great significance to study the mechanism of improving the drought resistance ability of soybean seedlings for the growth of soybean seedlings in Northeast China. This experiment was conducted using ‘Suinong 26’ as the experimental material with four treatments to investigate the physiological indexes and yield of soybean under drought stress, including the normal nutrient solution (CK), the drought stress treatment (D), the drought stress + foliar spraying melatonin treatment (LM), and the drought stress + irrigation melatonin treatment (RM). The results indicated that the gas exchange parameters, the dry matter accumulation of organ at seedling stage, the activities of antioxidant enzyme, and the content of soluble protein were increased under LM and RM compared with D. The net photosynthetic rate and stomatal conductance were significantly increased at V2 and V4 stages, and the transpiration rate and intercellular carbon dioxide concentration were significantly increased at V4 stage with P < 0.05; POD and CAT of RM were significantly increased at P < 0.05; the content of soluble protein was significantly increased after drought stress at V2 and V4 stages at P < 0.05. Compared with D, the yield of soybean with LM at V2 and V4 stages was increased by 24.2% and 19.1% at P < 0.05, RM increased by 38.6% and 56.3% at P < 0.05. Compared with LM, the yield of soybean with RM at V2 and V4 stages was increased by 11.6% and 31.3% at P < 0.05. These results revealed that the application of melatonin increased the yield of soybean under drought stress and the yield of soybean with irrigation melatonin treatment was higher than that of foliar spraying melatonin treatment.

Key words: drought stress, melatonin, soybean, growth and development, yield

Table 1

Effects of exogenous melatonin on plant height and leaf area under drought stress in soybean"

指标
Index
年份
Year
处理
Treatment
V2 V4
4 d 8 d 4 d 8 d
株高
Plant height (cm)
2018 CK 16.76±0.85 a 18.33±0.40 a 21.10±2.55 a 27.63±1.62 a
D 14.87±0.55 b 15.36±0.31 c 17.360±1.05 b 24.03±1.90 b
LM 16.03±0.41 a 16.27±0.41 b 17.80±1.99 ab 25.26±0.64 ab
RM 16.27±0.45 a 16.56±0.61 b 19.20±0.96 ab 25.33±0.76 ab
2019 CK 17.67±0.91 a 18.47±1.17 a 23.87±0.42 ab 30.00±1.87 a
D 15.23±0.75 b 15.77±0.40 a 20.47±0.06 c 25.37±2.41 b
LM 17.30±1.75 ab 17.43±1.12 a 22.90±1.31 b 29.00±0.36 a
RM 16.93±1.08 ab 17.03±2.45 a 24.67±1.04 a 25.77±0.64 b
叶面积
Leaf area (mm2)
2018 CK 4308.4±166 a 5188.4±123 a 8601.8±157 a 9825.2±173 a
D 2735.5±223 c 3674.9±137 d 5728.9±157 c 6121.5±98 c
LM 3412.1±160 b 4404.0±170 c 5775.9±152 c 6410.2±156 b
RM 3505.1±134 b 4820.9±117 b 6247.5±216 b 6174.6±96 bc
2019 CK 4115.2±284 a 5246.1±111 a 9143.6±282 a 13,317.6±153 a
D 2708.2±131 c 2924.1±137 c 5749.3±143 c 6664.6±216 b
LM 3312.1±183 b 3442.4±150 b 7290.5±190 b 7575.9±203 b
RM 3521.4±124 b 3655.2±152 b 7398.0±224 b 7727.0±154 b

Table 2

Effects of exogenous melatonin on root morphology indicators under drought stress in soybean"

