Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (2): 267-279.doi: 10.3724/SP.J.1006.2022.14047

• REVIEWS •     Next Articles

Phylogeny of wild Setaria species and their utilization in foxtail millet breeding

ZHAO Mei-Cheng1,2(), DIAO Xian-Min2,*()   

  1. 1Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences/Hebei Province Key Laboratory for Water-Saving Agriculture, Shijiazhuang 050021, Heibei, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-02-02 Accepted:2021-05-17 Online:2022-02-12 Published:2021-05-24
  • Contact: DIAO Xian-Min E-mail:mczhao@sjziam.ac.cn;diaoxianmin@caas.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2019YFD1000700);This study was supported by the National Key Research and Development Program of China(2019YFD1000701);This study was supported by the National Key Research and Development Program of China(2018YFD1000706);This study was supported by the National Key Research and Development Program of China(2018YFD1000700);the China Agricultural Research System(CARS-06-13.5-A4);the National Natural Science Foundation of China(31871634);the Natural Science Foundation of Hebei Province(C2020503004)

Abstract:

Foxtail millet (Setaria italica) was domesticated from the wild ancestor, green foxtail (S. viridis), about ten thousand years ago in China. Foxtail millet belongs to Setaria genus, which includes about 125 species of panicoid grasses worldwide, and 15 species of them in China varied from diploid to octoploid. Currently, six genomes in the Setaria genus have been identified by GISH (genomic in situ hybridization). Molecular phylogenetic analyses show that the Setaria genus is polyphyletic, in line with the characteristic of diversified genomes. Phylogeny of Setaria genus reveal that foxtail millet is most closely related with green foxtail, and then S. fabrei and S. verticillata, and that A genome of S. italica/S. viridis appears to be closer to B genome of S. adhaeran and C genome of S. grisebachii than the other known genomes. For utilization of wild species resources, foxtail millet breeders have successfully introduced the naturally mutated herbicide-resistant genes from green foxtail into cultivars, resulting in the herbicide-resistant foxtail millet variety. Here, we review the recent advances of wild species of foxtail millet in species classification, genome constitution and phylogenetic relationships, and highlight the utility of the wild species resources for breeding and domestication of foxtail millet. We also discuss the potentials of the wild Setaria species in discovery of domestication genes and breeding in foxtail millet in the future.

Key words: foxtail millet, wild species, phylogenetic analysis, breeding

Table 1

Geographical distribution and chromosome number of Setaria species (Modified from Kellogg[19])"

物种名称
Species name
起源地
Origin
染色体数目
Chromosome number (2n)
S. adhaerens 亚洲 Asia 18
S. apiculata 澳大利亚 Australia 36
S. barbata 非洲 Africa 54, 56
S. faberi 南美洲 South America 36
S. flavida 澳大利亚 Australia 44, 54
S. geminata 非洲 Africa ND
S. grisebachii 北美洲和南美洲 North and South America 18
S. homonyma 非洲 Africa ND
S. italica 亚洲 Asia 18, 36
S. kagerensis 非洲 Africa 18
S. lachnea 南美洲 South America 36
S. leucopila 美国, 墨西哥, 南美洲 USA, Mexico, and South America 54, 68, 72
S. longiseta 非洲 Africa 36
S. macrostachya 北美洲和南美洲 North and South America 54, 72
S. magna 北美洲和南美洲 North and South America 36
S. nigrirostris 非洲 Africa 18, 36, 54
S. oblongata 阿根廷和玻利维亚 Argentina and Bolivia ND
S. palmifolia 亚洲和非洲 Asia and Africa 54, 36
S. pampeana 阿根廷 Argentina 50
S. pflanzii 南美洲 South America 36
S. plicata 亚洲 Asia ND
S. pumila 非洲和亚洲 Africa and Asia 36, 54
S. restioidea 非洲 Africa ND
S. rosengurtii 南美洲 South America ND
S. scabrifolia 南美洲 South America ND
S. sphacelata 非洲 Africa 18, 36, 54
S. sulcata 北美洲和南美洲 North and South America 18, 32, 36
S. tenacissima 北美洲和南美洲 North and South America 54, 36
S. vaginata 南美洲 South America 18
S. verticillata 欧亚大陆 Eurasia 36, 54
S. viridis 亚洲 Asia 18
S. vulpiseta 北美洲和南美洲 North and South America 36, 54

