Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (2): 280-291.doi: 10.3724/SP.J.1006.2022.14046

• REVIEWS • Previous Articles     Next Articles

Advances of QTL mapping for seed size related traits in peanut

HUANG Li*(), CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang   

  1. Oil Crops Research Institute, Chinese Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2021-01-28 Accepted:2021-07-29 Online:2022-02-12 Published:2021-12-07
  • Contact: HUANG Li E-mail:huangli5100@126.com
  • Supported by:
    This study was supported by the China Agriculture Research System (Peanut)(CARS-13);the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2013-OCRI)


Peanut is an important oil and economic crop in China. Currently, the domestic production of peanut remains far below the needs of consumers. Thus, further improving the yield per unit area is a crucial approach to meet the rising market demand. Seed size related traits are important agronomic traits in peanut, fundamentally contributing to improving yield per unit area. This review summarized the research progress on the regulatory pathways of seed size in plants, molecular markers, genetic linkage map construction, and QTL mapping of seed size related traits in peanut. We discussed the frontline challenges and opportunities for the coming researches of peanut seed related traits and the perspectives of yield improvement in peanut.

Key words: peanut, seed size, quantitative trait locus (QTLs), linkage mapping, association mapping

Fig. 1

Regulatory pathways and key genes of seed size in plants This figure is modified from that of Hussain et al. [28]"

Table 1

Summary of genetic linkage map in peanut"

Cross combination
Population size
Marker type
Loci mapped
LGs number
Total map distance (cM)
TAG 24 × ICGV 86031 318 RILs SSR 135 22 1270.5 Varshney et al. 2009 [60]
318 RILs SSR 191 22 1785.4 Ravi et al. 2011 [61]
TAG 24 × GPBD 4 268 RILs SSR 56 14 462.2 Khedikar et al. 2010 [62]
266 RILs SSR 188 20 1922.4 Sujay et al. 2012 [63]
TG 26 × GPBD 4 146 RILs SSR 181 21 1963.0 Sujay et al. 2012 [63]
ICGS 44 × ICGS 76 188 RILs SSR 82 15 831.4 Gautami et al. 2012 [64]
ICGS 76 × GSMG 84-1 177 RILs SSR 119 20 2208.2 Gautami et al. 2012 [64]
Satonoka × Kintoki 94 F2 SSR, TE 1114 21 2166.4 Shirasawa et al. 2012 [65]
Nakateyutaka × YI-0311 186 F2 SSR, TE 326 20 1332.9 Shirasawa et al. 2012 [65]
SunOleic 97R × NC94022 352 RILs SSR, CAPs 172 22 920.7 Qin et al. 2012 [66]
352 RILs SSR, CAPs 206 20 1780.6 Pandey et al. 2014 [67]
352 RILs SSR 248 21 1425.9 Khera et al. 2016 [68]
Tifrunner × GT-C20 94 F2 SSR 318 21 1674.4 Wang et al. 2012 [33]
248 RILs SSR, CAPs 239 26 1213.4 Qin et al. 2012 [66]
248 RILs SSR 418 20 1935.4 Pandey et al. 2017 [69]
91 RILs SNP 2156 20 3120 Agarwal et al. 2018 [70]
中花5号 × ICGV 86699 Zhonghua 5 × ICGV 86699 166 RILs SNP, SSR 1685 20 1446.7 Zhou et al. 2014 [50]
中花10号 × ICG 12625 Zhonghua 10 × ICG 12625 232 F2 SSR 470 20 1877.3 Huang et al. 2015 [71]
140 RILs SSR, TE 1219 20 2038.8 Huang et al. 2016 [72]
富川大花生× ICG 6375 Fuchuandahuasheng × ICG 6375 218 F2 SSR 347 22 1675.6 Chen et al. 2016 [73]
188 RILs SSR 609 20 1557.5 Chen et al. 2017 [74]
徐花13 ×中花6号 Xuhua 13 ×Zhonghua 6 282 F2 SSR 228 22 1337.7 Chen et al. 2016 [73]
186 RILs SNP 2595 20 2465.6 Liu et al. 2020 [55]
ICGV 07368 × ICGV 06420 184 F2 SSR, DArT 854 20 3525.8 Shasidhar et al. 2017 [75]
ICGV 06420 × SunOleic 95R 179 F2 DArT, DArTseq 1435 20 1869.2 Shasidhar et al. 2017 [75]
远杂9102 ×徐州68-4 Yuanza 9102 × Xuzhou 68-4 195 RILs SSR 830 20 1386.2 Luo et al. 2017 [38]
188 RILs SNP 2187 20 1566.1 Wang et al. 2018 [52]
Huayu 28 × P76 146 RILs SNP, SSR 2334 20 2586.4 Hu et al. 2018 [53]
Florida-07 × GP-NC WS 16 192 RILs SNP 2753 20 3695.4 Han et al. 2018 [76]
ZH16 × sd-H1 242 RILs SNP 2636 20 2098.1 Wang et al. 2018 [51]
Huayu 36 × 6-13 181 RILs SNP, SSR 3866 20 1266.8 Zhang et al. 2019 [54]
79266 × D893 151 RILs SSR 231 23 905.2 Li et al. 2019 [77]
TG37A × NRCG-CS85 270 RILs SNP 585 20 2430.0 Modia et al. 2019 [78]
Xinhuixiaoli × Yueyou 92 314 RILs SNP 5022 20 2231.3 Khan et al. 2020 [56]
Zheng 8903 × Yuhua 4 212 RILs SNP 3634 20 1817.9 Liu et al. 2020 [79]