指标
Index
年份
Year
处理
Treatment
V2 V4
4 d 8 d 4 d 8 d
根长
Root length (cm)
2018 CK 24.16±0.31 a 25.90±0.43 c 45.67±1.72 a 54.73±5.03 b
D 24.86±1.32 a 27.20±0.36 b 46.43±3.09 a 58.30±1.90 ab
LM 25.50±0.60 a 27.80±0.36 ab 46.76±5.81 a 64.33±4.20 a
RM 25.80±1.34 a 28.36±0.41 a 48.30±4.27 a 62.16±1.42 a
2019 CK 23.23±2.10 b 24.43±1.90 a 52.27±7.92 a 58.47±1.22 a
D 25.03±0.95 ab 25.53±1.16 a 63.07±12.0 a 60.83±2.06 a
LM 25.87±2.08 ab 26.80±2.91 a 63.13±1.52 a 68.40±6.09 a
RM 26.73±1.23 a 26.10±1.05 a 62.53±4.77 a 64.63±8.64 a
根体积
Root volume (cm3)
2018 CK 9.89±0.05 a 10.22±0.09 a 18.63±0.05 c 19.01±0.01 c
D 9.53±0.06 cd 9.89±0.05 bc 18.30±0.02 d 18.79±0.02 d
LM 9.57±0.09 bc 9.92±0.06 b 18.35±0.03 de 18.86±0.06 de
RM 9.57±0.08 bcd 9.95±0.04 b 18.40±0.02 e 18.93±0.02 e
2019 CK 9.67±0.05 b 9.81±0.03 cd 19.79±0.06 a 20.16±0.06 a
D 9.50±0.03 d 9.72±0.06 d 19.66±0.05 b 19.88±0.07 b
LM 9.59±0.08 bcd 9.76±0.05 d 19.68±0.05 b 19.91±0.08 b
RM 9.61±0.04 bc 9.75±0.04 d 19.69±0.09 b 19.95±0.07 b
根表面积
Root surface area (m2)
2018 CK 0.065±0.02 a 0.074±0.02 a 0.091±0.02 b 0.102±0.03 b
D 0.054±0.01 cd 0.062±0.01 c 0.079±0.01 d 0.092±0.01 d
LM 0.057±0.02 bc 0.068±0.01 b 0.084±0.02 cd 0.095±0.01 cd
RM 0.061±0.02 ab 0.068±0.02 b 0.086±0.02 c 0.097±0.02 cd
2019 CK 0.059±0.02 ab 0.068±0.01 b 0.112±0.03 a 0.122±0.01 a
D 0.043±0.01 e 0.059±0.02 c 0.088±0.01 c 0.099±0.02 bc
LM 0.050±0.01 d 0.062±0.01 c 0.091±0.02 bc 0.105±0.02 b
RM 0.052±0.01 cd 0.062±0.01 c 0.095±0.01 b 0.105±0.03 b

Table 3

Effects of exogenous melatonin on dry matter accumulation under drought stress in soybean"

指标
Index
年份
Year
处理
Treatment
V2 V4
4 d 8 d 4 d 8 d
叶重
Leaf weight
(g)
2018 CK 1.16±0.05 a 1.33±0.08 a 1.27±0.17 a 1.81±1.62 a
D 0.81±0.03 c 0.98±0.02 b 0.61±0.03 c 0.80±1.90 b
LM 0.99±0.02 b 1.10±0.09 b 0.99±0.05 b 0.81±0.64 b
RM 1.03±0.05 b 1.11±0.08 b 1.07±0.11 b 0.93±0.76 b
2019 CK 1.11±0.21 a 1.09±0.03 a 2.03±0.21 a 2.82±0.31 a
D 0.47±0.08 c 0.82±0.05 c 1.39±0.09 c 1.73±0.24 b
LM 0.61±0.01 bc 0.89±0.01 b 1.64±0.13 bc 2.04±0.61 b
RM 0.72±0.10 b 0.95±0.05 b 1.92±0.21 ab 2.14±0.32 ab
茎重
Stem weight (g)
2018 CK 1.05±0.06 a 1.23±0.09 a 1.18±0.28 a 1.47±5.03 a
D 0.78±0.01 b 0.87±0.06 c 0.63±0.03 b 0.57±1.9 c
LM 0.81±0.02 b 1.04±0.09 bc 0.60±0.03 b 0.88±4.2 b
RM 0.83±0.01 b 1.09±0.13 ab 0.71±0.04 b 0.94±1.42 b
2019 CK 0.62±0.10 a 1.01±0.24 a 1.49±0.09 a 2.08±0.19 a
D 0.44±0.02 b 0.39±0.06 c 0.91±0.02 b 1.37±0.25 b
LM 0.51±0.01 b 0.53±0.04 bc 1.33±0.09 a 1.53±0.13 b
RM 0.52±0.01 b 0.64±0.07 b 1.43±0.16 a 1.62±0.19 b
根重
Root weight (g)
2018 CK 1.43±0.03 a 1.68±0.06 a 1.75±0.25 a 2.28±0.24 a
D 1.25±0.05 c 1.34±0.05 c 1.22±0.03 b 1.24±0.05 c
LM 1.32±0.03 b 1.48±0.03 b 1.28±0.07 b 1.61±0.03 b
RM 1.35±0.01 b 1.49±0.02 b 1.56±0.05 a 1.65±0.03 b
2019 CK 1.21±0.19 a 1.31±0.03 a 2.31±0.05 a 3.19±0.40 a
D 0.64±0.14 b 1.03±0.02 b 2.05±0.01 b 2.26±0.23 b
LM 0.81±0.06 b 1.25±0.07 a 2.31±0.03 a 2.86±0.17 a
RM 0.87±0.12 b 1.27±0.08 a 2.29±0.23 a 2.98±0.31 a
总重
Total weight (g)
2018 CK 3.65±0.11 a 4.25±0.12 a 4.21±0.47 a 5.55±0.81 a
D 2.85±0.01 c 3.20±0.01 c 2.46±0.09 c 2.61±0.15 b
LM 3.12±0.01 b 3.63±0.01 b 2.91±0.73 bc 3.30±0.06 b
RM 3.22±0.06 b 3.69±0.06 b 3.33±0.19 b 3.39±0.11 b
2019 CK 3.34±0.64 a 3.01±0.15 a 5.84±0.17 a 8.10±0.53 a
D 1.49±0.10 c 2.29±0.09 c 4.36±0.11 b 5.36±0.66 c
LM 1.94±0.14 bc 2.67±0.08 b 5.28±0.19 ab 6.44±0.61 bc
RM 2.24±0.77 b 2.75±0.12 b 5.64±0.59 ab 6.75±0.82 b

