Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (2): 448-462.doi: 10.3724/SP.J.1006.2022.11003


Evaluations of winter wheat late frost damage under different water based on principal component-cluster analysis

WANG Yang-Yang1(), HE Li1, REN De-Chao2, DUAN Jian-Zhao1, HU Xin2, LIU Wan-Dai1,*(), GU Tian-Cai1, WANG Yong-Hua1, FENG Wei1,*()   

  1. 1Agronomy College of Henan Agriculture University / State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, Henan, China
    2Wheat Research Institute, Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, Henan, China
  • Received:2021-01-07 Accepted:2021-04-26 Online:2022-02-12 Published:2021-06-09
  • Contact: LIU Wan-Dai,FENG Wei E-mail:wyy65wyy@163.com;hnndlwd@126.com;fengwei78@126.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0300204);the China Agriculture Research System(CARS-03)


To investigate the effect of low temperature at jointing stage on wheat physiological metabolism under different water conditions, a comprehensive physiological index is constructed to accurately evaluate the degree of freezing injury, which is of great significance to agricultural loss reduction, efficiency increase and macro management. Irrigation (W1) and no irrigation (W0) treatments were carried out one week before low temperature treatment using the weak-spring Yanzhan 4110 and Lankao 198, semi-winter Zhengmai 366 and Fengdecun 21 as the experimental materials. At the female and male ear differentiation stages, potted wheat was moved to the low temperature simulation room for low temperature treatment with six levels of normal (CK), -2℃ (T1), -4℃ (T2), -6℃ (T3), -8℃ (T4), and -10℃ (T5), respectively. The physiological indexes and fluorescence parameters were measured on the second day after treatment, and wheat yield was harvested at maturity stage. The results revealed that different varieties, water and low temperature stress, and their interactions had significant effects on wheat physiological indexes and fluorescence parameters at jointing stage. With the aggravation of low temperature stress, leaf water content, chlorophyll a content and fluorescence parameters qp, Fv/Fm, and Fv/Fo showed the continuous downward trends, the contents of soluble protein, proline, soluble sugar, and SOD activity first increased and then decreased, but the content of MDA demonstrated the opposite trend. Irrigation treatment alleviated the influence of low temperature stress on plant physiological metabolism, and the effect of low temperature on semi-winter varieties was relatively lower. Four independent comprehensive indexes were transformed by the principal component analysis, which reflected 88.55% of the original information, and the physiological comprehensive index of freezing injury (FICEI) was constructed. The depth of color in heat map indicated the darker the color, the greater the performance degree of indicators. According to the FIPCI value, the freezing injury was divided into five levels, which was consistent with the yield loss rate. Especially under T3 treatment, the yield loss rate of each variety reduced by 30.4%-44.0% under no irrigation, reduced by 21.0%-29.2% under irrigation treatment. Under the same irrigation condition, yield loss rate of different varieties was LK198>YZ4110>ZM366>FDC21, and the yield loss rate of semi-winter varieties was lower than that of weak spring varieties. According to the results of heat map clustering and the yield of each treatment, the yield loss rate was less than 10% for CK and T1, 10%-30% for W0T2, W1T2 and W1T3, 30%-50% for W0T3 and W1T4, more than 50% for W0T4, W0T5 and W1T5. Irrigating before low temperature was conducive to alleviating the damage caused by low temperature stress and reducing the yield loss. Physiological comprehensive freezing injury index and model constructed by principal component-cluster analysis can accurately evaluate the degree of wheat late frost damage, and provide scientific basis for yield recovery and decision-making management after disaster.

Key words: winter wheat, late frost damage, physiological indicators, fluorescence parameters, principal component analysis, integrated physiological index

Table 1

Variance analysis of physiological and biochemical indexes and chlorophyll fluorescence parameters"

