Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1416-1424.doi: 10.3724/SP.J.1006.2022.14088


SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits

WANG Jing-Tian**(), ZHANG Ya-Wen**, DU Ying-Wen**, REN Wen-Long, LI Hong-Fu, SUN Wen-Xian, GE Chao, ZHANG Yuan-Ming*()   

  1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2021-05-15 Accepted:2021-09-10 Online:2022-06-12 Published:2021-10-18
  • Contact: ZHANG Yuan-Ming E-mail:1390032282@qq.com;soyzhang@mail.hzau.edu.cn
  • About author:First author contact:

    ** Contributed equally to this work

  • Supported by:
    National Natural Science Foundation of China(32070557)


The phenotypic values for quantitative trait from bi-parental segregation populations can be used to identify its mixed major genes plus polygenes inheritance model, which provides important information for the genetic basis of quantitative traits and crop breeding. To comprehensively summarize the research results of methodological advances, add the new functions of the software and correct its shortcomings in previous versions, an R software package SEA v2.0 with interactive graphical user interface is developed under R studio-1.4.1103 platform and R environment. In this software, there were 14 types of bi-parental segregation populations, and each type included four modules: data input, data analysis, posterior probability calculation, and distribution curve drawing. To save running time, doParallel was used to conduct parallel computing, data.table was used to quickly read and write datasets, and MASS was used to estimate the parameters in component distributions. KScorrect, kolmim, and shiny packages were used to simplify the programs. As long as users uploaded the data file with *.csv format and set the related parameters, the results could be quickly displayed. The software was validated by real data analysis of soybean podding habit and Monte Carlo simulation studies, and can be downloaded from https://cran.r-project.org/web/packages/SEA/index.html.

Key words: bi-parental segregation population, quantitative trait, mixed major genes plus polygenes inheritance model, R software, SEA

Table 1

14 population types and their abbreviations in software SEA v2.0"

Population type
Column name
Population type
Column name
F2 SEA-F2 F2 [12, 13] P1, F1, P2, F2:3 SEA-G4F3 P1, F1, P2, F23 [16]
F2:3 SEA-F3 F23 [14] P1, P2, DH SEA-G3DH P1, P2, DH [15]
DH/RIL SEA-DH DH [15] P1, F1, P2 B1, B2 SEA-G5BC P1, F1, P2, B1, B2 [17]
BIL SEA-BIL BIL [11] P1, F1, P2, B1:2, B2:2 SEA-G5BCF P1, F1, P2, B12, B22 [17]
B1, B2 SEA-BC B1, B2 [13] P1, F1, P2, F2, F2:3 SEA-G5 P1, F1, P2, F2, F23 [18, 19]
B1:2, B2:2 SEA-BCF B12, B22 [11] P1, F1, P2, F2, B1, B2 SEA-G6 P1, F1, P2, F2, B1, B2 [20, 21]
P1, F1, P2, F2 SEA-G4F2 P1, F1, P2, F2 [16] P1, F1, P2, F2:3, B1:2, B2:2 SEA-G6F P1, F1, P2, F23, B12, B22 [22]

Table 2

Genetic models and their codes in software SEA v2.0"