Fig. 1

Effects of exogenous melatonin on net photosynthetic (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular carbon dioxide concentration ( Ci) at V2 stage under drought stress in 2019 in soybean The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given in Table 1. "

Fig. 2

Effects of exogenous melatonin on net photosynthetic (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular carbon dioxide concentration (Ci) at V4 stage under drought stress in soybean in 2019 The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given in Table 1. "

Fig. 3

Effects of exogenous melatonin on superoxide dismutase (SOD) activity under drought stress in soybean V2: the second trifoliolate; V4: the fourth trifoliolate. The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given inTable 1. "

Fig. 4

Effects of exogenous melatonin on peroxidase (POD) activity under drought stress in soybean V2: the second trifoliolate; V4: the fourth trifoliolate. The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given inTable 1. "

Fig. 5

Effects of exogenous melatonin on catalase (CAT) activity under drought stress in soybean V2: the second trifoliolate; V4: the fourth trifoliolate. The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given in Table 1. "

Fig. 6

Effects of exogenous melatonin on ascorbate peroxidase (APX) activity under drought stress in soybean V2: the second trifoliolate; V4: the fourth trifoliolate. The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given in Table 1. "

Fig. 7

Effects of exogenous melatonin on superoxide anion (O2-) under drought stress in soybean V2: the second trifoliolate; V4: the fourth trifoliolate. The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given in Table 1. "

Fig. 8

Effects of exogenous melatonin on hydrogen peroxide (H2O2) under drought stress in soybean V2: the second trifoliolate; V4: the fourth trifoliolate. The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given inTable 1. "

Fig. 9

Effects of exogenous melatonin on malondialdehyde (MDA) content under drought stress in soybean V2: the second trifoliolate; V4: the fourth trifoliolate. The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given in Table 1. "

Fig. 10

Effects of exogenous melatonin on soluble protein content under drought stress in soybean V2: the second trifoliolate; V4: the fourth trifoliolate. The bar with different lowercase letters indicates significant difference among different treatments at the 0.05 probability level. Treatments are the same as those given in Table 1. "

Table 4

Effects of exogenous melatonin on yield and yield composition under drought stress in soybean"