Leaf water content (%)
Chl a
(mg g-1 )
(μg g-1)
(μg g-1)
PS II最大光学效率
PS II潜在活性
Soluble protein
(mg g-1)
(mg g-1)
(U g-1)
灌水Irr 36.8** 4.4* 4.0* 2.2 2.0 0.8 3.0 8.2** 1.3 76.0** 3.9 6.9
品种Cul 2.6* 1.9 2.0 1.3 1.8 2.4 2.4 24.8** 6.2* 10.5** 2.5 3.5
温度Tem 21.4** 46.3** 72.8** 44.8** 166.0** 69.1** 257.1** 19.8** 57.9** 40.2** 2.3 3.2
Irr × Cul 7.2** 2.9* 1.9 1.7 1.0 1.7 1.5 16.6** 3.1* 29.6** 2.5 3.5
Irr × Tem 45.1** 25.6** 48.2** 23.4** 85.6** 35.6** 119.7** 19.4** 29.9** 23.8** 2.3 3.2
Cul × Tem 6.8** 23.8** 45.8** 14.1** 123.2** 47.6** 149.8** 20.2** 17.1** 5.1** 1.7 2.0
Irr × Cul × Tem 113.3** 407.6** 319.9** 403.4** 796.0** 786.1** 966.6** 238.2** 223.0** 448.5** 1.7 2.0
灌水Irr 6.2* 17.8** 6.9** 3.2 8.5** 2.3 0.1 2.2 23.1** 15.3** 3.9 6.9
品种Cul 6.1* 0.9 1.0 0.4 1.6 0.3 0.7 3.1* 19.5** 11.3** 2.5 3.5
温度Tem 118.8** 106.7** 158.8** 235.6** 188.8** 435.1** 550.3** 11.4** 39.5** 35.1** 2.3 3.2
Irr × Cul 5.4* 3.2* 1.5 0.7 2.0 0.5 0.4 11.5* 5.3* 8.1* 2.5 3.5
Irr × Tem 106.8** 126.2** 168.6** 232.5** 196.4** 469.6** 248.9** 16.61** 56.7** 36.9** 2.3 3.2
Cul × Tem 42.3** 30.8** 49.9** 63.6** 54.7** 103.1** 189.6** 19.0** 12.9** 19.0** 1.7 2.0
Irr × Cul × Tem 333.2** 408.8** 519.1** 535.0** 209.5** 306.8** 402.0** 206.4** 54.5** 287.5** 1.7 2.0

Fig. 1

Effects of low temperature stress on leaf water content and chlorophyll a content in winter wheat W0: without irrigation treatments; W1: irrigation treatments. T1: -2℃; T2: -4℃; T3: -6℃; T4: -8℃; T5: -10℃; CK: 11℃/5℃ in 2018, and 22℃/8℃ in 2019."

Fig. 2

Effects of low temperature stress on osmotic regulator in winter wheat W0: without irrigation treatments; W1: irrigation treatments."

Fig. 3

Effects of low temperature stress on MDA content and SOD activity in winter wheat W0: without irrigation treatments; W1: irrigation treatments."

Fig. 4

Effects of low temperature stress on leaf qp, Fv/Fm, and Fv/Fo in winter wheat W0: without irrigation treatments; W1: irrigation treatments."

Table 2

Correlation coefficients between the physiological and biochemical indexes and chlorophyll fluorescence parameters of winter wheat"

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 1
X2 0.762** 1
X3 0.115 0.153* 1
X4 0.687** 0.707** 0.395** 1
X5 0.761** 0.787** 0.201* 0.753** 1
X6 0.771** 0.839** 0.194* 0.736** 0.921** 1
X7 0.785** 0.780** 0.122 0.687** 0.914** 0.896** 1
X8 -0.782** -0.792** -0.259** -0.730** -0.798** -0.801** -0.808** 1
X9 0.271** 0.223** 0.402** 0.486** 0.373** 0.344** 0.332** -0.367** 1
X10 0.464** 0.462** 0.358** 0.584** 0.507** 0.565** 0.519** -0.583** 0.399** 1

Table 3

Principal component analysis of the physiological indices and chlorophyll fluorescence parameters of winter wheat"

初始特征值 Initial eigenvalues 提取载荷平方和 Extraction eigenvalues
Variance (%)
Cumulative (%)
Variance (%)
Cumulative (%)
1 6.366 63.658 63.658 6.366 63.658 63.658
2 1.357 13.574 77.232 1.357 13.574 77.232
3 0.603 6.028 83.259 0.603 6.028 83.259
4 0.529 5.290 88.550 0.529 5.290 88.550
5 0.325 3.253 91.803
6 0.265 2.655 94.458
7 0.224 2.241 96.699
8 0.182 1.822 98.521
9 0.087 0.868 99.389
10 0.061 0.611 100

Fig. 5

Relationship among wheat physiological indexes under different low temperature and moisture treatments X1, X2, X3, X4, X5, X6, X7, X8, X9, and X10 represent chlorophyll a, leaf water content, soluble sugar, proline, qp, Fv/Fm, Fv/Fo, MDA, SOD, and soluble protein, respectively."