Table 2

Published genome constitutions of Setaria species"

种名
Species name
起源地
Origin
搜集号
Accession number
染色体倍数
Chromosome number
基因组构成
Genome constitutions
S. viridis 中国河北 Hebei, China N033 2n = 2x = 18 AA
S. viridis 俄罗斯 Russia 09005 2n = 2x = 18 AA
青9 Qing 9 中国河北 Hebei, China N011 2n = 2x = 18 BB
S. adhaerans 西班牙 Spain 02448 2n = 2x = 18 BB
S. adhaerans 美国夏威夷 Hawaii, USA 25001 2n = 2x = 18 BB
S. grisebachii 墨西哥 Mexico 03001 2n = 2x = 18 CC
S. queenslandica 澳大利亚 Australia PI316342 2n = 4x = 36 AAAA
S. lachnea 澳大利亚 Australia 11001 2n = 4x = 36 CCC’C’
S. verticillata 法国 France 08006 2n = 4x = 36 AABB
S. faberi 俄罗斯 Russia 02005 2n = 4x = 36 AABB
S. glauca 美国 USA 04004 2n = 4x = 36 X (DD)
S. glauca 日本 Japan 04002 2n = 8x = 72 X (DD)
S. plicata 中国昆明 Kunming, China 25001 2n = 4x = 36 X (EE)
S. palmifolia 中国昆明 Kunming, China 26001 2n = 6x = 54 X (EE)
S. arenaria 中国昆明 Kunming, China 27001 2n = 6x = 54 X (FF)

Fig. 1

Phylogenetic tree of Setaria species based on the knotted1 and 5S rDNA gene The capital alphabet following the species name indicates the different copies of each gene in the corresponding species, and six genomes (A-F) are identified and distinguished from each other."

Table 3

Identified naturally mutated herbicide-resistance Setaria species"