时期
Stage
处理
Treatment
节数
Pitch number
单株荚数
Pods per plant
单株粒数
Seeds per plant
百粒重
100-grain weight (g)
单株产量
Yield per plant (g)
2018 V2 CK 18.5±1.35 a 26.4±6.65 a 70.7±18.38 a 20.31±0.16 a 14.36±3.73 a
D 15.1±1.37 c 18.0±4.26 b 45.6±10.13 b 18.27±0.19 c 8.34±1.85 c
LM 16.0±0.94 bc 18.8±3.93 b 50.6±10.46 b 19.91±0.13 b 10.07±2.08 bc
RM 17.0±1.41 b 21.6±7.72 ab 54.7±20.83 b 20.13±0.02 ab 11.01±2.19 b
V4 CK 17.9±0.87 a 26.8±6.37 a 72.3±21.80 a 19.22±0.06 a 13.90±4.19 a
D 15.2±1.13 c 13.7±3.71 c 35.0±9.97 c 17.47±0.09 d 6.09±1.75 c
LM 16.1±1.19 bc 17.2±3.73 c 44.1±7.05 bc 18.49±0.12 c 8.15±1.30 c
RM 16.3±1.25 b 21.8±5.55 b 56.6±15.90 b 18.97±0.02 b 10.73±3.01 b
2019 V2 CK 18.0±1.41 a 24.2±4.05 a 67.8±12.48 a 20.48±0.04 a 13.78±2.54 a
D 15.8±1.62 b 17.0±3.83 b 45.4±7.59 c 17.68±0.05 d 8.03±1.34 c
LM 16.6±0.96 b 20.6±3.56 ab 54.5±8.21 bc 18.83±0.01 c 10.26±1.54 b
RM 16.5±1.08 b 23.1±4.77 a 59.5±11.42 ab 19.63±0.13 b 11.68±2.24 b
V4 CK 16.7±1.95 a 19.5±4.09 a 55.8±11.50 a 19.98±0.18 a 11.15±2.29 a
D 15.4±0.70 b 11.3±2.71 c 31.3±11.30 c 16.06±0.05 c 5.91±2.14 c
LM 15.8±0.63 ab 11.8±2.94 c 32.1±7.61 c 18.89±0.06 b 6.14±1.45 c
RM 16.2±0.92 ab 15.1±2.96 b 41.2±7.94 b 19.02±0.13 b 8.03±1.55 b
[1] 李秀芬, 马树庆, 李云峰, 于海, 徐丽萍, 陈凤涛, 张洪伟, 翟墨. 水分胁迫对春大豆出苗和幼苗长势的影响. 生态学杂志, 2020, 39:2602-2609.
Li X F, Ma S Q, Li Y F, Yu H, Xu L P, Chen F T, Zhang H W, Zhai M. Effects of soil water stress on emergence and seeding growth of spring soybean. Chin J Ecol, 2020, 39:2602-2609 (in Chinese with English abstract).
[2] 李琬. 干旱对大豆根系生育的影响及灌溉缓解效应研究进展. 草业学报, 2019, 28(4):192-202.
Li W. Research progress in understanding the effect of drought on growth of the soybean root system and the efficiency of irrigation. Acta Pratac Sin, 2019, 28(4):192-202 (in Chinese with English abstract).
[3] 邹京南, 于奇, 金喜军, 王明瑶, 秦彬, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响. 作物学报, 2020, 46:745-758.
Zou J N, Yu Q, Jin X J, Wang M Y, Qin B, Ren C Y, Wang M X, Zhang Y X. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress. Acta Agron Sin, 2020, 46:745-758 (in Chinese with English abstract).
[4] 莫金钢, 马建, 沈勇, 张丽辉, 曲静, 王丕武. 干旱胁迫下大豆抗旱突变体M18苗期生长和生理特性. 中国油料作物学报, 2014, 36:770-776.
Mo J G, Ma J, Shen Y, Zhang L H, Qu J, Wang P W. Growth and physiological characteristics of seedlings of soybean drought-resistant mutant M18 under drought stress. Chin J Oil Crop Sci, 2014, 36:770-776 (in Chinese with English abstract).
[5] 叶君, 邓西平, 王仕稳, 殷俐娜, 陈道钳, 熊炳霖, 王鑫月. 干旱胁迫下褪黑素对小麦幼苗生长、光合和抗氧化特性的影响. 麦类作物学报, 2015, 35:1275-1283.
Ye J, Deng X P, Wang S W, Yin L N, Chen D Q, Xiong B L, Wang X Y. Effects of melatonin on growth, photosynthetic characteristics and antioxidant system in seedling of wheat under drought stress. J Triticeae Crops, 2015, 35:1275-1283 (in Chinese with English abstract).
[6] Li B Y, Feng Y N, Zong Y Z, Zhang D S, Hao X Y, Li P. Elevated CO2-induced changes in photosynthesis, antioxidant enzymes and signal transduction enzyme of soybean under drought stress. Plant Physiol Biochem, 2020, 154:105-114.
doi: 10.1016/j.plaphy.2020.05.039
[7] Chastain D R, Snider J L, Collins G D, Perry C D, Whitaker J, Byrd S A. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. J Plant Physiol, 2014, 171:1576-1585.