Table 4

Eigen vector analysis table of correlation matrix of ten parameters"

指标 Index CI1 CI2 CI3 CI4
叶绿素a Chlorophyll a 0.852 -0.231 -0.004 0.052
叶片含水量 Leaf water content 0.868 -0.239 -0.123 0.108
可溶性糖 Soluble sugar 0.319 0.786 -0.414 0.296
脯氨酸 Proline 0.859 0.187 -0.029 0.076
光化学淬灭系数 qp 0.926 -0.141 0.068 0.100
PS II最大光学效率 Fv/Fm 0.933 -0.156 0.006 0.020
PS II潜在活性 Fv/Fo 0.911 -0.216 0.082 0.014
丙二醛 MDA -0.903 0.056 0.057 0.010
超氧化物歧化酶 SOD 0.472 0.625 0.610 0.035
可溶性蛋白 Soluble protein 0.670 0.330 -0.169 -0.640

Table 5

Weight of each principal component parameter variable, comprehensive formula Y weight and FIPCI weight"

CI1 CI2 CI3 CI4 Y权重
Y weight
叶绿素a Chlorophyll a 0.337681 -0.198300 -0.005150 0.071495 0.216279 0.118316
叶片含水量Leaf water content 0.344022 -0.205170 -0.158400 0.148490 0.213953 0.117044
可溶性糖Soluble sugar 0.126432 0.674734 -0.533140 0.406971 0.182342 0.099751
脯氨酸Proline 0.340455 0.160528 -0.037350 0.104493 0.273059 0.149378
光化学淬灭系数qp 0.367010 -0.121040 0.087569 0.137490 0.259461 0.141939
PS II最大光学效率Fv/Fm 0.369784 -0.133920 0.007727 0.027498 0.247476 0.135383
PS II潜在活性Fv/Fo 0.361065 -0.185420 0.105598 0.019249 0.239482 0.131009
丙二醛MDA -0.357890 0.048073 0.073403 0.013749 -0.244100 -0.133540
超氧化物歧化酶SOD 0.187072 0.536525 0.785545 0.048122 0.273080 0.149390
可溶性蛋白Soluble protein 0.265547 0.283285 -0.217630 -0.879940 0.166942 0.091326

Fig. 6

Heat map of physiological and biochemical traits 1, 2, 3, and 4 represent cultivar YZ4110, LK198, ZM366, and FDC21, respectively; X1, X2, X3, X4, X5, X6, X7, X8, X9, and X10 represent chlorophyll a, leaf water content, soluble sugar, proline, qp, Fv/Fm, Fv/Fo, MDA, SOD, and soluble protein, respectively. Treatments are the same as those given in Fig. 1."

Table 6

Yield loss rate and FIPCI value under different varieties, irrigation, and low temperature treatments"

Yield (g m-2)
Rate of loss of yield (%)
YZ4110 LK198 ZM366 FDC21 YZ4110 LK198 ZM366 FDC21 YZ4110 LK198 ZM366 FDC21
W0-CK 0.415 0.394 0.421 0.458 938.0 902.9 941.6 854.4 0 a 0 a 0 a 0 a
W0-T1 0.607 0.622 0.65 0.672 840.0 834.6 895.1 819.2 7.1 b 7.5 b 4.6 b 4.1 b
W0-T2 0.898 0.916 0.994 0.993 698.6 636.3 763.4 705.6 25.6 c 29.6 c 19.0 c 17.3 c
W0-T3 -0.181 -0.251 -0.137 -0.143 526.4 485.6 609.1 593.6 44.0 d 46.2 d 35.3 d 30.4 d
W0-T4 -1.294 -1.334 -1.109 -1.016 352.8 235.7 331.2 272.0 62.4 e 73.9 e 64.8 e 68.1 e
W0-T5 -1.341 -1.449 -1.387 -1.257 147.0 50.2 97.1 124.8 84.3 f 94.4 f 89.7 f 85.4 f
W1-CK 0.384 0.407 0.438 0.418 971.6 966.0 996.8 979.2 0 a 0 a 0 a 0 a
W1-T1 0.717 0.674 0.777 0.818 950.6 936.6 980.0 961.2 2.2 a 3.1 a 1.7 a 1.8 a
W1-T2 1.093 1.090 1.192 1.299 793.8 810.6 870.8 855.6 18.4 b 16.1 b 12.7 b 12.6 b
W1-T3 1.129 1.192 1.299 1.351 718.2 684.6 788.2 756.0 26.1 c 29.2 c 21.0 c 22.8 c
W1-T4 -0.354 -0.416 -0.328 -0.225 520.8 487.2 575.4 603.6 46.4 d 49.5 d 42.3 d 38.4 d
W1-T5 -1.267 -1.470 -1.199 -1.054 233.8 166.6 250.6 285.6 75.9 f 82.7 f 74.8 f 70.8 f