Table 2

Summary of QTL for seed size related traits in peanut"

Cross combination
QTLs number
R2 (%)
Satonoka × Kintoki 94 F2 SSR 籽仁重 Seed weight 1 LG08.2 19.10 Shirasawa et al. 2012 [65]
中花10号 × ICG 12625 232 F2:3 SSR 种子长 Seed length 3 A3, B2, B3 9.86-10.48 Huang et al. 2015 [71]
Zhonghua 10 × IGG 12625 种子宽 Seed width 4 A2, A3, A7 6.39-12.20 Huang et al. 2015 [71]
百仁重 Hundred seed weight 3 A8, B2, B3 1.69-17.88 Huang et al. 2015 [71]
富川大花生× ICG 6375 188 RILs SSR 种子长 Seed length 12 A5, A7, A10, B4, B6, B7 5.44-13.20 Chen et al. 2017 [74]
Fuchuandahuasheng × ICG 6375 种子宽 Seed width 10 A3, A8, A10, B1, B2, B6 6.00-12.80 Chen et al. 2017 [74]
长宽比 Length to width ratio 9 A2, A3, A7, B2, B4, B6, B7 5.50-11.80 Chen et al. 2017 [74]
百仁重 Hundred seed weight 9 A2, A7, B4, B6, B8 5.20-10.80 Chen et al. 2017 [74]
ZH16 × sd-H1 242 RILs SNP 种子长 Seed length 12 A3, A4, A6, B6, B7, B8 4.03-18.21 Wang et al. 2018 [51]
种子宽 Seed width 4 B7 15.06-18.22 Wang et al. 2018 [51]
长宽比 Length to width ratio 3 B2, B6 4.50-15.41 Wang et al. 2018 [51]
百仁重 Hundred seed weight 6 A3, B6, B7, B8 5.17-17.95 Wang et al. 2018 [51]
中花16 × J11 188 RILs SSR 种子长 Seed length 18 A5, B6 3.3-33.0 曾新颖等2019 [80] Zeng et al. 2019 [80]
Zhonghua 16× J11 种子宽 Seed width 16 A9 B6 4.08-14.27 曾新颖等2019 [80] Zeng et al. 2019 [80]
长宽比 Length to width ratio 18 A2, A5 3.23-20.30 曾新颖等2019 [80] Zeng et al. 2019 [80]
百仁重 Hundred seed weight 14 A5, B6 3.43-23.54 曾新颖等2019 [80] Zeng et al. 2019 [80]
Huayu 36 × 6-13 181 RILs SNP 种子长 Seed length 10 A2, A5, A7, A9, A10 0.74-61.74 Zhang et al. 2019 [54]
种子宽 Seed width 5 A5, B3, B6 12.12-21.58 Zhang et al. 2019 [54]
长宽比 Length to width ratio 8 A2, A3, A5, A9 4.47-83.23 Zhang et al. 2019 [54]
百仁重 Hundred seed weight 4 A2, B6 24.69-35.39 Zhang et al. 2019 [54]
VG 9514 × TAG 24 164 RILs SSR 百仁重 Hundred seed weight 9 B3, B7, B8 6.71-23.88 Mondal et al. 2019 [81]
[1] 廖伯寿. 我国花生生产发展现状与潜力分析. 中国油料作物学报, 2020,42:161-166.
Liao B S. A review on progress and prospects of peanut industry in China. Chin J Oil Crop Sci, 2020,42:161-166 (in Chinese with English abstract).
[2] 万书波, 张智猛, 郭峰, 成波, 杨吉顺, 李尚霞. 花生优质高效生产农机农艺融合的必要性与发展趋势. 花生学报, 2013,42(4):1-6.
Wan S B, Zhang Z M, Guo F, Cheng B, Yang J S, Li S X. The necessity and trend of the combination of agricultural machinery and agronomy in peanut production. J Peanut Sci, 2013,42(4):1-6 (in Chinese with English abstract).
[3] Mizukami Y, Fischer R L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA, 2000,97:942-947.
[4] Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol, 2003,131:1661-1670.
[5] Haig D. Kin conflict in seed development: an interdependent but fractious collective. Annu Rev Cell Dev Biol, 2013,29:189-211.
[6] Bleckmann A, Alter S, Dresselhaus T. The beginning of a seed: regulatory mechanisms of double fertilization. Front Plant Sci, 2014,5:452.
[7] Horiguchi G, Ferjani A, Fujikura U, Tsukaya H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res, 2006,119:37-42.
[8] Breuninger H, Lenhard M. Control of tissue and organ growth in plants. Curr Top Dev Biol, 2010,91:185.
[9] Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010,107:19579-19584.
[10] Song X, Huang W, Shi M, Zhu M, Lin H. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
[11] Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet, 2008,40:1023-1028.
[12] Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269.
