Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (3): 747-758.doi: 10.3724/SP.J.1006.2022.11019

• RESEARCH NOTES • Previous Articles     Next Articles

Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China

MA Hong-Bo(), LIU Dong-Tao*(), FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan   

  1. Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221131, Jiangsu, China
  • Received:2021-03-01 Accepted:2021-07-21 Online:2022-03-12 Published:2021-08-10
  • Contact: LIU Dong-Tao E-mail:mahongbo863@163.com;liudongtao317@163.com
  • Supported by:
    Key Research and Development Program (Modern Agriculture) of Xuzhou(KC20036);Key Research and Development Program of Jiangsu Province(BE2018340-2);China Agriculture Research System of MOF and MARA(CARS-03)

Abstract:

Fusarium head blight (FHB), caused by Fusarium graminearum, is an important disease that seriously threatens the safety of wheat production. Breeding progress of resistant cultivars has been limited due to absence of the resistant sources with facultative growth habit and poor screening environment in the Huang-Huai region, the main wheat producing area of China. Fhb1, as the most effective and stable gene, is the only gene widely used in the global breeding programs for improving FHB resistance of wheat. However, utilization of Fhb1 in the Yellow-Huai River Valleys Winter Wheat Zone is limited so far. In this study, several excellent advanced lines with Fhb1 were developed by limited backcrossing and molecular marker-assisted selection in the BC2F1 progenies of the susceptible variety Aikang 58 (the recurrent parent) and H35 (the donor parent of Fhb1 gene). Then, the individuals were used to cross with Xumai 36 and Xumai 2023 (with high yield but susceptible to FHB), and a series of elite lines with Fhb1 were developed using the doubled haploid and the traditional pedigree selection methods. Xumai DH9 and Xumai 17252 were moderate resistance to FHB in different screening environments for several years. The average resistance level of the lines with Fhb1 gene was significantly higher than that of the susceptible control. The introduction of Fhb1 significantly improved the resistance to FHB, but some lines were still highly susceptible, indicating that the resistance to FHB was affected by other genetic factors. This study provides an example for the use of Fhb1 gene in improving FHB resistance in the Yellow-Huai River Valleys Winter Wheat Zone of China.

Key words: Triticum aestivum, Fhb1 gene, molecular marker-assisted selection, breeding

Fig. 1

Process of developing new wheat lines with FHB resistance by the pedigree selection and doubled haploid methods"

Table 1

Information of primers used in this study"

标记
Marker
引物序列
Primer sequence (5′-3′)
扩增产物大小
Size of target fragment
参考文献
Reference
Gwm493 F: TTCCCATAACTAAAACCGCG
R: GGAACATCATTTCTGGACTTTG
Fhb1 180 bp
nonFhb1 140 bp
[7]
JAAS01 F: GTTCCACGTCTTCTTACATAATCCC
R: TGAAGTTCATGCCACGCATA
Fhb1 236 bp
nonFhb1 -
专利号:
Patent No. ZL201310013279.2
TaHRC-GSM GSM-F: ATTCCTACTAGCCGCCTGGT
GSM-R: ACTGGGGCAAGCAAACATTG
Fhb1 1300 bp
nonFhb1 2000 bp
[25]

Fig. 2

Genotype of some BC1F1 plants detected by marker Gwm493 M: marker; Lane 1: H35; Lane 2: Aikang 58; Lanes 4, 7, 9, 10, 12, 14, 15, and 18 indicate plants without Fhb1 gene; Lanes 3, 5, 6, 8, 11, 13, 16, 17, 19, and 20 indicate plants with heterozygous Fhb1 gene."

Fig. 3

Genotype of some F1 plants detected by marker JAAS01 M: marker; Lanes 1, 2, 3, 4, 6, 9, and 11 indicate plants with Fhb1 gene; Lanes 5, 7, 8, 10, and 12-17 indicate plants without Fhb1 gene."