Fig. 7

Relationship between wheat physiological indices under low temperature stress ROS, SOD, MDA, PRO, SP, SS, LWC, Chl a, Fv/Fm, Fv/Fo, qp represent reactive oxygen species, SOD enzyme, MDA, proline, soluble protein, soluble sugar, leaf water content, chlorophyll a, Fv/Fm, Fv/Fo, qp, respectively."

[1] Kodra E, Steinhaeuser K, Ganguly A R. Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett, 2011,38:1-5.
[2] Sanghera G S, Wani S H, Wasim H, Singh N B. Engineering cold stress tolerance in crop plants. Curr Genomics, 2011,12:30-43.
[3] Vavrus S, Walsh J E, Chapman W L, Portis D. The behaviour of extreme cold air outbreaks under greenhouse warming. Int J Climatol, 2006,26:1133-1147.
[4] 冯玉香, 何维勋, 孙忠富, 钟秀丽. 我国冬小麦霜冻害的气候分析. 作物学报, 1999,25:335-340.
Feng Y X, HE W X, Sun Z F, Zhong X L. Climatological study on frost damage of winter wheat in China. Acta Agron Sin, 1999,25:335-340 (in Chinese with English abstract).
[5] 孟雷, 武永峰, 胡新, 吕国华, 任德超, 宋吉青. 土壤表层湿度影响下冬小麦晚霜冻害及冠层光谱检测. 光谱学与光谱分析, 2017,37:1482-1488.
Meng L, Wu Y F, Hu X, Lyu G H, Ren D C, Song J Q. Using hyperspectral data for detecting late frost injury to winter wheat under different topsoil moistures. Spectrosc Spect Anal, 2017,37:1482-1488 (in Chinese with English abstract).
[6] Furumoto M. Cold signaling and cold response in plants. Int J Mol, 2013, 2013,14:5312-5337.
[7] 王秀田, 卢秋巍, 苍晶, 包雨卓, 孟德义, 于晶, 徐庆华, 赵虎, 李想, 相智也, 谢波. 低温驯化对冬小麦叶绿素荧光特性及抗氧化酶活性的影响. 植物生理学报, 2016,52:1959-1969.
Wang X T, Lu Q W, Cang J, Bao Y Z, Meng D Y, Yu J, Xu Q H, Zhao Hu, Li X, Xiang Z Y, Xie B. Effects of cold acclimation on chlorophyll fluorescence characteristics and antioxidant enzyme activity in winter wheat. Acta Phytophysiol Sin, 2016,52:1959-1969 (in Chinese with English abstract).
[8] 王晓楠, 付连双, 李卓夫, 孙艳丽, 王玉波, 刘灿, 王金伟, 陈禹兴. 低温驯化及封冻后不同抗寒性小麦品种的形态建成及生理基础分析. 作物学报, 2009,35:1313-1319.
Wang X N, Fu L S, Li Z F, Sun Y L, Wang Y B, Liu C, Wang J W, Chen Y X. Morphogenesis and physiological basis in wheat cultivars with different levels of cold-resistance during cold acclimation and freezing period. Acta Agron Sin, 2009,35:1313-1319 (in Chinese with English abstract).
[9] 王瑞霞, 闫长生, 张秀英, 孙果忠, 钱兆国, 亓晓蕾, 牟秋焕, 肖世和. 春季低温对小麦产量和光合特性的影响. 作物学报, 2018,44:288-296.
Wang R X, Yan C S, Zhang X Y, Sun G Z, Qian Z G, Qi X L, Mou Q H, Xiao S H. Effect of low temperature in spring on yield and photosynthetic characteristics of wheat. Acta Agron Sin, 2018,44:288-296 (in Chinese with English abstract).
[10] Van Kooten O. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res, 1990,25:147-150.
[11] 刘艳阳, 李俊周, 陈磊, 崔党群. 低温胁迫对小麦叶片细胞膜脂质过氧化产物及相关酶活性的影响. 麦类作物学报, 2006,26:70-73.
Liu Y Y, Li J Z, Chen L, Cui D Q. Effect of low temperature stress on peroxidation product of membrane lipids and activity of related enzymes in wheat seedling leaves. J Triticeae crops, 2006,26:70-73(in Chinese with English abstract).
