Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2016, Vol. 42 ›› Issue (05): 743-750.doi: 10.3724/SP.J.1006.2016.00743

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Aboveground Architecture ModelBased onBiomass of Winter Wheat before Overwintering

CHEN Yu-Li1,YANG Ping1,ZHANG Wen-Yu2,ZHANG Wei-Xin2,ZHU Ye-Ping3,LI Shi-Juan3,GONG Fa-Jiang1,BI Hai-Bin1,YUE Ting1,CAO Hong-Xin2,*   

  1. 1Zibo Academy of Agricultural Sciences,Zibo 255033, China; 2 Institute of Agricultural Economics and Information/Engineering Research Center for Digital Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; 3 Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2015-08-12 Revised:2016-03-02 Online:2016-05-12 Published:2016-03-10
  • Contact: Cao Hongxin, E-mail: caohongxin@hotmail.com E-mail:luckydogcyl@163.com
  • Supported by:

    This study was supported by the National High Technology Research and Development Program of China (2013AA102305-1).

Abstract:

The aboveground morphogenesis is an important basis of plant morphological construction and visualization for winter wheat before overwintering. For quantitatively analyzing the relationship between the aboveground architectural parameters and organ biomass of winter wheat before overwintering, field experiments with different varieties (Jimai 22, Tainong 18, and Luyuan 502) and nitrogen levels were carried out in 2013–2014 and 2014–2015 wheat growth seasons. Simulation models for aboveground architectural of winter wheat before overwintering were built with the 2013–2014 dataset of aboveground architectural parameters before overwintering and organ biomass and validated by the2014–2015dataset, showing the models exhibited satisfactory predictions for leaf blade length, leaf maximum blade width, leaf blade tangent angle, and leaf blade bowstring angle, except for leaf sheath length and leaf bowstring length. The models built in this study are suitable to simulate the aboveground architecture of winter wheat varieties before overwinteringunder different nitrogen levels.

Key words: Winter wheat, Morphological structure, Biomass, Aboveground plant, Model