狗尾草种类
Species
发现年份
Year of the first identification
发现地点
Country
种植作物环境
Situation
抗除草剂种类
Active ingredients
除草剂作用位点
Site of action
S. viridis 1988 加拿大(曼尼托巴)
Canada (Manitoba)
大麦 Barley
小麦 Wheat
乙丁烯氟灵 Ethalfluralin
氟乐灵 Trifluralin
微管抑制剂
Microtubule assembly inhibitors
S. viridis 1991 加拿大(曼尼托巴)
Canada (Manitoba)
大麦 Barley
小麦 Wheat
禾草灵 Diclofop-methyl
拿扑净 Sethoxydim
肟草酮 Tralkoxydim
乙酰辅酶羧化酶抑制剂
Acetyl CoA carboxylase
S. viridis 1992 加拿大(曼尼托巴)
Canada (Manitoba)
大麦 Barley
油菜 Canola
禾草灵 Diclofop-methyl
拿扑净 Sethoxydim
肟草酮 Tralkoxydim
氟乐灵 Trifluralin
微管和乙酰辅酶羧化酶抑制剂
Microtubule assembly and acetyl CoA carboxylase inhibitor
S. viridis 2001 加拿大(安大略省)
Canada (Ontario)
玉米 Maize
大豆 Soybean
氟酮磺隆 Flucarbazone
咪唑乙烟酸 Imazethapyr
烟嘧磺隆 Nicosulfuron
嘧草硫醚 Pyrithiobac
乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. viridis 1982 法国 France 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. viridis 1987 西班牙 Spain 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. viridis 1989 美国(北达科他州)
USA (North Dakota)
向日葵 Sunflower
小麦 Wheat
氟乐灵 Trifluralin 微管抑制剂
Microtubule assembly inhibitors
S. viridis 1999 美国(威斯康星州)
USA (Wisconsin)
玉米 Maize
大豆 Soybean
甲氧咪草烟 Imazamox 乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. verticillata 1992 西班牙 Spain 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. faberi 2003 加拿大(安大略省)
Canada (Ontario)
大豆 Soybean 咪唑乙烟酸 Imazethapyr 乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. faberi 1987 西班牙 Spain 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. faberi 1984 美国(马里兰州)
USA (Maryland)
玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
S. faberi 1991 美国(威斯康星州)
USA (Wisconsin)
胡萝卜 Carrot
玉米 Maize
洋葱 Onion
氟禾草灵 Fluazifop-butyl
拿扑净 Sethoxydim
乙酰辅酶羧化酶抑制剂
Acetyl CoA carboxylase
S. faberi 1999 美国(威斯康星州)
USA (Wisconsin)
玉米 Maize
大豆 Soybean
咪唑乙烟酸 Imazethapyr
烟嘧磺隆 Nicosulfuron
乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. glauca 1997 美国(明尼苏达州)
USA (Minnesota)
大豆 Soybean 咪唑乙烟酸 Imazethapyr 乙酰乳酸合成酶抑制剂
Acetolactate synthase inhibitor
S. glauca 1981 法国 France 玉米 Maize 阿特拉津 Atrazine 光合作用光系统II抑制剂
Photosystem II inhibitor
[1] Diao X M, Jia G Q. Origin and domestication of foxtail millet. In: Doust A, Diao X, eds. Genetics and Genomics of Setaria. Berlin: Springer, 2017. pp 61-72.
[2] 刁现民. 禾谷类杂粮作物耐逆和栽培技术研究新进展. 中国农业科学, 2019,52:3943-3949.
Diao X M. Progresses in stress tolerance and field cultivation studies of orphan cereals in China. Sci Agric Sin, 2019,52:3943-3949 (in Chinese with English abstract).
[3] Diao X M, Schnable J, Bennetzen J L, Li J Y. Initiation of Setaria as a model plant. Front Agric Sci Eng, 2014,1:16-20.
[4] Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Eck J V. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010,22:2537-2544.
[5] Diao X M, Jia G Q. Foxtail millet germplasm and inheritance of morphological characteristics. In: Doust A, Diao X, eds. Genetics and Genomics of Setaria. Berlin: Springer, 2017. pp 73-92.
[6] Li C H, Pao W K, Li H W. Interspecific crosses in Setaria: II. Cytological studies of interspecific hybrids involving: 1, S. faberii and S. italica, and 2, a three way cross, F2 of S. italica × S. viridis and S. faberii. J Heredity, 1942,33:351-355.
[7] 高俊华, 毛丽萍, 王润奇. 谷子四体的细胞学和形态学研究. 作物学报, 2000,26:801-805.
Gao J H, Mao L P, Wang R Q. A study on the cytology and morphology of the tetrasomics in foxtail millet. Acta Agron Sin, 2000,26:801-805 (in Chinese with English abstract).