[13] Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shang-Guan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y Q, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016,48:447-456.
[14] Santner A, Calderonvillalobos L, Estelle M. Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol, 2009,5:301-307.
[15] Okushima Y, Mitina I, Quach H L, Theologis A. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J, 2005,43:29-46.
[16] Schruff M C, Spielman M, Tiwari S, Adams S, Fenby N, Scott R J. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006,133:251-261.
[17] Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA, 2015,112:5123-5132.
[18] Zhu J, Sae-Seaw J, Wang Z. Brassinosteroid signalling. Development, 2013,140:1615-1620.
[19] Riefler M, Novak O, Strnad M, Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 2006,18:40-54.
[20] Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster G T S, Genschik P. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol, 2009,19:1188-1193.
[21] Silverstone A L, Jung H S, Dill A, Kawaide H, Kamiya Y, Sun T. Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell, 2001,13:1555-1565.
[22] Luo M, Dennis E S, Berger F, Peacock W J, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat(LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA, 2005,102:17531-17536.
[23] Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, Ni M. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell, 2009,21:106-117.
[24] Li Y, Zheng L, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev, 2008,22:1331-1336.
[25] Xia T, Li N, Dumenil J, Li J, Kamenski A, Bevan M W, Gao F, Li Y. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell, 2013,25:3347-3359.
[26] Zhang Y, Du L, Xu R, Cui R, Hao J, Sun C, Li Y. Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana. Plant Cell, 2015,27:620-632.
[27] Du L, Li N, Chen L, Xu Y, Li Y, Zhang Y, Li C, Li Y. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. Plant Cell, 2014,26:665-677.
[28] Hussain Q, Shi J, Scheben A, Zhan J, Wang X, Liu G, Yan G, King G J, Edwards D, Wang H. Genetic and signalling pathways of dry fruit size: targets for genome editing-based crop improvement. Plant Biotechnol J, 2020,18:1124-1140.
[29] Kochert G, Halward T, Branch W D, Simpson C E. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet, 1991,81:565-570.
[30] Hopkins M, Casa A, Wang T, Mitchell S, Dean R, Kochert G D, Kresovich S. Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci, 1999,39:1243-1247.
[31] He G, Meng R, Newman M, Gao G, Pittman R, Prakash C S. Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2003,3:3.
[32] Naito Y, Suzuki S, Iwata Y, Kuboyama T. Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci, 2008,58:293-300.
[33] Wang H, Penmetsa R V, Yuan M, Gong L, Zhao Y, Guo B, Farmer A D, Rosen B D, Gao J, Isobe S, Bertioli D J, Varshney R K, Cook D R, He G. Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2012,12:10.
[34] Proite K, Leal-Bertioli S C M, Bertioli D J, Moretzsohn M C, Da Silva F R, Martins N F, Guimaraes P M. ESTs from a wild Arachis species for gene discovery and marker development. BMC Plant Biol, 2007,7:7.
[35] Koilkonda P, Sato S, Tabata S, Shirasawa K, Hirakawa H, Sakai H, Sasamoto S, Watanabe A, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Kohara M, Suzuki S, Hasegawa M, Kiyoshima H, Isobe S. Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp. Mol Breed, 2012,30:125-138.