[1]Evers J B, Vos J, Fournier C, Andrieu B, Chelle M, Struik P C. An architectural model of spring wheat: evaluation of the effects of population density and shading on model parameterization and performance. Ecol Model, 2007, 200: 308–320
[2]Evers J B, Vos J, Fournier C, Andrieu B, Chelle M, Struik PC. Towards a generic architectural model of tillering in Gramineae, as exempli?ed by spring wheat (Triticumaestivum). New Phytol, 2005, 166: 801–812
[3]Fournier C, Andrieu B, Ljutovac S, Saint-Jean S. ADEL-wheat: a 3D architectural model of wheat development. In: Hu BG, Jaeger M,eds. 2003International Symposium on Plant Growth Modeling, Simulation, Visualization, and Their Applications. Beijing, Tsinghua University Press, 2003. pp54–63
[4]张文宇, 汤亮, 朱相成, 杨月, 曹卫星, 朱艳. 基于过程的小麦茎鞘夹角动态模拟. 应用生态学报, 2011, 22: 1765–1770
Zhang W Y, Tang L, Zhu X C, Yang Y, Cao W X, Zhu Y. Dynamic simulation of wheat stem-sheath angle based on process.Chin JAppl Ecol, 2011, 22: 1765–1770(in Chinesewith English abstract)
[5]张文宇, 汤亮, 姚鑫锋, 杨月, 曹卫星, 朱艳.基于过程的小麦株型指标动态模拟. 中国农业科学, 2012, 45: 2364–2374
Zhang W Y, Tang L, Yao X F, Yang Y, Cao W X, Zhu Y. Process-based simulation model for growth dynamics of plant type index in wheat. Sci AgricSin, 2012,45:2364–2374 (in Chinese with English abstract)
[6]陈国庆, 朱艳, 曹卫星. 小麦叶鞘和节间生长过程的模拟研究. 麦类作物学报, 2005, 25: 71–74
Chen G Q, Zhu Y, Cao W X. Modeling leaf sheath and internode growth dynamics in wheat. J Triticeae Crops, 2005, 25: 71–74 (in Chinese with English abstract)
[7]MabilleF, Abecassis J. Parametric modelling of wheat grain morphology: a new perspective. J Cereal Sci, 2003, 37: 43–53
[8]伍艳莲, 曹卫星, 汤亮, 朱艳, 刘慧. 基于OpenGL的小麦形态可视化技术. 农业工程学报, 2009, 25(1): 121–126
Wu Y L, Cao W X, Tang L, Zhu Y, Liu H. OpenGL-based visual technology for wheat morphology. TransCSAE, 2009,25(1): 121–126(in Chinese with English abstract)
[9]谈峰, 汤亮, 胡军成, 姜海燕, 曹卫星, 朱艳. 小麦根系三维形态建模及可视化. 应用生态学报, 2011, 22: 137–143
Tan F, Tang L, Hu J C, Jiang H Y, Cao W X, Zhu Y. Three-dimensional morphological modeling and visualization of wheat root system. Chin J Appl Ecol, 2011, 22: 137–143(in Chinese with English abstract)
[10]雷晓俊, 汤亮, 张永会, 姜海燕, 曹卫星, 朱艳. 小麦麦穗几何模型构建与可视化. 农业工程学报, 2011, 27(3): 179–184
Lei X J, Tang L, Zhang Y H, Jiang H Y, Cao W X, Zhu Y. Geometric model and visualization of wheat spike. TransCSAE, 2011, 27(3): 179–184 (in Chinese with English abstract)
[11]曹宏鑫, 赵锁劳, 葛道阔, 刘永霞, 刘岩, 孙金英, 岳延滨, 张智优,陈昱利.作物模型发展探讨. 中国农业科学, 2011, 44: 3520–3528
Cao H X, Zhao S L, Ge D K, Liu Y X, Liu Y, Sun J Y, Yue Y B, Zhang Z Y, Chen Y L. Discussion on development of crop models. Sci AgricSin, 2011,44:3520–3528(in Chinese with English abstract)
[12]Cao H X, Liu Y, Liu Y X, Hanan J S, Yue Y B, Zhu D W, Lu J F, Sun J Y, Shi C L, Ge D K, Wei X F, Yao A Q, Tian P P, Bao T L. Biomass-based rice (Oryza sativa L.) aboveground architectural parameter models. J Integr Agric, 2012, 11: 1621–1632
[13]刘岩, 陆建飞, 曹宏鑫, 石春林, 刘永霞, 朱大威, 孙金英, 岳延滨, 魏秀芳, 田平平, 包太林.基于生物量的水稻叶片主要几何属性模型研究. 中国农业科学, 2009, 42: 4093–4099
Liu Y, Lu J F, Cao H X, Shi C L, Liu Y X, Zhu D W, Sun J Y, Yue Y B, Wei X F, Tian P P, Bao T L. Main geometrical parameter models of rice blade Basedon biomass. Sci AgricSin, 2009,42:4093–4099(in Chinese with English abstract)
[14]宋有洪, 郭焱, 李保国, de Reffye P. 基于器官生物量构建植株形态的玉米虚拟模型. 生态学报, 2003, 23: 2579–2586
Song Y H, Guo Y, Li B G, de ReffyeP.Virtual maize model:II. Plant morphological constructing based on organ biomass accumulation. Acta Ecol Sin, 2003, 23: 2579–2586 (in Chinese with English abstract)
[15]刘永霞, 岳延滨, 刘岩, 曹宏鑫, 葛道阔, 魏秀芳. 不同品种和氮肥条件下水稻根系主要几何参数动态的量化研究. 中国农业科学, 2010, 43: 1782–1790