[8] Wang Y Q, Zhi H, Li W, Li H Q, Wang Y F, Huang Z J, Diao X M. A novel genome of C and the first autotetraploid species in the Setaria genus identified by genomic in situ hybridization. Genet Resour Crop Evol, 2009,56:843-850.
[9] Zhao M C, Zhi H, Doust A N, Li W, Wang Y F, Li H Q, Jia G Q, Wang Y Q, Zhang N, Diao X M. Novel genomes and genome constitutions identified by GISH and 5S rDNA and knotted1 genomic sequences in the genus Setaria. BMC Genomics, 2013,14:244.
[10] Benabdelmouna A, Shi Y, Abirached-Darmency M, Darmency H. Genomic in situ hybridization (GISH) discriminates between the A and the B genomes in diploid and tetraploid Setaria species. Genome, 2001,44:685-690.
[11] Benabdelmouna A, Abirached-Darmency M, Darmency H. Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor Appl Genet, 2001,103:668-677.
[12] Hubbard F T. A taxonomic study of Setaria and its immediate allies. Am J Bot, 1915,2:169-198.
[13] Dekker J. The evolutionary biology of the foxtail (Setaria) species-group. In: Inderjit, ed. Weed Biology and Management. Dordrecht: Kluwer Academic, 2004. pp 65-113.
[14] Rominger J M. Taxonomy of Setaria(Gramineae) in North America. Bull Torrey Bot Club, 1962,29:1-132.
[15] Pensiero J F. Las especies sudamericanas del género Setaria(Poaceae, Paniceae). Darwiniana, 1999,37:37-151 (in Spanish with English abstract).
[16] Morrone O, Aliscioni S A, Veldkamp J F, Pensiero J, Zuloaga F O, Kellogg E A. A revision of the old world species of Setaria. Syst Bot Monographs, 2014,96:1-160.
[17] Kellogg E A, Aliscioni S S, Morrone O, Pensiero J, Zuloaga F. A phylogeny of Setaria(Poaceae, Panicoideae, Paniceae) and related genera, based on the chloroplast gene ndhF. Int J Plant Sci, 2009,170:117-131.
[18] 郑殿升. 中国粮食作物的野生近缘植物及其保存概况. 中国野生植物资源, 2006,25(5):5-7.
Zheng D S. General situation of wild relatives of food crop and their conservation in China. Chin Wild Plant Resour, 2006,25(5):5-7 (in Chinese with English abstract).
[19] Kellogg E A. Evolution of Setaria. In: Doust A, Diao X, eds. Genetics and Genomics of Setaria. Berlin: Springer, 2017. pp 3-27.
[20] Dekker J. The foxtail (Setaria) species-group. Weed Sci, 2003,51:641-656.
[21] Doust A N, Penly A M, Jacobs S W L, Kellogg E A. Congruence, conflict, and polyploidization shown by nuclear and chloroplast markers in the monophyletic “bristle clade” (Paniceae, Panicoideae, Poaceae). Syst Bot, 2007,32:531-544.
[22] Jia G Q, Shi S K, Wang C F, Niu Z G, Chai Y, Zhi H, Diao X M. Molecular diversity and population structure of Chinese green foxtail [Setaria viridis(L.) Beauv.] revealed by microsatellite analysis. J Exp Bot, 2013,64:3645-3656.
[23] 王永强, 智慧, 李伟, 李海权, 王永芳, 刁现民. 狗尾草属野生近缘种的染色体鉴定. 植物遗传资源学报, 2007,8:159-164.
Wang Y Q, Zhi H, Li W, Li H Q, Wang Y F, Diao X M. Chromosome number identification of some wild Setaria species. J Plant Genet Resour, 2007,8:159-164 (in Chinese with English abstract).
[24] Kim S, Kim C S, Lee J, Lee I Y, Chung Y J, Cho M S, Kim S C. Phylogenetic relationships among species of Setaria(Paniceae; Panicoideae; Poaceae) in Korea: insights from nuclear, 2015,301:725-736.
[25] Layton D J, Kellogg E A. Morphological, phylogenetic, and ecological diversity of the new model species Setaria viridis(Poaceae: Paniceae) and its close relatives. Am J Bot, 2014,101:539-557.
[26] 吴权明, 白君礼. 谷子与轮生狗尾草(2x、4x)种间的亲缘关系分析. 西北植物学报, 2000,20:954-959.
Wu Q M, Bai J L. Cytogenetic and isoenzymic studies on Setaria millet and S. verticillata(2x) and S. verticiformis, 2000,20:954-959 (in Chinese with English abstract).