Major genes
模型代号 Model code
Only major genes
Major gene & polygenes
多基因 加性-显性-上位性ADE PG-ADI
Polygenes 加性-显性 AD PG-AD
1对主基因 加性-显性 AD 加性-显性-上位性ADE 1MG-AD MX1-AD-ADI
One MG 加性-显性 AD 加性-显性 AD 1MG-AD MX1-AD-AD
加性 A 加性-显性 AD 1MG-A MX1-A-AD
加性 A 加性-上位性 AE 1MG-A MX1-A-AI
加性 A 加性 A 1MG-A MX1-A-A
完全显性 CD 加性-显性 AD 1MG-EAD MX1-EAD-AD
负向完全显性 NCD 加性-显性 AD 1MG-NCD MX1-NCD-AD
2对主基因 加性-显性-上位性 ADE 加性-显性-上位性 ADE 2MG-ADI MX2-ADI-ADI
Two MGs 加性-显性-上位性 ADE 加性-显性 AD 2MG-ADI MX2-ADI-AD
加性-显性 AD 加性-显性 AD 2MG-AD MX2-AD-AD
加性 A 加性-显性 AD 2MG-A MX2-A-AD
加性 A 加性 A 2MG-A MX2-A-A
加性-上位性 AE 加性-上位性 AE 2MG-AI MX2-AI-AI
加性-上位性 AE 加性 A 2MG-AI MX2-AI-A
等加性 EA 加性-显性 AD 2MG-EA MX2-EA-AD
等加性 EA 加性 A 2MG-EA MX2-EA-A
2对主基因 显性上位 DE1 加性 A 2MG-ED MX2-ED-A
Two MGs 隐性上位 RE 加性 A 2MG-ER MX2-ER-A
累加作用 CE1 加性 A 2MG-AE MX2-AE-A
互补作用 CE2 加性 A 2MG-CE MX2-CE-A
重叠作用 DE2 加性 A 2MG-DE MX2-DE-A
抑制作用 IE 加性 A 2MG-IE MX2-IE-A
完全显性 CD 加性-显性 AD 2MG-CD MX2-CD-AD
等显性 ED 加性-显性 AD 2MG-EAD MX2-EAD-AD
3对主基因 加性-上位性 AE 加性-上位性 AE 3MG-AI MX3-AI-AI
Three MGs 加性-上位性 AE 加性 A 3MG-AI MX3-AI-A
加性 A 加性 A 3MG-A MX3-A-A
等加性 EA 加性 A 3MG-CEA MX3-CEA-A
部分等加性 PEA 加性 A 3MG-PEA MX3-PEA-A
4对主基因 加性-上位性 AE 4MG-AI
Four MGs 等加性 EA 4MG-CEA
部分等加性1 PEA1 4MG-EEA
部分等加性2 PEA2 4MG-EEEA

Fig. 1

Application of software package SEA v2.0"

Fig. 2

Output results of mixed major-genes plus polygenes inheritance analysis"

Table 3

Monte Carlo simulation results of segregation analysis for quantitative traits in P1, F1, P2, B1, B2, and F2"