[36] Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang Q, Li Y. De novo assembly and characterization of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics, 2012,13:90.
[37] Huang L, Wu B, Zhao J, Li H, Chen W, Zheng Y, Ren X, Chen Y, Zhou X, Lei Y, Liao B, Jiang H. Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species. PLoS One, 2016,11:e0156633.
[38] Luo H, Xu Z, Li Z, Li X, Lyu J, Ren X, Huang L, Zhou X, Chen Y, Yu J, Chen W, Lei Y, Liao B, Jiang H. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2017,130:1635-1648.
[39] Lu Q, Hong Y, Li S, Liu H, Li H, Zhang J, Lan H, Liu H, Li X, Wen S, Zhou G, Varshney R K, Jiang H, Chen X, Liang X. Genome-wide identification of microsatellite markers from cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2019,20:799.
[40] Pandey M K, Agarwal G, Kale S M, Clevenger J, Nayak S N, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya H D, Vishwakarma M K, Leal-Bertioli S, Liang X, Bertioli D J, Guo B, Jackson S A, Ozias-Akins P, Varshiney R K. Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep, 2017,7:40577.
[41] Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnol J, 2020,18:1457-1471.
[42] Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C, Kozik A, Kim K D, Burow M D, Varshney R K, Wang X, Zhang X, Barkley N, Guimarães P M, Isobe S, Guo B, Liao B, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C, Xun X, Jackson S A, Michelmore R, Ozias-Akins P. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016,48:438-446.
[43] Chen X, Li H, Pandey M K, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H, Guo H, Khan A W, Zhu F, Zhang X, Pan L, Pierce G J, Zhou G, Krishnamohan K A, Chen M, Zhong N, Agarwal G, Li S, Chitikineni A, Zhang G Q, Sharma S, Chen N, Liu H, Janila P, Li S, Wang M, Wang T, Sun J, Li X, Li C, Wang M, Yu L, Wen S, Singh S, Yang Z, Zhao J, Zhang C, Yu Y, Bi J, Zhang X, Liu Z J, Paterson A H, Wang S, Liang X, Varshney R K, Yu S. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis and allergens. Proc Natl Acad Sci USA, 2016,113:6785-6790.
[44] Lu Q, Li H, Hong Y, Zhang G, Wen S, Li X, Zhou G, Li S, Liu H, Liu H, Liu Z, Varshney R K, Chen X, Liang X. Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Front Plant Sci, 2018,9:604.
[45] Yin D, Ji C, Ma X, Li H, Zhang W, Li S, Liu F, Zhao K, Li F, Li K, Ning L, He J, Wang Y, Zhao F, Xie Y, Zheng H, Zhang X, Zhang Y, Zhang J. Genome of an allotetraploid wild peanut Arachis monticola: a de novo assembly. Gigascience, 2018, 7: giy066.
[46] Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, El Baidouri M, Guo B, Huang W, Kim K D, Korani W, Lanciano S, Lui C G, Mirouze M, Moretzsohn M C, Pham M, Shin J H, Shirasawa K, Sinharoy S, Sreedasyam A, Weeks N T, Zhang X, Zheng Z, Sun Z, Froenicke L, Aiden E L, Michelmore R, Varshney R K, Holbrook C C, Cannon E K S, Scheffler B E, Grimwood J, Ozias-Akins P, Cannon S B, Jackson S A, Schmutz J. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet, 2019,51:877-884.
[47] Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan H, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan S A, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R, Peng Z, Wang S, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C, He G, Zhao Y, Wang C, Kavikishor P B, Pan R L, Paterson A H, Wang X, Ming R, Varshney R K. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet, 2019,51:865-876.