Liu Y X, Yue Y B, Liu Y, Cao H X, Ge D K, Wei X F. Quantitative research of dynamic models of the main geometric parameters of rice root system of different varieties under different nitrogen conditions. Sci AgricSin, 2010, 43: 1782–1790(in Chinese with English abstract)
[16]陈超, 潘学标, 张立祯, 庞艳梅. 棉花地上部生长的功能—结构模型研究. 作物学报, 2012, 38: 2237–2245
Chen C, Pan X B, Zhang L Z, Pang Y M. Functional and structural model for above-ground growth in cotton. Acta Agron Sin, 2012, 38: 2237–2245 (in Chinese with English abstract)
[17]曹宏鑫, 石春林, 金之庆. 植物形态结构模拟与可视化研究进展. 中国农业科学, 2008, 41: 669–677
Cao H X, Shi C L, Jin Z Q. Advances in researches on plant morphological structure simulation and visualization. Sci AgricSin, 2008, 41: 669–677 (in Chinese with English abstract)
[18]张伟欣. 基于生物量的油菜植株地上部形态结构模型研究. 南京农业大学硕士学位论文, 江苏南京, 2013
Zhang W X. Study on Biomass-Based Rapeseed Aboveground Morphological Structure Model. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2013 (in Chinese with English abstract)
[19]谭子辉. 小麦植株形态建成的模拟模型研究.南京农业大学硕士学位论文, 江苏南京, 2006
Tan Z H. Researches of Simulation Models for Wheat Plant Morphological Forming. MS Thesis of Nanjing Agricultural University, Nanjing, China, 2006 (in Chinese with English abstract) 
[20]刘炳成, 刘伟, 刘俐华, 金弋. 冬小麦根系生长的三维仿真模拟.华中科技大学学报(自然科学版), 2005, 33(9): 65–67
Liu B C, Liu W, Liu L H, Jin G. Three-dimensional visual simulation of wheat root system growing. J. Huazhong Univ Sci Technol (Nat Sci Edn), 2005, 33(9): 65–67 (in Chinese with English abstract)
[21]赵春江, 王纪华, 吴华瑞, 黄文江, 郑文刚. 小麦叶形空间分布的模拟模型及推理系统. 农业工程学报, 2002, 18(5): 221–225
Zhao C J, Wang J H, Wu H R, Huang W J, Zheng W G. Simulation models and deduction system for interspace description of wheat leaf shape. TransCSAE, 2002, 18(5): 221–225 (in Chinese with English abstract)
[22]田梦雨, 李丹丹, 戴廷波, 姜东, 荆奇, 曹卫星. 水分胁迫下不同基因型小麦苗期的形态生理差异. 应用生态学报, 2010 , 21: 41–47
TianMY, Li DD, Dai TB, Jiang D, Jing Q, Cao W X. Morphological and physiological differences of wheat genotypes at seedling stage under water stress. Chin J Appl Ecol, 2010, 21: 41–47(in Chinese with English abstract)
[23]李存东, 曹卫星, 戴廷波, 严美春. 小麦不同品种和播期对发育阶段的效应. 应用生态学报, 2001, 12: 218–222
Li CD, Cao WX, Dai TB, Yan M C. Effects of different varieties and sowingdates on development stages of wheat. Chin J Appl Ecol, 2001, 12: 218–222 (in Chinese with English abstract)
[24]赵志范. 冬小麦分蘖缺位产生原因及其控制的研究. 北京农业科学, 1984, (3): 34–40
Zhao ZF.Reason for tiller deficiency in winter wheat and its management. Beijing Agric Sci, 1984, (3): 34–40 (in Chinese)
[25]郑文刚, 郭新宇, 赵春江, 王纪华. 玉米叶片几何造型研究. 农业工程学报, 2004, 20(1): 152–154
Zheng W G, Guo X Y, Zhao C J, Wang J H. Geometry modeling of the maize leaf canopy. TransCSAE, 2004, 20(1): 152–154 (in Chinese with English abstract)
[26]孟军, 郭新宇, 赵春江. 小麦地上部器官几何造型与可视化研究. 麦类作物学报, 2009, 29: 106–109
Meng J, Guo X Y, Zhao C J. Geometry modeling and visualization of above-ground organs of wheat. J Triticeae Crops, 2009, 29: 106–109 (in Chinese with English abstract)
[27]赵春江, 郑文刚, 郭新宇, 王纪华. 玉米叶片三维形态的数学模拟研究. 生物数学学报, 2004, 19(4): 493–496
Zhao C J, Zheng W G, Guo X Y, Wang J H. The computer simulation of maize leaf.J Biomath, 2004, 19(4): 493–496 (in Chinese with English abstract)
[28]邓旭阳, 郭新宇, 周淑秋, 郑文刚. 玉米叶片形态的几何造型研究. 中国图象图形学报, 2005, 10: 637–641
Deng X Y, Guo X Y, Zhou S Q, Zheng W G. Study on the geometry modeling of corn leaf morphological formation. J Image & Graphics, 2005, 10: 637–641(in Chinese with English abstract)
[29]石春林, 朱艳, 曹卫星. 水稻叶曲线特征的机理模型. 作物学报, 2006, 32: 656–660
Shi C L, Zhu Y, Cao W X. A quantitative analysis on leaf curvature characteristics in rice. Acta Agron Sin, 2006, 32: 656–660(in Chinese with English abstract)