[12] 刘慧英, 朱祝军, 吕国华, 钱琼秋. 低温胁迫下西瓜嫁接苗的生理变化与耐冷性关系的研究. 中国农业科学, 2003,36:1325-1329.
Liu H Y, Zhu Z J, Lyu G H, Qian Q Q. Study on relationship between physiological change and chilling tolerance in grafted watermelon seedling under low temperature stress. Sci Agric Sin, 2003,36:1325-1329 (in Chinese with English abstract).
[13] 李春燕, 陈思思, 徐雯, 李东升, 顾骁, 朱新开, 郭文善, 封超年. 苗期低温胁迫对扬麦16叶片抗氧化酶和渗透调节物质的影响. 作物学报, 2011,37:2293-2298.
Li C Y, Chen S S, Xu W, Li D S, Gu X, Zhu X K, Guo W S, Feng C N. Effect of the low temperature at seedling stage on antioxidation enzymes and cytoplasmic osmoticum of leaves in wheat cultivar Yangmai 16. Acta Agron Sin, 2011,37:2293-2298 (in Chinese with English abstract).
[14] 王晓楠, 付连双, 李卓夫, 孙艳丽, 王玉波, 刘灿, 王金伟, 陈禹兴. 低温驯化及封冻后不同抗寒性小麦品种的形态建成及生理基础分析. 作物学报, 2009,35:1313-1319.
Wang X N, Fu L S, Li Z F, Sun Y L, Wang Y B, Liu C, Wang J W, Chen Y Y. Morphogenesis and physiological basis in wheat cultivars with different levels of cold-resistance during cold acclimation and freezing period. Acta Agron Sin, 2009,35:1313-1319 (in Chinese with English abstract).
[15] 王树刚, 王振林, 王平, 王海伟, 李府, 黄玮, 武玉国, 尹燕枰. 不同小麦品种对低温胁迫的反应及抗冻性评价. 生态学报, 2011,31:1064-1072.
Wang S G, Wang Z L, Wang P, Wang H W, Li F, Huang W, Wu Y G, YIN Y P. Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress. Acta Ecol Sin, 2011,31:1064-1072 (in Chinese with English abstract).
[16] 杨梅, 郭军战. 不同果桑品种对低温胁迫的反应及抗寒性评价. 北方园艺, 2012, ( 4):29-32.
Yang M, Guo J Z. Evaluation of mulberry cold resistance based on the responses of the physiological indices to low temperature stress. Nor Hortic, 2012, ( 4):29-32 (in Chinese with English abstract).
[17] 徐澜, 高志强, 安伟, 原亚琦, 李彦良. 冬麦春播小麦穗分化阶段对低温胁迫的响应及耐寒性. 应用生态学报, 2015,26:1679-1686.
Xu L, Gao Z Q, An W, Yuan Y Q, Li Y L. Low-temperature response and cold tolerance at spike differentiation stage of winter wheat varieties sowed in spring. Chin J Appl Ecol, 2015,26:1679-1686 (in Chinese with English abstract).
[18] 张瑞栋, 肖梦颖, 徐晓雪, 姜冰, 邢艺凡, 陈小飞, 李邦, 艾雪莹, 周宇飞, 黄瑞冬. 高粱种子对萌发温度的响应分析与耐低温萌发能力鉴定. 作物学报, 2020,46:889-901.
Zhang R D, Xiao M Y, Xu X X, Jiang B, Xing Y F, Chen X F, Li B, Ai X Y, Zhou Y F, Huang R D. Responses of sorghum hybrids to germination temperatures and identification of low temperature resistance. Acta Agron Sin, 2020,46:889-901 (in Chinese with English abstract).
[19] 白志英, 李存东, 孙红春, 赵金锋. 小麦代换系抗旱生理指标的主成分分析及综合评价. 中国农业科学, 2008,41:4264-4272.
Bai Z Y, Li C D, Sun H C, Zhao J F. Principal component analysis and comprehensive evaluation on physiological indices of drought resistance in wheat substitution. Sci Agric Sin, 2008,41:4264-4272 (in Chinese with English abstract).
[20] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. pp 184-185, 195-197, 261-263.
Li H S, The Experiment Principle and Technique on Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000. pp 184-185, 195-197, 261-263(in Chinese).
[21] 中国科学院上海植物生理研究所, 上海植物生理学会. 现代植物生理学实验指南. 北京: 科学出版社, 1999. p 303.