doi: 10.1016/j.jplph.2014.07.014
[8] Reiter R J, Tan D X, Terron M P. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol, 2007, 54:1-9.
doi: 10.18388/abp.2007_3264
[9] Zhang M C, He S Y, Zhan Y C, Qin B, Jin X J, Wang M X, Zhang Y X, Hu G H. Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean. PLoS One, 2019, 14:e0226542.
doi: 10.1371/journal.pone.0226542
[10] 巩彪, 史庆华. 园艺作物褪黑素的研究进展. 中国农业科学, 2017, 50:2326-2337.
Gong B, Shi Q H. Review of melatonin in horticultural crops. Sci Agric Sin, 2017, 50:2326-2337 (in Chinese with English abstract).
[11] 蒲玉瑾, 张一璇, 苗灵凤, 杨帆. 常温和低温条件下不同浓度褪黑素对降香黄檀幼苗的生理生态影响. 广西植物[2020-08-30]. http://kns.cnki.net/kcms/detail/45.1134.Q.20200807.1108.006.html.
Pu Y J, Zhang Y X, Miao L F, Yang F. Effects of exogenous melatonin on the eco-physiological characteristics of Dalbergia odorifera seedlings under ambient and low temperatures. Guihaia, [2020-08-30]. http://kns.cnki.net/kcms/detail/45.1134.Q.20200 807.1108.006.html (in Chinese with English abstract).
[12] Zou J N, Jin X J, Zhang Y X, Ren C Y, Zhang M C, Wang M X. Effects of melatonin on photosynthesis and soybean seed growth during grain filling under drought stress. Photosynthetica, 2019, 57:512-520.
doi: 10.32615/ps.2019.066
[13] Ye J, Wang S W, Deng X W, Yin L, Xiong B L, Wang X Y. Melatonin increased maize ( Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant, 2016, 38:38-48.
doi: 10.1007/s11738-015-2059-5
[14] Zhang N, Zhao B, Zhang H J, Weeda S, Yang C, Yang Z C, Ren S X, Guo Y D. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber ( Cucumis sativus L.). J Pineal Res, 2013, 54:15-23.
doi: 10.1111/j.1600-079X.2012.01015.x pmid: 22747917
[15] Wang P, Sun X, Li C, Wei Z W, Liang D, Ma F W. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res, 2013, 54:292-302.
doi: 10.1111/jpi.12017
[16] 刘领, 李冬, 马宜林, 王丽君, 赵世民, 周俊学, 申洪涛, 王艳芳. 外源褪黑素对干旱胁迫下烤烟幼苗生长的缓解效应与生理机制研究. 草业学报, 2019, 28(8):95-105.
Liu L, Li D, Ma Y L, Wang L J, Zhao S M, Zhou J X, Shen H T, Wang Y F. Alleviation of drought stress and the physiological mechanisms in tobacco seedings treated with exogenous melatonin. Acta Pratac Sin, 2019, 28(8):95-105 (in Chinese with English abstract).
[17] Cao L, Jin X J, Zhang Y X. Melatonin confers drought stress tolerance in soybean (Glycine max L.) by modulating photosynthesis, osmolytes, and reactive oxygen metabolism. Photosynthetica, 2019, 57:812-819.
doi: 10.32615/ps.2019.100
[18] Gao H, Zhang Z K, Chai H K, Hong K, Cheng N, Yang Y, Wang D N, Yang T, Cao W. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Posth Biol Technol, 2016, 118:103-110.
doi: 10.1016/j.postharvbio.2016.03.006
[19] Zhang M C, Sun W X, Liu Y Y, Luo S G, Zhang J, Wu Q, Wu Z Y, Jiang Y. Timing of N application affects net primary production of soybean with different densities. J Integr Agric, 2014, 13:60345-60347.
[20] 秦彬, 张明聪, 何松榆, 张春宇, 王明瑶, 金喜军, 王孟雪, 张玉先, 胡国华. 褪黑素浸种对大豆种子萌发过程中干旱胁迫的缓解效应. 干旱地区农业研究, 2020, 38(3):192-198.
Qin B, Zhang M C, He S Y, Zhang C Y, Wang M Y, Jin X J, Wang M X, Zhang Y X, Hu G H. Alleviating effect of melatonin soaking on drought stress during soybean seed germination. Agric Res Arid Areas, 2020, 38(3):192-198 (in Chinese with English abstract).
[21] 施海涛. 植物逆境生理学实验指导. 北京: 科学出版社, 2016. pp 57-74.
