Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (9): 1816-1823.doi: 10.3724/SP.J.1006.2021.04211

• RESEARCH NOTES • Previous Articles     Next Articles

Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle

ZHANG Jian1(), XIE Tian-Jin1, WEI Xiao-Nan1, WANG Zong-Kai2, LIU Chong-Tao2, ZHOU Guang-Sheng2, WANG Bo2,*()   

  1. 1College of Resources and Environmental Sciences, Huazhong Agricultural University / Macro Agriculture Research Institute, Wuhan 430070, Hubei, China
    2Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of the Yangtze River), Ministry of Agriculture and Rural Affairs / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2020-09-16 Accepted:2021-01-21 Online:2021-09-12 Published:2021-02-25
  • Contact: WANG Bo E-mail:jz@mail.hzau.edu.cn;wangbo@mail.hzau.edu.cn
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000900);Major Special Projects of Technological Innovation of Hubei Province(2017ABA064)

Abstract:

To obtain above-ground biomass information quickly and accurately facilitating crop growth monitoring and yield prediction, this study was to evaluate a new method to extract the biomass of feed rapeseed based on UAV with visible-light cameras. The experiment was conducted at the rapeseed experimental base of Huazhong Agricultural University in 2018. To estimate above-ground biomass of rapeseed, a UAV (unmanned aerial vehicle) platform equipped with a five-camera oblique photography system was used to simultaneously obtain images of rapeseed during final flowering period from multiple angles. Three flight altitudes (40, 60, and 80 m) and three seeding densities (3.00×105, 5.25×105, and 7.50×105 plant hm-2) were carried out to assess biomass predictions in a single-camera vertical imaging pattern. Firstly, the rapeseed canopy coverage and plant height information from the image of the UAV were extracted. Secondly, the volume model of rapeseed was obtained by the addition of plant height on the covering area. Finally, a linear regression model was established based on volume model and measured biomass to predict the dry weight of rapeseed. The results were as follows: (1) With the decrease of the flight height of the UAV of the three flight altitudes, the accuracy of biomass prediction was on the rise, and when the flight height was 40 meters, the accuracy of rapeseed biomass estimation was the best (calibration set: r = 0.792, RMSE = 125.0 g m -2, RE = 13.2%; validation set: r = 0.752, RMSE = 139.1 g m -2, RE = 15.3%). (2) When the planting density of rapeseed was higher, the actual biomass was smaller, and the prediction of biomass had a better result by volume model. (3) There was no significant difference in the accuracy of rapeseed biomass estimation between multi-angle imaging and single-camera vertical imaging, both of which had the best results at the flight height of 40 meters with correlation coefficients rof 0.772 and 0.742, respectively. This study indicated that it was feasible to obtain images for extracting rapeseed biomass by a UAV, which could provide the reference for efficient and accurate phenotypic information of field crops.

Key words: unmanned aerial vehicle, biomass, oblique photography, crop volume model, feed rapeseed

Fig. 1

Overview of the experimental areas and UAV platforms A: layout of experimental areas; B: plots and sampling areas; C: oblique photography system with five cameras."

Table 1

Information of CSM and RGB image at three flight heights"

飞行高度
Flight height (m)
图像数
Number of images
CSM分辨率
Resolution of CSM
(cm pixel-1)
可见光影像分辨率
Resolution of RGB image
(cm pixel-1)
40 1020 1.96 0.49
60 698 3.00 0.75
80 536 4.16 1.04

Table 2

Descriptive statistics of rapeseed biomass"

统计量
Statistics
密度1
Density 1 (g m-2)
密度2
Density 2 (g m-2)
密度3
Density 3 (g m-2)
最小值 Min. 516.9 371.3 359.5
最大值 Max. 1230.4 1161.3 1194.2
平均值 Mean 816.6 816.4 761.3
标准差 SD 200.0 163.1 182.7

Fig. 2

Flow chart of biomass acquisition based on VSD method A: the acquisition of crop canopy height; B: the acquisition of crop canopy coverage area; C: the acquisition of volume model; XY: the area of crop canopy; Z: the height of crop canopy."