Shanghai Institute of Plant Physiology and Shanghai Society for Plant Physiology. Modern Plant Physiology Laboratory Manual. Beijing: Science Press, 1999. p 303 (in Chinese).
[22] 侯福林. 植物生理学实验教程. 北京: 科学出版社, 2004. p 91.
Hou F L. Plant Physiology Experimental Course. Beijing: Science Press, 2004. p 91 (in Chinese).
[23] 冯美臣, 牛波, 杨武德, 肖璐洁. 晋中地区荞麦品质气候区划的GIS多元分析. 地球信息科学学报, 2012,14:807-813.
Feng M C, Niu B, Yang W D, Xiao L J, Climate regionalization of buckwheat quality index based on GIS multivariate analysis in Jinzhong prefecture. J Geo-Inf Sci, 2012,14:807-813 (in Chinese with English abstract).
[24] Kratsch H A, Wise R R. The ultrastructure of chilling stress. Plant Cell Environ, 2000,23:337-350.
[25] Wei C W, Huang J F, Wang X Z, Blackburn G A, Zhang Y, Wang S S, Mansaray L R. Hyperspectral characterization of freezing injury and its biochemical impacts in oilseed rape leaves. Remote Sens Environ, 2017,195:56-66.
[26] Dai F, Zhou M, Zhang G. The change of chlorophyll fluorescence parameters in winter barley during recovery after freezing shock and as affected by cold acclimation and irradiance. Plant Physiol Bioch, 2007,45:915-921.
[27] Ploschuk E L, Bado L A, Salinas M, Wassner D F, Windauer L B, Insausti P. Photosynthesis and fluorescence responses of Jatropha curcas to chilling and freezing stress during early vegetative stages. Environ Exp Bot, 2014,102:18-26.
[28] Karimzadeh G, Darvishzadeh R, Jalali-Javaran M, Dehghani H. Cold-induced accumulation of protein in the leaves of spring and winter barley cultivars. Acta Biol Hung, 2005. 56:83-96.
[29] Gomes F P, Oliva M, Mielke M S, Almeida A A F, Aquino L A. Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci Hortic(Amsterdam), 2010,126:379-384.
[30] Terzioglu S, Ekmekci Y. Variation of total soluble seminal root proteins of tetraploid wild and cultivated wheat induced at cold acclimation and freezing. Acta Physiol Plant, 2004,26:443.
[31] 张武君, 刘保财, 赵云青, 黄颖桢, 陈菁瑛. 金花茶对低温胁迫的生理响应及耐寒性分析. 核农学报, 2020,34:401-408.
Zhang W J, Liu B C, Zhao Y Q, Huang Y Z, Chen J Y. Physiological responses and cold resistance analysis of Camellia nitidissima chi under low-temperature stress. J Nucl Agric Sci, 2020,34:401-408 (in Chinese with English abstract).
[32] Silim S N, Guy R D, Lavender D P. Meflidide-induced drought resistance in seedlings of three conifer species. Can J Bot, 1993,71:1087-1092.
[33] Chu C C. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol, 2005,139:425-436.
[34] 姜丽娜, 张黛静, 宋飞, 刘佩, 樊婷婷, 余海波, 李春喜. 不同品种小麦叶片对拔节期低温的生理响应及抗寒性评价. 生态学报, 2014,34:4251-4261.
Jiang L N, Zhang D J, Song F, Liu P, Fan T T, Yu H B, Li C X. Evaluation of cold resistance of different wheat varieties based on physiological responses of leaves to low temperature at the jointing stage. Acta Ecol Sin, 2014,34:4251-4261 (in Chinese with English abstract).
[35] 孙擎, 杨再强, 高丽娜, 殷剑敏, 王学林, 李伶俐. 低温对早稻幼穗分化期叶片生理特性的影响及其与产量的关系. 中国生态农业学报, 2014,22:1326-1333.