[48] Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey M K, Zhang Z, Zhou G, Yu J, Zhang G, Yuan J, Li X, Wen S, Meng F, Yu S, Wang X, Siddique K H M, Liu ZJ, Paterson A H, Varshney R K, Liang X. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant, 2019,12:920-934.
[49] Zheng Z, Sun Z, Fang Y, Qi F, Liu H, Miao L, Du P, Shi L, Gao W, Han S, Dong W, Tang F, Cheng F, Hu H, Huang B, Zhang X. Genetic diversity, population structure, and botanical variety of 320 global peanut accessions revealed through tunable genotyping-by-sequencing. Sci Rep, 2018,8:14500.
[50] Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B, Lei Y, Yan L, Jiang H. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics, 2014,15:351.
[51] Wang Z, Huai D, Zhang Z, Cheng K, Kang Y, Wan L, Yan L, Jiang H, Lei Y, Liao B. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018,9:827.
[52] Wang L, Zhou X, Ren X, Huang L, Luo H, Chen Y, Chen W, Liu N, Liao B, Lei Y, Yan L, Shen J, Jiang H. A major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population. Front Genet, 2018,9:652.
[53] Hu X, Zhang S, Miao H, Cui F, Shen Y, Yang W, Xu T, Chen N, Chi X, Zhang Z, Chen J. High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep, 2018,8:5479.
[54] Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biol, 2019,19:537.
[55] Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, Lei Y, Huang Y, Liao B, Jiang H. High resolution mapping of a major and consensus quantitative trait locus for oil content to a ~0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet, 2020,133:37-49.
[56] Khan S A, Chen H, Deng Y, Chen Y, Zhang C, Cai T, Ali N, Mamadou G, Xie D, Guo B, Varshney R K, Zhuang W. High- density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut(Arachis hypogaea). Theor Appl Genet, 2020,133:2239-2257.
[57] Zhou X, Xia Y, Liao J, Liu K, Li Q, Dong Y, Ren X, Chen Y, Huang L, Liao B, Lei Y, Yan L, Jiang H. Quantitative trait locus analysis of late leaf spot resistance and plant-type-related traits in cultivated peanut (Arachis hypogaea L.) under multi-environments. PLoS One, 2016,11:e0166873.
[58] Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, 2010,61:421-442.
[59] Burow M D, Simpson C E, Starr J L, Paterson A H. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics, 2001,159:823-837.
[60] Varshney R K, Bertioli D J, Moretzsohn M C, Vadea V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 2009,118:729-739.
[61] Ravi K, Vadez V, Isobe S, Mir R R, Guo Y, Nigam S N, Gowda M V C, Radhakrishnan T, Bertioli D J, Knapp S J, Varshney R K. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2011,122:1119-1132.
[62] Khedikar Y P, Gowda M V, Sarvamangala C, Patgar K V, Upadhyaya H D, Varshney R K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet, 2010,121:971-984.
[63] Sujay V, Gowda M, Pandey M, Bhat R, Khedikar Y, Nadaf H, Gautami B, Sarvamangala C, Lingaraju S, Radhakrishan T. Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012,30:773-788.
[64] Gautami B, Pandey M, Vadez V, Nigam S, Ratnakumar P, Krishnamurthy L, Radhakrishnan T, Gowda M V C, Narasu M L, Hoisington D A, Knapp S J, Varshney R K. Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed, 2012,30:757-772.
[65] Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Takahashi C, Tsuruoka H, Wada T, Isobe S. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012,12:80.