[27] 黎裕, 王雅儒. 谷子及其近缘种的蛋白质变异. 作物品种资源, 1998, (2):3-5.
Li Y, Wang Y R. Protein variation analysis of foxtail millet and related wild species. China Seed Ind, 1998, (2):3-5 (in Chinese with English abstract).
[28] 吴权明, 陈雪婷, 朱静林. 谷子及其近缘野生种酯酶同工酶分析(I). 西北农业学报, 2000,9(3):106-109.
Wu Q M, Chen X T, Zhu J L. A isozyme study on foxtail millet and some related species (I). Acta Agric Boreali-Occident Sin, 2000,9(3):106-109 (in Chinese with English abstract).
[29] 吴权明. 谷子及其近缘野生种酯酶同工酶分析(II). 西北农业学报, 2001,10(2):39-44.
Wu Q M. A isozyme study on foxtail millet and some related species (II). Acta Agric Boreali-Occident Sin, 2001,10(2):39-44 (in Chinese with English abstract).
[30] 阎洪波, 黎裕, 王天宇, 石云素, 宋燕春, 马峙英, 周世良. 中国谷子主产区谷子近缘种狗尾草的遗传多样性. 西北植物学报, 2003,23:926-932.
Yan H B, Li Y, Wang T Y, Shi Y S, Song Y C, Ma Z Y, Zhou S L. Genetic diversity of wild relatives of foxtail millet distributed in the major foxtail millet production regions of China. Acta Bot Boreali-Occident Sin, 2003,23:926-932 (in Chinese with English abstract).
[31] Jusuf M, Pernes J. Genetic variability of foxtail millet (Setaria italica P. Beauv.). Theor Appl Genet, 1985,71:385-391.
[32] Le Thierry d’Ennequin M, Panaud O, Toupance B, Sarr A. Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers. Theor Appl Genet, 2000,100:1061-1066.
[33] Li Y, Jia J, Wang Y, Wu S. Intraspecific and interspecific variation in Setaria revealed by RAPD analysis. Genet Resour Crop Evol, 1998,45:279-285.
[34] Li W, Zhi H, Wang Y F, Li H Q, Diao X M. Assessment of genetic relationship of foxtail millet with its wild ancestor and close relatives by ISSR markers. J Integr Agric, 2012,11:556-566.
[35] Hirano R, Naito K, Fukunaga K, Watanabe K N, Ohsawa R, Kawase M. Genetic structure of landraces in foxtail millet (Setaria italica(L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome, 2011,54:498-506.
[36] Jia G Q, Huang X H, Zhi H, Zhao Y, Zhao Q, Li W J, Chai Y, Yang L F, Liu K Y, Lu H Y, Zhu C R, Lu Y Q, Zhou C C, Fan D L, Weng Q J, Guo Y L, Huang T, Zhang L, Lu T T, Feng Q, Hao, H F, Liu H K, Lu P, Zhang N, Li Y H, Guo E H, Wang S J, Wang S Y, Liu J R, Zhang W F, Chen G Q, Zhang B J, Li W, Wang Y F, Li H Q, Zhao B H, Li J Y, Diao X M, Han B. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet, 2013,45:957-961.
[37] Mamidi S, Healey A, Huang P, Grimwood J, Jenkins J, Barry K, Sreedasyam A, Shu S, Lovell J T, Feldman M, Wu J, Yu Y, Chen C, Johnson J, Sakakibara H, Kiba T, Sakurai T, Tavares R, Nusinow D A, Baxter I, Schmutz J, Brutnell T P, Kellogg E A. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nat Biotechnol, 2020,38:1203-1210.
[38] Doust A N, Devos K M, Gadberry M D, Gale M D, Kellogg E A. Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA, 2004,101:9045-9050.
[39] Yu Y, Hu H, Doust A N, Kellogg E A. Divergent gene expression networks underlie morphological diversity of abscission zones in grasses. New Phytol, 2002,225:1799-1815.
[40] 智慧, 王永强, 李伟, 王永芳, 李海权, 陆平, 刁现民. 利用野生青狗尾草的细胞质培育谷子质核互作雄性不育材料. 植物遗传资源学报, 2007,8:261-264.
Zhi H, Wang Y Q, Li W, Wang Y F, Li H Q, Lu P, Dian X M. Development of CMS material from intra-species hybridization between green foxtail and foxtail millet. J Plant Genet Resour, 2007,8:261-264 (in Chinese with English abstract).
[41] 朱光琴, 李续中, 师公贤, 李亚文. 谷子不育系同源四倍体秋水仙碱引变试验. 陕西农业科学, 1987, ( 6):33.
Zhu G Q, Li J Z, Shi G X, Li Y W. Development of autotetraploid sterile line in foxtail millet by colchicine induction. Shaanxi J Agric Sci, 1987, ( 6):33 (in Chinese with English abstract).