Sun Q, Yang Z Q, Gao L N, Yin J M, Wang X L, Li L L. Effect of low temperature stress on physiological characteristics of flag leaf and its relationship with grain yield during panicle primordium differentiation stage of early rice. Chin J Eco-agric, 2014,22:1326-1333 (in Chinese with English abstract).
[36] 许莹, 马晓群, 王晓东, 杜世州. 安徽省冬小麦春霜冻害气象指标的研究. 气象, 2014,40:852-859.
Xu Y, Ma X Q, Wang X D, Du S Z. Study on meteorological index of spring frost damage to winter wheat in Anhui province. Meteorol Monthly, 2014,40:852-859 (in Chinese with English abstract).
[37] 曹娜, 陈小荣, 贺浩华, 朱昌兰, 才硕, 徐涛, 谢亨旺, 刘方平. 抽穗扬花期不同灌水处理对晚稻抵御低温、产量和生理特性的影响. 应用生态学报, 2017,28:3935-3944.
Effects of different irrigation treatments during heading and flowering stage on cold resistance, yield and physiological characteristics of late rice. Chin J Appl Ecol, 2017,28:3935-3944 (in Chinese with English abstract).
[38] 尹赜鹏, 刘雪梅, 商志伟, 任静, 宋兴舜. 不同干旱胁迫下欧李光合及叶绿素荧光参数的响应. 植物生理学报, 2011,47:452-458.
Yin Z P, Liu X M, Shang Z W, Ren J, Song X S. Response of photosynthesis and chlorophyl II fluorescence parameters to different drought stress in cerasus humilis bunge. Acta Phytophysiol Sin, 2011,47:452-458 (in Chinese with English abstract).
[39] 赵孟良, 郭怡婷, 孙世英, 任延靖. 低温胁迫下4种菊芋的耐寒性评价. 植物生理学报, 2020,56:1419-1431.
Zhao M L, Guo Y T, Sun S Y, Ren Y J. Evaluation of cold resistance of four Jerusalem artichoke (Helianthus tuberosus) under low temperature stress. Acta Phytophysiol Sin, 2020,56:1419-1431 (in Chinese with English abstract).
[40] 李春喜, 郭雪妮, 张黛静, 刘雪晴, 刘安琪, 王艳杰. 轻度干旱胁迫下黄淮麦区不同基因型小麦的响应分析. 生态环境学报, 2016,25:1446-1452.
Li C X, Guo X N, Zhang D J, Liu X Q, Liu A Q, Wang Y J. Response of different genotypes wheat to light drought stress in the Huang-huai plain. Ecol Environ Sci, 2016,25:1446-1452 (in Chinese with English abstract).
[41] Zou J, Hu W, LI Y X, He J Q, Zhu H H, Zhou Z G. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.). J Integr Agric, 2020,19:495-508.
[42] 王准, 张恒恒, 董强, 贵会平, 王香茹, 庞念厂, 李永年, 牛静, 靳丁沙, 汪苏洁, 张西岭, 宋美珍. 棉花耐低氮和氮敏感种质筛选及验证. 棉花学报, 2020,32:538-551.
Wang Z, Zhang H H, Dong Q, Gui H P, Wang X R, Pang N C, Li Y N, Niu J, Jin D S, Wang S J, Zhang X L, Song M Z. Screening and verification of low nitrogen tolerant and nitrogen sensitive cotton germplasm. Cotton Sci, 2020,32:538-551.
[43] 李霞, 孙志伟, 吕川根, 任承刚, 曹昆, 王超. 田间杂交水稻单年单点5种不同逆境的批量筛选及聚类分析. 中国生态农业学报, 2010,18:528-534.
Li X, Sun Z W, Lyu C G, Ren C G, Cao K, Wang C. Mass screening and cluster analysis for tolerance to stress of hybrid rice variety under field conditions. Chin J Eco-Agric, 2010,18:528-534 (in Chinese with English abstract).
[1] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[2] MA Bo-Wen, LI Qing, CAI Jian, ZHOU Qin, HUANG Mei, DAI Ting-Bo, WANG Xiao, JIANG Dong. Physiological mechanisms of pre-anthesis waterlogging priming on waterlogging stress tolerance under post-anthesis in wheat [J]. Acta Agronomica Sinica, 2022, 48(1): 151-164.