[66] Qin H, Feng S, Chen C, Guo Y, Knapp S, Culbreath A, He G, Wang M L, Zhang X, Holbrook C C, Ozias-Akins P, Guo B. An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet, 2012,124:653-664.
[67] Pandey M K, Wang M L, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley N A, Wang J, Holbrook C C, Culbreath A K, Varshney R K, Guo B. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut(Arachis hypogaea L.). BMC Genet, 2014,15:133.
[68] Khera P, Pandey M K, Wang H, Feng S, Qiao L, Culbreath A K, Kale S, Wang J, Holbrook C C, Zhuang W, Varshney R K, Guo B. Mapping quantitative trait loci of resistance to tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS One, 2016,11:e0158452.
[69] Pandey M K, Wang H, Khera P, Vishwakarma M K, Kale S M, Culbreath A K, Holbrook C C, Wang X, Varshney R K, Guo B. Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci, 2017,8:25.
[70] Agarwal G, Clevenger J, Pandey M K, Wang H, Shasidhar Y, Chu Y, Fountain J C, Choudhary D, Culbreath A K, Liu X, Huang G, Wang X, Deshmukh R, Holbrook C C, Bertioli D J, Ozias-Akins P, Jackson S A, Varshney R K, Guo B. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnol J, 2018,16:1954-1967.
[71] Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015,128:1103-1115.
[72] Huang L, Ren X, Wu B, Li X, Chen W, Zhou X, Chen Y, Pandey M K, Jiao Y, Luo H, Lei Y, Varsheney R K, Liao B, Jiang H. Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep, 2016,6:39478.
[73] Chen W, Jiao Y, Cheng L, Huang L, Liao B, Tang M, Ren X, Zhou X, Chen Y, Jiang H. Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet, 2016,17:25.
[74] Chen Y, Ren X, Zheng Y, Zhou X, Huang L, Yan L, Jiao Y, Chen W, Huang S, Wan L, Lei Y, Liao B, Huai D, Wei W, Jiang H. Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut ( Arachis hypogaea L.). Mol Breed, 2017,37:17.
[75] Shasidhar Y, Vishwakarma M K, Pandey M K, Janila P, Variath M T, Manohar S S, Nigam S N, Guo B, Varshney R K. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci, 2017,8:794.
[76] Han S, Yuan M, Clevenger J P, Li C, Hagan A, Zhang X, Chen C, He G. A SNP-based linkage map revealed QTLs for resistance to early and late leaf spot diseases in peanut ( Arachis hypogaea L.). Front Plant Sci, 2018,9:1012.
[77] Li L, Yang X, Cui S, Meng X, Mu G, Hou M, He M, Zhang H, Liu L, Chen C Y. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Front Plant Sci, 2019,10:745.
[78] Modia S M, Joshi B, Gangurde S S, Thirumalaisamy P P, Mishra G P, Narandrakumar D, Soni P, Rathnakumar A L, Dobaria J R, Sangh C, Chitikineni A, Chanda S V, Pandey M K, Varshney R K, Thankappan R. Genotyping by sequencing based genetic mapping reveals large number of epistatic interactions for stem rot resistance in groundnut. Theor Appl Genet, 2019,132:1001-1016.
[79] Liu H, Sun Z, Zhang X, Qin L, Qi F, Wang Z, Du P, Xu J, Zhang Z, Han S, Li S, Gao M, Zhang L, Cheng Y, Zheng Z, Huang B, Dong W. QTL mapping of web blotch resistance in peanut by high-throughput genome-wide sequencing. BMC Plant Biol, 2020,20:249.
[80] 曾新颖, 郭建斌, 赵姣姣, 陈伟刚, 邱西克, 黄莉, 罗怀勇, 周小静, 姜慧芳, 黄家权. 花生籽仁大小相关性状QTL定位. 作物学报, 2019,45:1200-1207.
Zeng X Y, Guo J B, Zhao J J, Chen W G, Qiu X K, Huang L, Luo H Y, Zhou X J, Jiang H F, Huang J Q. Identification of QTL related to seed size in peanut (Arachis hypogaea L.). Acta Agron Sin, 2019,45:1200-1207 (in Chinese with English abstract).