Table 3

Biomass extraction results at three flight heights"

飞行高度
Flight height (m)
预测模型
Prediction model
校正集 Calibration set 验证集 Validation set
相关系数
r
均方根误差
RMSE
(g m-2)
相对误差RE
(%)
相关系数
r
均方根误差
RMSE
(g m-2)
相对误差RE
(%)
40 y = 456.962x-17.227 0.792 125.0 13.2 0.752 139.1 15.3
60 y = 443.694x+8.513 0.745 130.2 13.7 0.764 133.9 14.9
80 y = 445.053x-24.698 0.722 138.4 14.4 0.674 152.3 16.7

Fig. 3

Comparison of biomass prediction under different planting densities r: correlation coefficient; RMSE: root mean square error; RE: relative error; D1: 3.00×105 plant hm-2; D2: 5.25×105 plant hm-2; D3: 7.50×105 plant hm-2. "

Table 4

CSM resolutions of the oblique photography system and single vertical camera"

飞行高度
Flight height
(m)
图像类型 Type of images (cm pixel-1)
倾斜摄影
Oblique photography
垂直摄影
Vertical photography
40 1.96 1.90
60 3.00 2.92
80 4.16 4.06

Fig. 4

Biomass estimation between oblique photography system and vertical photography CVM = Crop Volume Model; 40 m: the flight height was 40 meters; 60 m: the flight height was 60 meters; 80 m: the flight height was 80 meters. Abbreviations are the same as those given inFig. 3. "

Table 5

Comparison of CSM obtained by the oblique photography system and single vertical camera"