[3] LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359.
[4] ZHANG Yu-Xun, QI Tuo-Ye, SUN Yuan, QU Xiang-Ning, CAO Yuan, WU Meng-Yao, LIU Chun-Hong, WANG Lei. Vegetation characteristics of GF-6 remote sensing image and application on LAI retrieval of winter wheat at seedling stage [J]. Acta Agronomica Sinica, 2021, 47(12): 2532-2540.
[5] HU Xin-Hui, GU Shu-Bo, ZHU Jun-Ke, WANG Dong. Effects of applying potassium at different growth stages on dry matter accumulation and yield of winter wheat in different soil-texture fields [J]. Acta Agronomica Sinica, 2021, 47(11): 2258-2267.
[6] ZHOU Bao-Yuan, GE Jun-Zhu, SUN Xue-Fang, HAN Yu-Ling, MA Wei, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain [J]. Acta Agronomica Sinica, 2021, 47(10): 1843-1853.
[7] LUO Wen-He, SHI Zu-Jiao, WANG Xu-Min, LI Jun, WANG Rui. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat [J]. Acta Agronomica Sinica, 2020, 46(6): 924-936.
[8] MA Yan-Ming, FENG Zhi-Yu, WANG Wei, ZHANG Sheng-Jun, GUO Ying, NI Zhong-Fu, LIU Jie. Genetic diversity analysis of winter wheat landraces and modern bred varieties in Xinjiang based on agronomic traits [J]. Acta Agronomica Sinica, 2020, 46(12): 1997-2007.
[9] CHEN Er-Ying, WANG Run-Feng, QIN Ling, YANG Yan-Bing, LI Fei-Fei, ZHANG Hua-Wen, WANG Hai-Lian, LIU Bin, KONG Qing-Hua, GUAN Yan-An. Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination [J]. Acta Agronomica Sinica, 2020, 46(10): 1591-1604.
[10] MA Yan-Ming, LOU Hong-Yao, CHEN Zhao-Yan, XIAO Jing, XU Lin, NI Zhong-Fu, LIU Jie. Genetic diversity assessment of winter wheat landraces and cultivars in Xinjiang via SNP array analysis [J]. Acta Agronomica Sinica, 2020, 46(10): 1539-1556.
[11] ZHANG Li,CHEN Fu,LEI Yong-Deng. Spatial and temporal patterns of drought risk for winter wheat grown in Hebei province in past 60 years [J]. Acta Agronomica Sinica, 2019, 45(9): 1407-1415.
[12] WU Ya-Peng,HE Li,WANG Yang-Yang,LIU Bei-Cheng,WANG Yong-Hua,GUO Tian-Cai,FENG Wei. Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat [J]. Acta Agronomica Sinica, 2019, 45(8): 1238-1249.
[13] JI Long,SHEN Hong-Fang,XU Chun-Chun,CHEN Zhong-Du,FANG Fu-Ping. Comprehensive evaluation of green super rice varieties based on nonlinear principal component analysis [J]. Acta Agronomica Sinica, 2019, 45(7): 982-992.
[14] Li-Na JIANG,Jing-Li MA,Bao-Ting FANG,Jian-Hui MA,Chun-Xi LI,Zhi-Min WANG,Bao-Zhen HAO. Effect of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of winter wheat plant in northern Henan province [J]. Acta Agronomica Sinica, 2019, 45(6): 957-966.
[15] Xin-Nan HE,Xiang LIN,Shu-Bo GU,Dong WANG. Effects of supplemental irrigation with micro-sprinkling hoses on soil physical properties, water consumption and grain yield of winter wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 879-892.
Full text



No Suggested Reading articles found!