[81] Mondal S, Badigannavar A M. Identification of major consensus QTLs for seed size and minor QTLs for pod traits in cultivated groundnut ( Arachis hypogaea L.). 3 Biotech, 2019,9:347.
[82] Holbrook C C, Anderson W F, Pittman R N. Selection of a core collection from the US germplasm collection of peanut. Crop Sci, 1993,33:859-861.
[83] Upadhyaya H D, Ortiz R, Bramel P J, Singh S. Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Resour Crop Evol, 2003,50:139-148.
[84] 姜慧芳, 任小平, 廖伯寿, 黄家权, 陈本银. 中国花生核心种质的建立. 武汉植物学研究, 2007,25:289-293.
Jiang H F, Ren X P, Liao B S, Huang J Q, Chen B Y. Establishment of peanut core collection in China. J Wuhan Bot Res, 2007,25:289-293 (in Chinese with English abstract).
[85] Holbrook C C, Dong W. Development and evaluation of a mini core collection for the US peanut germplasm collection. Crop Sci, 2005,45:1540-1544.
[86] Upadhyaya H D, Bramel P J, Ortiz R, Sube S. Developing a mini core of peanut for utilization of genetic resources. Crop Sci, 2002,42:2150-2156.
[87] 姜慧芳, 任小平, 黄家权, 廖伯寿, 雷永. 中国花生小核心种质的建立及高油酸基因源的发掘. 中国油料作物学报, 2008,30:294-299.
Jiang H F, Ren X P, Huang J Q, Liao B S, Lei Y. Establishment of peanut mini core collection in China and exploration of new resource with high oleat. Chin J Oil Crop Sci, 2008,30:294-299 (in Chinese with English abstract).
[88] Jiang H, Ren X, Chen Y, Huang L, Zhou X, Huang J, Froenicke L, Yu J, Guo B, Liao B. Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum. Plant Genet Resour, 2013,11:77-83.
[89] Pandey M K, Upadhyaya H D, Rathore A, Vadez V, Sheshshayee M, Sriswathi M, Govil M, Kumar A, Gowda M V C, Sharma S, Hamidou F, Kumar V A, Khera P, Bhat R S, Khan A W, Singh S, Li H, Monyo E, Nadaf H L, Mukri G, Jackson S A, Guo B, Liang X, Varshney R K. Genomewide association studies for 50 agronomic traits in peanut using the ‘Reference Set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One, 2014,9:e105228.
[90] Wang J, Yan C, Li Y, Li C, Zhao X, Yuan C, Sun Q, Shan S. GWAS discovery of candidate genes for yield-related traits in peanut and support from earlier QTL mapping studies. Genes (Basel), 2019,10:803.
[91] Zhang X, Zhu S, Zhang K, Wan Y, Liu F, Sun Q, Li Y. Establishment and evaluation of a peanut association panel and analysis of key nutritional traits. J Integr Plant Biol, 2018,60:195-215.
[92] Yu J, Holland J B, McMullen M D, Buckler E S. Genetic design and statistical power of nested association mapping in maize. Genetics, 2008,178:539-551.
[93] Cavanagh C, Morell M, Mackay I, Powell W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol, 2008,11:215-221.
[94] Holbrook C C, Isleib T G, Ozias-Akins P, Chu Y, Knapp S J, Tillman B, Guo B, Gill R, Burow M D. Development and phenotyping of recombinant inbred line (RIL) populations for peanut (Arachis hypogaea). Peanut Sci, 2013,40:89-94.
[95] Chu Y, Holbrook C C, Isleib T G, Burow M, Culbreath A K, Tillman V, Chen J, Clevenger J, Ozias-Akins P. Phenotyping and genotyping parents of sixteen recombinant inbred peanut populations. Peanut Sci, 2018,45:1-11.
[96] Zhao J, Huang L, Ren X, Pandey M K, Wu B, Chen Y, Zhou X, Chen W, Xia Y, Li Z, Luo H, Lei Y, Varshney R K, Liao B, Jiang H. Genetic variation and association mapping of seed- related traits in cultivated peanut (Arachis hypogaea L.) using single-locus simple sequence repeat markers. Front Plant Sci, 2017,8:02105.