Shi H T. Plant Adversity Physiology Experiment Guide. Beijing: Science Press, 2016. pp 57-74(in Chinese).
[22] Chaitanya K K, Naithani S C. Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. F. New Phytol, 1994, 126:623-627.
doi: 10.1111/nph.1994.126.issue-4
[23] Mukherjee S P, Choudhuri M A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant, 1983, 58:166-170.
doi: 10.1111/ppl.1983.58.issue-2
[24] 刘文夫, 董守坤, 徐亚会, 李雪凝, 刘丽君. 大豆苗期干旱胁迫对糖分吸收与相关酶活性的影响. 作物杂志, 2014, (3):117-120.
Liu W F, Dong S K, Xu Y H, Li X N, Liu L J. Effects of drought stress on sugar absorption and elated enzyme activities at soybean seedling. Crops, 2014, (3):117-120 (in Chinese with English abstract).
[25] 魏鑫, 倪虹, 张会慧, 王晶英. 外源脱落酸和油菜素内酯对干旱胁迫下大豆幼苗抗旱性的影响. 中国油料作物学报, 2016, 38:605-610.
Wei X, Ni H, Zhang H H, Wang J Y. Effects of exogenous abscisic acid and brassinolide on drought resistance of soybean seedlings. Chin J Oil Crop Sci, 2016, 38:605-610 (in Chinese with English abstract).
[26] Tilden A R, Becker M A, Amma L L, Arciniega J, Mcgaw A K. Melatonin production in an aerobic photosynthetic bacterium: an evolutionarily early association with darkness. J Pineal Res, 1997, 22:102-106.
pmid: 9181522
[27] Wang P, Sun X, Li C, Wei Z W, Liang D, Ma F W. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res, 2013, 54:292-302.
doi: 10.1111/jpi.12017
[28] Wei W, Li Q T, Chu Y N, Russel J R, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S, Chen S Y. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot, 2015, 66:695-707.
doi: 10.1093/jxb/eru392 pmid: 25297548
[29] Nazar R, Umar S, Khan N A, Sareer O. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South Afr J Bot, 2015, 98:84-94.
doi: 10.1016/j.sajb.2015.02.005
[30] Kobra M, Yahya E, Mohammad P. Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. J Plant Nutr, 2016, 39:1001-1015.
doi: 10.1080/01904167.2015.1109108
[31] 李耕, 高辉远, 赵斌, 董树亭, 张吉旺, 杨吉顺, 王敬锋, 刘鹏. 灌浆期干旱胁迫对玉米叶片光系统活性的影响. 作物学报, 2009, 35:1916-1922.
Li G, Gao H Y, Zhao B, Dong S T, Zhang J W, Yang J S, Wang J F, Liu P. Effects of drought stress on activity of photosystems in leaves of maize at grain filling stage. Acta Agron Sin, 2009, 35:1916-1922 (in Chinese with English abstract).
[32] 耿庆伟. 臭氧胁迫叠加温光逆境对葡萄叶片光合性能的影响. 山东农业大学硕士学位论文, 山东泰安, 2017.
Geng Q W. Effect of High Ozone Plus Temperature and Light Stress on Photosynthetic Characteristics of Grape Leaves. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2017 (in Chinese with English abstract).
[33] 杨新元. 外源褪黑素对干旱胁迫下向日葵幼苗生长、光合及抗氧化系统的影响. 华北农学报, 2019, 34(4):113-121.
Yang X Y. Effects of exogenous melatonin on growth, photosynthesis and antioxidant system of sunflower seedling under drought stress. Acta Agric Boreali-Sin, 2019, 34(4):113-121 (in Chinese with English abstract).
[34] Li C, Tan D X, Liang D, Chang C, Jia D F, Ma F W. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot, 2015, 66:669-680.
doi: 10.1093/jxb/eru476
[35] 李冬, 王艳芳, 申洪涛, 马宜林, 王丽君, 赵世民, 刘领. 外源MT和EBR对干旱胁迫下烤烟幼苗的缓解效应. 中国烟草学报, 2019, 25(5):77-85.
Li D, Wang Y F, Shen H T, Ma Y L, Wang L J, Zhao S M, Liu L. Alleviation effects of exogenous melatonin and 2,4-epibrassinolide on flue-cured tobacco seedlings under drought stress. Acta Tab Sin, 2019, 25(5):77-85 (in Chinese with English abstract).