统计量
Statistics (cm)
飞行高度 Flight height
40 m 60 m 80 m
油菜
Rapeseed
道路
Road
土壤
Soil
油菜
Rapeseed
道路
Road
土壤
Soil
油菜
Rapeseed
道路
Road
土壤
Soil
最大值 Maximum 5.68 4.13 0.91 1.34 0.10 -2.53 2.53 0.45 -3.86
最小值 Minimum -14.95 -8.36 -8.38 -17.94 -16.26 -16.93 -8.89 -10.99 -13.89
平均值 Mean 3.38 2.91 4.62 7.88 5.12 9.26 4.94 3.51 8.28
极差 Range 20.63 12.49 9.29 19.28 16.36 14.40 11.42 11.44 10.03
标准差 SD 3.24 2.72 2.25 3.24 2.79 2.83 2.57 2.08 2.05
[1] Zhu W, Sun Z, Peng J, Huang Y, Li J, Zhang J, Yang B, Liao X. Estimating maize above-ground biomass using 3D point clouds of multi-source unmanned aerial vehicle data at multi-spatial scales. Remote Sens, 2019, 11:2678.
doi: 10.3390/rs11222678
[2] Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H, Xu B, Yang X, Zhu D, Zhang X. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front Plant Sci, 2017, 8:1111.
doi: 10.3389/fpls.2017.01111
[3] 任廷波, 赵继献. 施氮量对黄籽双低杂交油菜干物质积累的影响. 山地农业生物学报, 2007, 26(2):99-104.
Ren T B, Zhao J X. Effects of different amount of applied nitrogen on dry matter accumulation of yellow seed with double low hybrid rape. J Mount Agric Biol, 2007, 26(2):99-104 (in Chinese with English abstract).
[4] Li B, Xu X, Zhang L, Han J, Bian C, Li G, Liu J, Jin L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J Photogr Remote Sens, 2020, 162:161-172.
doi: 10.1016/j.isprsjprs.2020.02.013
[5] 赵必权, 丁幼春, 蔡晓斌, 谢静, 廖庆喜, 张建. 基于低空无人机遥感技术的油菜机械直播苗期株数识别. 农业工程学报, 2017, 33(19):115-123.
Zhao B Q, Ding Y C, Cai X B, Xie J, Liao Q X, Zhang J. Seedlings number identification of rape planter based on low altitude unmanned aerial vehicles remote sensing technology. Trans CSAE, 2017, 33(19):115-123 (in Chinese with English abstract).
[6] 杨琦, 叶豪, 黄凯, 查元源, 史良胜. 利用无人机影像构建作物表面模型估测甘蔗LAI. 农业工程学报, 2017, 33(8):104-111.
Yang Q, Ye H, Huang K, Zha Y Y, Shi L S. Estimation of leaf area index of sugarcane using crop surface model based on UAV image. Trans CSAE, 2017, 33(8):104-111 (in Chinese with English abstract).
[7] Zhang J, Xie T, Yang C, Song H, Jiang Z, Zhou G, Zhang D, Feng H, Xie J. Segmenting purple rapeseed leaves in the field from UAV rgb imagery using deep learning as an auxiliary means for nitrogen stress detection. Remote Sens, 2020, 12:1403.
doi: 10.3390/rs12091403
[8] 杨俊, 丁峰, 陈晨, 刘涛, 孙成明, 丁大伟, 霍中洋. 小麦生物量及产量与无人机图像特征参数的相关性. 农业工程学报, 2019, 35(23):104-110.
Yang J, Ding F, Chen C, Liu T, Sun C M, Ding D W, Huo Z Y. Study on correlation of wheat biomass and yield with UAV image characteristic parameters. Trans CSAE, 2019, 35(23):104-110 (in Chinese with English abstract).
[9] Payero J, Neale C, Wright J. Comparison of eleven vegetation indices for estimating plant height of alfalfa and grass. Appl Eng Agric, 2004, 20:385.
doi: 10.13031/2013.16057
[10] Song Y, Wang J. Winter wheat canopy height extraction from UAV-based point cloud data with a moving cuboid filter. Remote Sens, 2019, 11:1239.
doi: 10.3390/rs11101239
[11] 刘治开, 牛亚晓, 王毅, 韩文霆. 基于无人机可见光遥感的冬小麦株高估算. 麦类作物学报, 2019, 39:859-866.
Liu Z K, Niu Y X, Wang Y, Han W T. Estimation of plant height of winter wheat based on UAV visible image. J Triticeae Crops, 2019, 39:859-866 (in Chinese with English abstract).
[12] 陶惠林, 徐良骥, 冯海宽, 杨贵军, 杨小冬, 苗梦珂, 代阳. 基于无人机数码影像的冬小麦株高和生物量估算. 农业工程学报, 2019, 35(19):107-116.
Tao H L, Xu L J, Feng H K, Yang G J, Yang X D, Miao M K, Dai Y. Estimation of plant height and biomass of winter wheat based on UAV digital image. Trans CSAE, 2019, 35(19):107-116 (in Chinese with English abstract).
[13] Walter J D C, Edwards J, Mcdonald G, Kuchel H. Estimating biomass and canopy height with lidar for field crop breeding. Front Plant Sci, 2019, 10:1145.
doi: 10.3389/fpls.2019.01145 pmid: 31611889
[14] Wijesingha J, Moeckel T, Hensgen F, Wachendorf M. Evaluation of 3D point cloud-based models for the prediction of grassland biomass. Int J Appl Earth Observ Geoinf, 2019, 78:352-359.