Mean (m)
Additive (da)
Additive (db)
Dominant (ha)
Dominant (hb)
Residual variance
MG variance
MG heritability in B1 (%)
Power (%)
1MG-AD 参数真值 TVP 100.00 10.00 3.68 10.00 10.00 50.00 92.00
Estimates ± SD
99.97±0.17 9.97±0.09 3.69±0.20 9.96±0.58 10.02±1.31 49.99±3.77
平均差 AD 0.14 0.07 0.15 0.48 1.04 3.02
2MG-ADI 参数真值 TVP 10.00 7.07 3.16 14.14 6.32 10.00 15.00 60.00 90.00
Estimates ± SD
101.59±1.77 7.90±1.23 2.25±1.24 11.05±1.83 6.45±1.82 9.64±0.80 12.34±1.29 56.07±3.41
平均差 AD 1.76 1.08 1.11 3.09 1.63 0.71 2.71 4.36
PG-ADI 参数真值 TVP 100.00 10.00 100.00
Estimates ± SD
100.32±0.28 9.59±1.34
平均差 AD 0.35 1.18
MX1-AD-ADI 参数真值 TVP 100.00 10.00 17.07 10.00 12.50 50.00 99.00
Estimates ± SD
115.24±0.36 10.05±0.15 17.06±0.26 9.47±0.76 12.31±1.41 54.40±4.20
平均差 AD 15.24 0.13 0.21 0.73 1.13 5.25
MX2-ADI-ADI 参数真值 TVP 100.00 7.07 3.16 14.14 6.32 10.00 15.00 60.00 79.00
Estimates ± SD
102.06±2.41 7.06±1.10 7.06±1.10 8.79±2.88 4.06±2.99 9.82±1.14 13.04±3.78 47.27±13.16
平均差 AD 2.51 0.87 3.90 5.41 2.93 0.91 3.29 14.01
[1] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003. pp 22-25.
Gai J Y, Zhang Y M, Wang J K. Genetic System of Quantitative Traits in Plants. Beijing: Science Press, 2003. pp 22-25(in Chinese).
[2] 章元明. 数量性状分离分析与R软件. 德国博巴辛: 金琅学术出版社, 2017. pp 13-14.
Zhang Y M. Segregation Analysis of Quantitative Traits and R Software. Beau Bassin: Golden Light Academic Publishing, 2017. pp 13-14(in Chinese)
[3] Elston R C, Stewart J. The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data. Genetics, 1973, 73: 695-711.
doi: 10.1093/genetics/73.4.695 pmid: 4711900
[4] 胡中立, 刘后利, 张修富. 质量-数量性状及其遗传基础. 武汉大学学报, 1989, (3):83-90.
Hu Z L, Liu H L, Zhang X F. Qualitative-quantitative traits and their genetic basis. J Wuhan Univ, 1989, (3):83-90 (in Chinese with English abstract).
[5] 莫惠栋. 质量-数量性状的遗传分析: I. 遗传组成和主基因基因型鉴别. 作物学报, 1993, 19: 1-6.
Mo H D. Genetic analysis for qualitative-quantitative traits: I. The genetic constitution of generation populations and the identification of major gene genotypes. Acta Agron Sin, 1993, 19: 1-6 (in Chinese with English abstract).
[6] Jiang C, Pan X, Gu M. The use of mixture models to detect effects of major genes on quantitative characters in a plant breeding experiment. Genetics, 1994, 136: 383-394.
doi: 10.1093/genetics/136.1.383 pmid: 8138172
[7] 王建康. 数量性状主基因-多基因混合遗传模型的鉴别和遗传参数估计的研究. 南京农业大学博士学位论文, 江苏南京 1996.
Wang J K. A Study on Identification and Genetic Parameter Estimation of Mixed Major Genes plus Polygenes Inheritance Model for Quantitative Traits. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 1996 (in Chinese with English abstract).
[8] 章元明. 植物数量性状遗传分离分析法的改进与拓展. 南京农业大学博士学位论文, 江苏南京 2001.
Zhang Y M. A Study on the Improvement and Expansion of Segregation Analysis in the inheritance of Quantitative Traits in Plants. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2001 (in Chinese with English abstract).
[9] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013, 36(6):1-6.
Cao X W, Liu B, Zhang Y M. SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ, 2013, 36(6):1-6 (in Chinese with English abstract).
[10] 何小红, 盖钧镒. 回交自交系群体数量性状遗传体系的分离分析方法. 作物学报, 2006, 32: 210-216.
He X H, Gai J Y. Segregation analysis of quantitative traits in backcross inbred line population. Acta Agron Sin, 2006, 32: 210-216 (in Chinese with English abstract).
[11] 王金社, 赵团结, 盖钧镒. 回交自交系(BIL)群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2013, 39: 198-206.
doi: 10.3724/SP.J.1006.2013.00198