Fig. 4

Genotype of some F2 plants detected by codominance marker TaHRC-GSM M: marker; Lanes 1, 6-10, 14, and 15 indicate plants with homozygous Fhb1 gene; Lanes 4, 12, 13, and 16 indicate plants without Fhb1 gene; Lanes 2, 3, 5, and 11 indicate plants with heterozygous Fhb1 gene."

Table 2

Summary of FHB resistance of lines during 2019-2020 plant season"

品系/组合
Line/Cross
家系数量
Number of lines
土表接种(徐州)
Soil surface inoculation
(in Xuzhou)
单花滴注(徐州)
Single flower drip inoculation
(in Xuzhou)
自然发病(建阳)
Screening under natural condition (in Jianyang)
病情指数
Disease index
范围
Range
病小穗率
Diseased spikelet rate (%)
范围
Range
病情指数
Disease index
范围
Range
H35/矮抗58*3//徐麦36
H35/Aikang58*3//Xumai 36
83 52.58±11.47 c 25.00-81.25 22.90±3.91 c 12.00-58.12 65.80±6.00 bc 51.92-79.17
徐麦36 Xumai 36 2 66.59±4.27 b 64.49-70.67 51.86±10.24 ab 44.62-59.10 67.73±3.85 b 65.00-70.25
H35/矮抗58*3//徐麦2023
H35/Aikang 58*3//Xumai 2023
83 43.31±12.83 cd 26.67-78.33 16.46±3.77 cde 7.77-63.71 66.18±5.59 b 52.08-80.77
徐麦2023 Xumai 2023 2 64.59±4.12 b 61.67-67.50 45.10±6.73 b 40.34-49.86 71.67±1.18 ab 70.83-72.50
徐农029 Xunong 029 24 39.32±6.54 de 26.25-50.00 21.43±6.03 c 12.66-42.06 60.24±5.52 c 47.73-72.73
淮麦20 Huaimai 20 2 55.35±3.68 cd 51.46-57.24 28.72±2.33 c 26.56-30.88
矮抗58 Aikang 58 2 79.17±29.47 a 58.33-100.00 49.22±8.53 b 43.18-55.25 79.17±11.79 a 70.83-87.50
徐麦35 Xumai 35 24 68.40±13.40 b 47.73-95.00 55.45±16.53 a 27.47-83.44 69.27±5.44 b 57.69-82.14

Fig. 5

FHB resistance of line 23 (b) from H35/Aikang 58*3// Xumai 36, CK lines Xumai 35 (a) and Xunong 029 (c) screening with single flower drip inoculation in Xuzhou"

Table 3

FHB resistance of homozygous lines with Fhb1 gene screening with three different methods during 2019-2020 plant season"