doi: 10.1016/j.jag.2018.10.006
[15] Greaves H E, Vierling L A, Eitel J U H, Boelman N T, Magney T S, Prager C M, Griffin K L J. Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR. Remote Sens Environ, 2015, 164:26-35.
doi: 10.1016/j.rse.2015.02.023
[16] Ballesteros R, Fernando O J, Hernandez D, Angel M M. Onion biomass monitoring using UAV-based RGB imaging. Prec Agric, 2018, 19:840-857.
doi: 10.1007/s11119-018-9560-y
[17] 牛庆林, 冯海宽, 杨贵军, 李长春, 杨浩, 徐波, 赵衍鑫. 基于无人机数码影像的玉米育种材料株高和 LAI 监测. 农业工程学报, 2018, 34(5):73-82.
Niu Q L, Feng H K, Yang G J, Li C C, Yang H, Xu B, Zhao Y X. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images. Trans CSAE, 2018, 34(5):73-82 (in Chinese with English abstract).
[18] Maimaitijiang M, Sagan V, Sidike P, Maimaitiyiming M, Fritschi F B. Vegetation Index Weighted Canopy Volume Model (CVMVI ) for soybean biomass estimation from Unmanned Aerial System-based RGB imagery. ISPRS J Photogr Remote Sens, 2019, 151:27-41.
doi: 10.1016/j.isprsjprs.2019.03.003
[19] 曹洪涛, 高伟, 张海峰, 张亮, 边延凯. 无人机倾斜摄影分辨率建模与分析. 地理空间信息, 2019, 17(1):14-16.
Cao H T, Gao W, Zhang H F, Zhang L, Bian Y K. Resolution modeling and analysis of UAV oblique photography. Geospat Inf, 2019, 17(1):14-16 (in Chinese with English abstract).
[20] 林卉, 王仁礼. 数字摄影测量学. 江苏: 中国矿业大学出版社, 2015. pp 300-303.
Lin H, Wang R L. Digital Photogrammetry. Jiangsu: China University of Mining and Technology Publishers, 2015. pp 300-303(in Chinese).
[21] 王卿, 郭增长, 李豪, 孙鹏. 多角度倾斜摄影系统三维量测方法研究. 测绘工程, 2014, 23(3):10-14.
Wang Q, Guo Z C, Li H, Sun P. Three-dimensional measurement of multi-angle tilt camera system. Eng Surv Mapp, 2014, 23(3):10-14 (in Chinese with English abstract).
[22] Cheng T, Lu N, Wang W, Zhang Q, Li D, Yao X, Tian Y, Zhu Y, Cao W, Baret F. Estimation of nitrogen nutrition status in winter wheat from unmanned aerial vehicle based multi-angular multispectral imagery. Front Plant Sci, 2019, 10:1601.
doi: 10.3389/fpls.2019.01601
[23] Che Y, Wang Q, Xie Z, Zhou L, Li S, Hui F, Wang X, Li B, Ma Y. Estimation of maize plant height and leaf area index dynamic using unmanned aerial vehicle with oblique and nadir photography. Ann Bot, 2020, 126:765-773.
doi: 10.1093/aob/mcaa097
[24] Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ, 2002, 80:76-87.
doi: 10.1016/S0034-4257(01)00289-9
[25] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernetics, 2007, 9:62-66.
doi: 10.1109/TSMC.1979.4310076
[26] 朱丽丽, 周治国, 赵文青, 孟亚利, 陈兵林, 吕丰娟. 种植密度对棉籽生物量和脂肪与蛋白质含量的影响. 作物学报, 2010, 36:2162-2169.
Zhu L L, Zhou Z G, Zhao W Q, Meng Y L, Chen B L, Lyu F J. Effects of plant densities on cottonseed biomass, fat and protein contents. Acta Agron Sin, 2010, 36:2162-2169 (in Chinese with English abstract).
[27] Bendig J, Bolten A, Bennertz S, Broscheit J, Eichfuss S, Bareth G. Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens, 2014, 6:10395-10412.
doi: 10.3390/rs61110395
[28] Li J, Shi Y, Veeranampalayam-Sivakumar A N, Schachtman YD P. Elucidating sorghum biomass, nitrogen and chlorophyll contents with spectral and morphological traits derived from unmanned aircraft system. Front Plant Sci, 2018, 9:1406.
doi: 10.3389/fpls.2018.01406
[29] Feng A, Zhang M, Sudduth K A, Vories E D, Zhou J. Cotton yield estimation from uav-based plant height. Trans ASABE, 2019, 62:393-403.
doi: 10.13031/trans.13067
[30] 杨国东, 王民水. 倾斜摄影测量技术应用及展望. 测绘与空间地理信息, 2016, 39(1):13-15.
Yang G D, Wang M S. The tilt photographic measuration technique and expectation. Geom Spat Inf Technol, 2016, 39(1):13-15 (in Chinese with English abstract).
[31] 魏祖帅, 李英成, 陈海燕, 朱祥娥, 刘晓龙. 倾斜多视影像空中三角测量的精度分析. 遥感信息, 2017, 32(4):6-10.