Wang J S, Zhao T J, Gai J Y. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in backcross inbred lines (BIL) populations. Acta Agron Sin, 2013, 39: 198-206 (in Chinese with English abstract).
[12] 王建康, 盖钧镒. 利用杂种F2世代鉴定数量性状主基因+多基因混合遗传模型并估计其遗传效应. 遗传学报, 1997, 24: 432-440.
Wang J K, Gai J Y. Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2 Progeny. Acta Genet Sin, 1997, 24: 432-440 (in Chinese with English abstract).
[13] 章元明, 盖钧镒, 王建康. 利用回交B1和B2及F2群体鉴定数量性状两对主基因-多基因混合遗传模型. 生物数学学报, 2000, 15: 358-366.
Zhang Y M, Gai J Y, Wang J K. Identification of two major genes plus polygenes mixed inheritance model of quantitative traits in B1 and B2, and F2. J Biomath, 2000, 15: 358-366 (in Chinese with English abstract).
[14] 章元明, 盖钧镒, 戚存扣. 植物数量性状遗传体系检测中回交或自交家系重复试验数据的分析方法. 遗传, 2001, 23: 329-332.
Zhang Y M, Gai J Y, Qi C K. Detection of genetic system of quantitative traits using backcross and selfing families. Hereditas (Beijing), 2001, 23: 329-332 (in Chinese with English abstract).
[15] 章元明, 盖钧镒, 王永军. 利用P1、P2和DH或RIL群体联合分离分析的拓展. 遗传, 2001, 23: 467-470.
Zhang Y M, Gai J Y, Wang Y J. An expansion of joint segregation analysis of quantitative trait for using P1, P2 and DH or RIL populations. Hereditas (Beijing), 2001, 23: 467-470 (in Chinese with English abstract).
[16] 章元明, 盖钧镒, 张孟臣. 利用P1、F1、P2和F2或F2:3世代联合的数量性状分离分析. 西南农业大学学报, 2000, 42(1):6-9.
Zhang Y M, Gai J Y, Zhang M C. Jointly segregating analysis of P1, P2, F1, and F2 or F2:3 families. J Southwest Agric Univ, 2000, 42(1):6-9 (in Chinese with English abstract).
[17] 章元明, 盖钧镒. 数量性状分离分析中分布参数估计的IECM算法. 作物学报, 2000, 26: 699-706.
Zhang Y M, Gai J Y. The IECM algorithm for estimation of component distribution parameters in segregating analysis of quantitative traits. Acta Agron Sin, 2000, 26: 699-706 (in Chinese with English abstract).
[18] 王建康, 盖钧镒. 数量性状主-多基因混合遗传的P1、P2、F1、F2和F2:3联合分析方法. 作物学报, 1998, 24: 651-659.
Wang J K, Gai J Y. Identification of major gene and polygene mixed inheritance model of quantitative traits by using joint analysis of P1, F1, P2, F2 and F2:3 generations. Acta Agron Sin, 1998, 24: 651-659 (in Chinese with English abstract).
[19] Gai J Y, Wang J K. Identification and estimation of a QTL model and its effects. Theor Appl Genet, 1998, 97: 1162-1168.
doi: 10.1007/s001220051005
[20] 盖钧镒, 章元明, 王建康. QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000, 26: 385-391.
Gai J Y, Zhang Y M, Wang J K. A joint analysis of multiple generations for QTL models extended to mixed two major genes plus polygene. Acta Agron Sin, 2000, 26: 385-391 (in Chinese with English abstract).
[21] 章元明, 盖钧镒, 戚存扣. 数量性状分离分析的精确度及其改善途径. 作物学报, 2001, 27: 787-793.
Zhang Y M, Gai J Y, Qi C K. The precision of segregating analysis of quantitative trait and its improving methods. Acta Agron Sin, 2001, 27: 787-793 (in Chinese with English abstract).
[22] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Series B Stat Methodol, 1977, 39: 1-38.
[23] Zhang Y M, Gai J Y, Yang Y H. The EIM algorithm in the joint segregation analysis of quantitative traits. Genet Res, 2003, 81: 157-163.
doi: 10.1017/S0016672303006141
[24] Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr, 1974, 19: 716-723.
doi: 10.1109/TAC.1974.1100705
[25] Bernard R L. Two genes affecting stem termination in soybeans. Crop Sci, 1972, 12: 235-239.
doi: 10.2135/cropsci1972.0011183X001200020028x
[26] Wang J, Podlich D W, Cooper M, DeLacy I H. Power of the joint segregation analysis method for testing mixed major-gene and polygene inheritance models of quantitative traits. Theor Appl Genet, 2001, 103: 804-816.