[36] 万林, 李张开, 李素, 刘丽欣, 马霓, 张春雷. 外源独脚金内酯对油菜苗期干旱胁迫的缓解效应. 中国油料作物学报, 2020, 42:461-471.
Wan L, Li Z K, Li S, Liu L X, Ma N, Zhang C L. Alleviation effects of exogenous strigolactone on growth of Brassica napus L. seedling under drought stress. Chin J Oil Crop Sci, 2020, 42:461-471 (in Chinese with English abstract).
[37] Tan D X, Manchester L C, Esteban-zubero E, Zhou Z, Reiter R J. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules, 2015, 20:18886-18906.
doi: 10.3390/molecules201018886
[38] 厉恩茂, 李敏, 安秀红, 陈艳辉, 李燕青, 李壮, 程存刚. 叶面喷施褪黑素对干旱胁迫下苹果抗旱生理生化指标的影响. 中国南方果树, 2019, 48(4):95-98.
Li E M, Li M, An X H, Chen Y H, Li Y Q, Li Z, Cheng C G. Effects of melatonin on physiological and biochemical indexes of apple under drought stress. Fruit Trees Southern China, 2019, 48(4):95-98 (in Chinese with English abstract).
[39] 刘仕翔, 黄益宗, 罗泽娇, 黄永春, 保琼莉, 王培培, 袁彪, 李文华. 外源褪黑素处理对镉胁迫下水稻种子萌发的影响. 农业环境科学学报, 2016, 35:1034-1041.
Liu S X, Huang Y Z, Luo Z J, Huang Y C, Bao Q L, Wang P P, Yuan B, Li W H. Effects of exogenous melatonin on germination of rice seeds under Cd stresses. J Agro-Environ Sci, 2016, 35:1034-1041 (in Chinese with English abstract).
[40] 张娜. 褪黑素处理对渗透胁迫下黄瓜种子萌发及幼苗生长的影响及其分子机制. 中国农业大学博士学位论文, 北京, 2014.
Zhang N. Regulation of Melatonin on Germination and Seedling Growth under Osmotic Stress in Cucumber. PhD Dissertation of China Agricultural University, Beijing, China, 2014 (in Chinese with English abstract).
[41] 曹林, 吴玉环, 章艺, 郭怡, 肖有铁, 郦枫, 马丽, 徐根娣, 刘鹏. 外源水杨酸对铝胁迫下菊芋光合特性及耐铝性的影响. 水土保持学报, 2015, 29(4):260-266.
Cao L, Wu Y H, Zhang Y, Guo Y, Xiao Y T, Li F, Ma L, Xu G D, Liu P. Effect of exogenous salicylic acid on photosynthetic characteristics and aluminum tolerance of helianthus tuberosus under aluminum stress. J Soil Water Conserv, 2015, 29(4):260-266 (in Chinese with English abstract).
[42] 于奇, 曹亮, 金喜军, 邹京南, 王孟雪, 张明聪, 任春元, 张玉先. 低温胁迫下褪黑素对大豆种子萌发的影响. 大豆科学, 2019, 38:56-62.
Yu Q, Cao L, Jin X J, Zou J N, Wang M X, Zhang M C, Ren C Y, Zhang Y X. Effects of melatonin on seed germination of soybean under low temperature stress. Soybean Sci, 2019, 38:56-62 (in Chinese with English abstract).
[43] 赫传杰. 外源褪黑素对干旱胁迫下樟子松的缓解效应. 沈阳农业大学学报, 2020, 51:279-286.
He C J. Alleviating effect of exogenous melatonin on Pinus sylvestris var. mongolica under drought stress. J Shenyang Agric Univ, 2020, 51:279-286 (in Chinese with English abstract).
[44] Liu J, Wang W, Wang L. Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul, 2015, 77:317-326.
doi: 10.1007/s10725-015-0066-6
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[3] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[6] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[7] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[8] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[9] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[10] LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118.
[11] WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198.
[12] PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209.
[13] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[14] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[15] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!