[1] WANG Jing-Tian, ZHANG Ya-Wen, DU Ying-Wen, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming. SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits [J]. Acta Agronomica Sinica, 2022, 48(6): 1416-1424.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[4] YAN Yu-Ting, SONG Qiu-Lai, YAN Chao, LIU Shuang, ZHANG Yu-Hui, TIAN Jing-Fen, DENG Yu-Xuan, MA Chun-Mei. Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping [J]. Acta Agronomica Sinica, 2022, 48(4): 962-974.
[5] WANG Yang-Yang, HE Li, REN De-Chao, DUAN Jian-Zhao, HU Xin, LIU Wan-Dai, GU Tian-Cai, WANG Yong-Hua, FENG Wei. Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis [J]. Acta Agronomica Sinica, 2022, 48(2): 448-462.
[6] ZHANG Jia-Kang, LI Fei, SHI Shu-De, YANG Hai-Bo. Construction and application of the critical nitrogen concentration dilution model of sugar beet in Inner Mongolia, China [J]. Acta Agronomica Sinica, 2022, 48(2): 488-496.
[7] ZHANG Jian, XIE Tian-Jin, WEI Xiao-Nan, WANG Zong-Kai, LIU Chong-Tao, ZHOU Guang-Sheng, WANG Bo. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816-1823.
[8] JIANG Jian-Hua, ZHANG Wu-Han, DANG Xiao-Jing, RONG Hui, YE Qin, HU Chang-Min, ZHANG Ying, HE Qiang, WANG De-Zheng. Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1215-1227.
[9] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[10] WEI Huan-He, ZHANG Xu-Bin, GE Jia-Lin, MENG Tian-Yao, LU Yu, LI Xin-Yue, TAO Yuan, DING En-Hao, CHEN Ying-Long, DAI Qi-Gen. Dynamics in above-ground biomass accumulation after transplanting and its characteristic analysis in Yongyou japonica/indica hybrids [J]. Acta Agronomica Sinica, 2021, 47(3): 546-555.
[11] LEI Yong, WANG Zhi-Hui, HUAI Dong-Xin, GAO Hua-Yuan, YAN Li-Ying, LI Jian-Guo, LI Wei-Tao, CHEN Yu-Ning, KANG Yan-Ping, LIU Hai-Long, WANG Xin, XUE Xiao-Meng, JIANG Hui-Fang, LIAO Bo-Shou. Development and application of a near infrared spectroscopy model for predicting high sucrose content of peanut seed [J]. Acta Agronomica Sinica, 2021, 47(2): 332-341.
[12] ZHANG Yu-Xun, QI Tuo-Ye, SUN Yuan, QU Xiang-Ning, CAO Yuan, WU Meng-Yao, LIU Chun-Hong, WANG Lei. Vegetation characteristics of GF-6 remote sensing image and application on LAI retrieval of winter wheat at seedling stage [J]. Acta Agronomica Sinica, 2021, 47(12): 2532-2540.
[13] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[14] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[15] LI Yan-Da, CAO Zhong-Sheng, SHU Shi-Fu, SUN Bin-Feng, YE Chun, HUANG Jun-Bao, ZHU Yan, TIAN Yong-Chao. Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus [J]. Acta Agronomica Sinica, 2021, 47(10): 2028-2035.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!