doi: 10.1007/s001220100628
[27] Wen Y J, Zhang Y W, Zhang J, Feng J Y, Zhang Y M. The improved FASTmrEMMA and GCIM algorithms for genome-wide association and linkage studies in large mapping populations. Crop J, 2020, 8: 723-732.
doi: 10.1016/j.cj.2020.04.008
[1] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[2] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[3] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[4] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[5] WANG Ya-Liang, ZHU De-Feng, ZHANG Yu-Ping, CHEN Ruo-Xia, XIANG Jing, CHEN Hui-Zhe, CHEN Jiang-Hua, WANG Feng. Analysis on the plant growth and yield formation of double cropping late season hybrid rice in machine transplanting with long seedling age by precision drill sowing [J]. Acta Agronomica Sinica, 2022, 48(1): 215-225.
[6] LI Zhen-Hua, WANG Xian-Ya, LIU Yi-Ling, ZHAO Jie-Hong. NtPHYB1 interacts with light and temperature signal to regulate seed germination in Nicotiana tabacum L. [J]. Acta Agronomica Sinica, 2022, 48(1): 99-107.
[7] FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539.
[8] CHEN Can, NONG Bao-Xuan, XIA Xiu-Zhong, ZHANG Zong-Qiong, ZENG Yu, FENG Rui, GUO Hui, DENG Guo-Fu, LI Dan-Ting, YANG Xing-Hai. Genome-wide association study of blast resistance loci in the core germplasm of rice landraces from Guangxi [J]. Acta Agronomica Sinica, 2021, 47(6): 1114-1123.
[9] LI Qian, Nadil Shah, ZHOU Yuan-Wei, HOU Zhao-Ke, GONG Jian-Fang, LIU Jue, SHANG Zheng-Wei, ZHANG Lei, ZHAN Zong-Xiang, CHANG Hai-Bin, FU Ting-Dong, PIAO Zhong-Yun, ZHANG Chun-Yu. Breeding of a novel clubroot disease-resistant Brassica napus variety Huayouza 62R [J]. Acta Agronomica Sinica, 2021, 47(2): 210-223.
[10] ZHANG Huan, LUO Huai-Yong, LI Wei-Tao, GUO Jian-Bin, CHEN Wei-Gang, ZHOU Xiao-Jing, HUANG Li, LIU Nian, YAN Li-Ying, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Genome-wide identification of peanut resistance genes and their response to Ralstonia solanacearum infection [J]. Acta Agronomica Sinica, 2021, 47(12): 2314-2323.
[11] LYU Guo-Feng, BIE Tong-De, WANG Hui, ZHAO Ren-Hui, FAN Jin-Ping, ZHANG Bo-Qiao, WU Su-Lan, WANG Ling, WANG Zun-Jie, GAO De-Rong. Evaluation and molecular detection of three major diseases resistance of new bred wheat varieties (lines) from the lower reaches of the Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(12): 2335-2347.
[12] JING Xia, ZOU Qin, BAI Zong-Fan, HUANG Wen-Jiang. Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data [J]. Acta Agronomica Sinica, 2021, 47(11): 2067-2079.
[13] SUN Zhi-Guang, WANG Bao-Xiang, ZHOU Zhen-Ling, FANG Lei, CHI Ming, LI Jing-Fang, LIU Jin-Bo, Bello Babatunde Kazeem, XU Da-Yong. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(1): 61-70.
[14] GUO Qing-Yun, KUAI Jie, WANG Bo, LIU Fang, ZHANG Chun-Yu, LI Gen-Ze, ZHANG Yun-Yun, FU Ting-Dong, ZHOU Guang-Sheng. Effect of mixed-sowing of near-isogenic lines on the clubroot disease controlling efficiency in rapeseed [J]. Acta Agronomica Sinica, 2020, 46(9): 1408-1415.
[15] DUAN Can-Xing,DONG Huai-Yu,LI Xiao,LI Hong,LI Chun-Hui,SUN Su-Li,ZHU Zhen-Dong,WANG Xiao-Ming. A large-scale screening of maize germplasm for resistance to multiple diseases in multi-plot demonstration for several years under natural condition [J]. Acta Agronomica Sinica, 2020, 46(8): 1135-1145.
Full text



No Suggested Reading articles found!