[42] 朱光琴, 吴权明, 马云彤. 谷子Ve型不育系的选育. 陕西农业科学, 1991, (1):7.
Zhu G Q, Wu Q M, Ma Y T. Development of Ve type of sterile line in foxtail millet. Shaanxi J Agric Sci, 1991, ( 1):7 (in Chinese with English abstract).
[43] Darmency H, Pernes J. Use of wild Setaria viridis(L.) Beauv. to improve triazine resistance in cultivated S. italica, 2006,25:175-179.
[44] 李志江. 谷子抗除草剂基因的发现及其应用. 基因组学与应用生物学, 2010,29:768-774.
Li Z J. Discovery and application of herbicide resistant gene in foxtail millet. Genomics Appl Biol, 2010,29:768-774 (in Chinese with English abstract).
[45] Zhao H J, Wang J H, Gao P, Gu R L, Zhang J Q, Wang T Y. Cloning of plastid AcetylCoA carboxylase cDNA from Setaria italica and sequence analysis of graminicide target site. Acta Bot Sin, 2004,46:751-756.
[46] Darmency H, Picard J C, Wang T. Fitness costs linked to dinitroaniline resistance mutation in Setaria. Heredity, 2011,107:80-86.
[47] 王天宇, 石云素, 辛志勇, Darmency H. 抗除草剂谷子新种质的创制、鉴定与利用. 中国农业科技导报, 2000, ( 5):62-66.
Wang T Y, Shi Y S, Xin Z Y, Darmency H. Development and utilization of herbicide-resistant foxtail millet variety. J Agric Sci Technol, 2000, ( 5):62-66 (in Chinese with English abstract).
[48] Tian J G, Wang C L, Xia J L, Wu L S, Xu G H, Wu W H, Li D, Qin W C, Han X, Chen Q Y, Jin W W, Tian F. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 2019,365:658-664.
[1] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[4] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[5] ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137.
[6] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[7] HUANG Xing, XI Jin-Gen, CHEN Tao, QIN Xu, TAN Shi-Bei, CHEN He-Long, YI Ke-Xian. Identification and expression of PAL genes in sisal [J]. Acta Agronomica Sinica, 2021, 47(6): 1082-1089.
[8] MA Gui-Fang, MAN Xia-Xia, ZHANG Yi-Juan, GAO Hao, SUN Zhao-Xia, LI Hong-Ying, HAN Yuan-Huai, HOU Si-Yu. Integrated analysis between folate metabolites profiles and transcriptome of panicle in foxtail millet [J]. Acta Agronomica Sinica, 2021, 47(5): 837-846.
[9] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[10] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[11] CHE Yang, CHENG Shuang, TIAN Jin-Yu, TAO Yu, LIU Qiou-Yuan, XING Zhi-Peng, DOU Zhi, XU Qiang, HU Ya-Jie, GUO Bao-Wei, WEI Hai-Yan, GAO Hui, ZHANG Hong-Cheng. Characteristics and differences of rice yield, quality, and economic benefits under different modes of comprehensive planting-breeding in paddy fields [J]. Acta Agronomica Sinica, 2021, 47(10): 1953-1965.
[12] JIA Xiao-Ping,YUAN Xi-Lei,LI Jian-Feng,WANG Yong-Fang,ZHANG Xiao-Mei,ZHANG Bo,QUAN Jian-Zhang,DONG Zhi-Ping. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 1052-1062.
[13] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[14] YAN Zhuang-Zhuang, YAN Xue-Hui, SHI Jia, SUN Kai, YU Jiang-Lin, ZHANG Zhan-Guo, HU Zhen-Bang, JIANG Hong-Wei, XIN Da-Wei, LI Yang, QI Zhao-Ming, LIU Chun-Yan, WU Xiao-Xia, CHEN Qing-Shan, ZHU Rong-Sheng. Classification of soybean pods using deep learning [J]. Acta Agronomica Sinica, 2020, 46(11): 1771-1779.
[15] ZHAI Sheng-Nan, GUO Jun, LIU Cheng, LI Hao-Sheng, SONG Jian-Min, LIU Ai-Feng, CAO Xin-You, CHENG Dun-Gong, LI Fa-Ji, HE Zhong-Hu, XIA Xian-Chun, LIU Jian-Jun. Functional analysis of Lcye gene involved in the carotenoid synthesis in common wheat [J]. Acta Agronomica Sinica, 2020, 46(10): 1485-1495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!