[97] Pandey M K, Wang H, Khera P, Vishwakarma M K, Kale S M, Culbreath A K, Holbrook C C, Wang X, Varshney R K, Guo B. Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front Plant Sci, 2017,8:25.
[98] Kumar R, Janila P, Vishwakarma M K, Khan A W, Manohar S S, Gangurde S S, Variath M T, Shasidhar Y, Pandey M K, Varshney R K. Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. Plant Biotechnol J, 2020,18:992-1003.
[1] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[2] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[3] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
[4] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[5] WANG Jian-Guo, ZHANG Jia-Lei, GUO Feng, TANG Zhao-Hui, YANG Sha, PENG Zhen-Ying, MENG Jing-Jing, CUI Li, LI Xin-Guo, WAN Shu-Bo. Effects of interaction between calcium and nitrogen fertilizers on dry matter, nitrogen accumulation and distribution, and yield in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1666-1679.
[6] SHI Lei, MIAO Li-Juan, HUANG Bing-Yan, GAO Wei, ZHANG Zong-Xin, QI Fei-Yan, LIU Juan, DONG Wen-Zhao, ZHANG Xin-You. Characterization of the promoter and 5'-UTR intron in AhFAD2-1 genes from peanut and their responses to cold stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1703-1711.
[7] GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, WANG Ying, PAN Xiao-Yi, LAI Hua-Jiang, LI Xiang-Dong, YANG Dong-Qing. Source-sink characteristics and classification of peanut major cultivars in North China [J]. Acta Agronomica Sinica, 2021, 47(9): 1712-1723.
[8] ZHANG He, JIANG Chun-Ji, YIN Dong-Mei, DONG Jia-Le, REN Jing-Yao, ZHAO Xin-Hua, ZHONG Chao, WANG Xiao-Guang, YU Hai-Qiu. Establishment of comprehensive evaluation system for cold tolerance and screening of cold-tolerance germplasm in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1753-1767.
[9] XUE Xiao-Meng, WU JIE, WANG Xin, BAI Dong-Mei, HU Mei-Ling, YAN Li-Ying, CHEN Yu-Ning, KANG Yan-Ping, WANG Zhi-Hui, HUAI Dong-Xin, LEI Yong, LIAO Bo-Shou. Effects of cold stress on germination in peanut cultivars with normal and high content of oleic acid [J]. Acta Agronomica Sinica, 2021, 47(9): 1768-1778.
[10] HAO Xi, CUI Ya-Nan, ZHANG Jun, LIU Juan, ZANG Xiu-Wang, GAO Wei, LIU Bing, DONG Wen-Zhao, TANG Feng-Shou. Effects of hydrogen peroxide soaking on germination and physiological metabolism of seeds in peanut [J]. Acta Agronomica Sinica, 2021, 47(9): 1834-1840.
[11] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[12] DAI Liang-Xiang, XU Yang, ZHANG Guan-Chu, SHI Xiao-Long, QIN Fei-Fei, DING Hong, ZHANG Zhi-Meng. Response of rhizosphere bacterial community diversity to salt stress in peanut [J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592.
[13] HUANG Bing-Yan, SUN Zi-Qi, LIU Hua, FANG Yuan-Jin, SHI Lei, MIAO Li-Juan, ZHANG Mao-Ning, ZHANG Zhong-Xin, XU Jing, ZHANG Meng-Yuan, DONG Wen-Zhao, ZHANG Xin-You. Genetic analysis of fat content based on nested populations in peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1100-1108.
[14] XU Jing, PAN Li-Juan, LI Hao-Yuan, WANG Tong, CHEN Na, CHEN Ming-Na, WANG Mian, YU Shan-Lin, HOU Yan-Hua, CHI Xiao-Yuan. Expression pattern analysis of genes related to lipid synthesis in peanut [J]. Acta Agronomica Sinica, 2021, 47(6): 1124-1137.
[15] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
Full text



No Suggested Reading articles found!