Wei Z S, Li Y C, Chen H Y, Zhu X E, Liu X L. Precision of aerial triangulation for oblique multi-vision images. Remote Sens Inf, 2017, 32(4):6-10 (in Chinese with English abstract).
[32] Youngerman C Z, Ditommaso A, Curran W S, Mirsky S B, Ryan M R. Corn density effect on interseeded cover crops, weeds, and grain yield. Agron J, 2018, 110:2478-2487.
doi: 10.2134/agronj2018.01.0010
[1] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[2] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[3] WEI Huan-He, ZHANG Xu-Bin, GE Jia-Lin, MENG Tian-Yao, LU Yu, LI Xin-Yue, TAO Yuan, DING En-Hao, CHEN Ying-Long, DAI Qi-Gen. Dynamics in above-ground biomass accumulation after transplanting and its characteristic analysis in Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2021, 47(3): 546-555.
[4] CHEN Peng-Fei,XU Xin-Gang. A comparison of photogrammetric software packages for mosaicking unmanned aerial vehicle (UAV) images in agricultural application [J]. Acta Agronomica Sinica, 2020, 46(7): 1112-1119.
[5] YAN Qing-Qing,ZHANG Ju-Song,DAI Jian-Min,DOU Qiao-Qiao. Effects of glycinebetain on photosynthesis and biomass accumulation of island cotton seedlings under saline alkali stress [J]. Acta Agronomica Sinica, 2019, 45(7): 1128-1135.
[6] RU Xiao-Ya,LI Guang,CHEN Guo-Peng,ZHANG Tong-Shuai,YAN Li-Juan. Regulation effects of water and nitrogen on wheat yield and biomass in different precipitation years [J]. Acta Agronomica Sinica, 2019, 45(11): 1725-1734.
[7] Hai-Xia WU,Li-Li GUO,Li-Hua HAO,Hao ZHANG,Qing-Tao WANG,Dong-Juan CHENG,Zheng-Ping PENG,Fei LI,Xi-Xi ZHANG,Shu-Bin LI,Ming XU,Yun-Pu ZHENG. Effects of Water and CO2 Concentration on Stomatal Traits, Leaf Gas Exchange, and Biomass of Winter Wheat [J]. Acta Agronomica Sinica, 2018, 44(10): 1570-1576.
[8] Shen-Bin YANG, Sha-Sha XU, Xiao-Dong JIANG, Chun-Lin SHI, Ying-Ping WANG, Shuang-He SHEN. Correcting the Response of Maximum Leaf Photosynthetic Rate to Temperatures in Crop Models [J]. Acta Agronomica Sinica, 2018, 44(05): 750-761.
[9] GAO Lin,YANG Gui-Jun,LI Chang-Chun,FENG Hai-Kuan,XU Bo,WANG Lei,DONG Jin-Hui,FU Kui. Application of an Improved Method in Retrieving Leaf Area Index Combined Spectral Index with PLSR in Hyperspectral Data Generated by Unmanned Aerial Vehicle Snapshot Camera [J]. Acta Agron Sin, 2017, 43(04): 549-557.
[10] CHEN Yu-Li,YANG Ping,ZHANG Wen-Yu,ZHANG Wei-Xin,ZHUYe-Ping,LI Shi-Juan,GONG Fa-Jiang,BI Hai-Bin,YUE Ting,CAO Hong-Xin. Biomass-Based Main Spike MorphologicalParameter Model for Winter Wheat [J]. Acta Agron Sin, 2017, 43(03): 399-406.
[11] CHEN Yu-Li,YANG Ping,ZHANG Wen-Yu,ZHANG Wei-Xin,ZHU Ye-Ping,LI Shi-Juan,GONG Fa-Jiang,BI Hai-Bin,YUE Ting,CAO Hong-Xin. Aboveground Architecture ModelBased onBiomass of Winter Wheat before Overwintering [J]. Acta Agron Sin, 2016, 42(05): 743-750.
[12] ZHANG Wen-Yu, ZHANG Wei-Xin, GE Dao-Kuo, CAO Hong-Xin, LIU Yan, XUAN Shou-Li, FU Kun-Ya, FENG Chun-Huan, CHEN Wei-Tao. Modeling of Biomass-Based Leaf Morphological Parameters on Main Stem for Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(09): 1435-1444.
[13] YE De-Lian,QI Rui-Juan,GUAN Da-Hai,LI Jian-Min,ZHANG Ming-Cai,LI Zhao-Hu. Response of Soil Microbial Characteristics and Soil Enzyme Activity to Irrigation Method in No-till Winter Wheat Field [J]. Acta Agron Sin, 2015, 41(08): 1212-1219.
[14] QI Bo,ZHANG Ning,ZHAO Tuan-Jie,XING Guang-Nan,ZHAO Jing-Ming*,GAI Jun-Yi*. Prediction of Leaf Area Index Using Hyperspectral Remote Sensing in Breeding Programs of Soybean [J]. Acta Agron Sin, 2015, 41(07): 1073-1085.
[15] ZHANG Wei-Xin,CAO Hong-Xin,ZHU Yan,LIU Yan,ZHANG Wen-Yu,CHEN Yu-Li,FU Kun-Ya. Morphological Structure Model of Leaf Space Based on Biomass at Pre-Overwintering Stage in Rapeseed (Brassica napus L.) Plant [J]. Acta Agron Sin, 2015, 41(02): 318-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!