家系号
No. of family
H35/矮抗58*3//徐麦36 H35/Aikang58*3//Xumai36 H35/矮抗58*3//徐麦2023 H35/Aikang58*3//Xumai2023
土表接种(徐州)
Soil surface inoculation
(in Xuzhou)
单花滴注(徐州)
Single flower drip
Inoculation (in Xuzhou)
自然发病(建阳)
Screening under natural condition (in Jianyang)
家系号
No. of family
土表接种(徐州)
Soil surface inoculation
(in Xuzhou)
单花滴注(徐州)
Single flower drip inoculation
(in Xuzhou)
自然发病(建阳)
Screening under natural condition (in Jianyang)
病情指数Disease index 抗性评价Evaluation
of resistance
病小穗率Diseased
spikelet rate (%)
抗性评价Evaluation of resistance 病情指数Disease index 抗性评价Evaluation of resistance 病情指数
Disease index
抗性评价Evaluation of resistance 病小穗率
Diseased
spikelet rate (%)
抗性评价Evaluation of resistance 病情指数
Disease index
抗性评价Evaluation of resistance
1 25.00 MR 18.20 MR 51.92 MS 1 27.50 MR 11.64 MR 52.08 MS
2 50.00 MS 19.01 MR 68.18 S 2 29.17 MR 11.85 MR 77.08 S
3 57.50 S 24.40 MS 72.73 S 3 44.17 MS 14.18 MR 56.82 MS
4 43.33 MS 20.03 MR 62.50 MS 4 33.75 MR 16.44 MR 60.00 MS
5 40.00 MS 17.04 MR 62.50 MS 5 42.50 MS 11.43 MR 66.67 S
6 38.33 MR 32.62 S 69.23 S 6 40.00 MS 19.02 MR 67.50 S
7 47.50 MS 22.91 MS 67.50 S 7 50.83 MS 13.39 MR 62.50 MS
8 54.17 MS 21.87 MR 59.09 MS 8 45.00 MS 12.96 MR 80.77 S
9 49.17 MS 18.39 MR 60.00 MS 9 40.83 MS 24.23 MS 73.21 S
10 53.33 MS 17.61 MR 67.50 S 10 29.17 MR 9.72 MR 64.29 MS
11 56.67 S 17.13 MR 70.00 S 11 40.00 MS 12.49 MR 64.58 MS
12 53.33 MS 20.06 MR 60.00 MS 12 35.83 MR 10.71 MR 70.83 S
13 53.33 MS 23.68 MS 65.00 MS 13 38.33 MR 12.57 MR 62.50 MS
14 54.17 MS 17.84 MR 62.50 MS 14 35.83 MR 12.99 MR 61.54 MS
15 50.83 MS 19.99 MR 67.50 S 15 30.83 MR 11.43 MR 62.50 MS
16 58.33 S 22.15 MS 65.00 MS 16 31.67 MR 12.30 MR 65.38 S
17 60.83 S 22.80 MS 65.00 MS 17 29.17 MR 8.18 MR 62.50 MS
18 60.00 S 16.24 MR 60.00 MS 18 33.33 MR 10.10 MR 52.08 MS
19 56.67 S 21.31 MR 60.00 MS 19 36.67 MR 10.80 MR 62.50 MS
20 60.00 S 23.07 MS 57.50 MS 20 58.33 S 12.34 MR 57.50 MS
21 59.17 S 19.92 MR 57.50 MS 21 49.17 MS 14.00 MR 62.50 MS
22 49.17 MS 21.27 MR 62.50 MS 22 51.67 MS 21.11 MR 65.00 MS
23 38.33 MR 16.46 MR 60.00 MS 23 42.50 MS 15.74 MR 65.00 MS
24 61.67 S 35.43 S 75.00 S 24 40.83 MS 17.04 MR 63.64 MS
25 56.67 S 18.77 MR 75.00 S 25 37.50 MR 10.35 MR 66.67 S
26 55.00 MS 17.19 MR 68.18 S 26 33.33 MR 12.77 MR 68.75 S
27 45.00 MS 17.26 MR 65.91 S 27 30.83 MR 16.01 MR 70.83 S
28 46.67 MS 19.90 MR 56.82 MS 28 34.17 MR 14.31 MR 67.50 S
29 75.83 S 28.62 MS 70.83 S 29 34.17 MR 16.48 MR 65.91 S
30 81.25 S 32.19 S 68.75 S 30 30.83 MR 16.93 MR 66.67 S
31 75.00 S 39.30 S 65.38 S 31 47.50 MS 40.81 S 70.83 S
32 57.76 S 22.27 MS 66.67 S 32 47.50 MS 18.55 MR 66.67 S
33 49.14 MS 24.87 MS 67.50 S 33 60.00 S 18.31 MR 75.00 S
34 57.76 S 27.04 MS 73.08 S 34 45.83 MS 13.65 MR 66.67 S
35 75.83 S 24.61 MS 67.50 S 35 49.17 MS 12.37 MR 70.00 S
36 44.17 MS 18.40 MR 57.50 MS 36 54.17 MS 15.79 MR 68.18 S
37 35.00 MR 21.04 MR 57.50 MS 37 78.33 S 25.67 MS 67.50 S
38 37.50 MR 21.30 MR 55.00 MS 38 78.33 S 25.41 MS 70.00 S
39 44.17 MS 22.84 MS 56.82 MS 39 71.67 S 18.10 MR 70.83 S
40 40.00 MS 17.61 MR 72.73 S 40 47.50 MS 16.70 MR 75.00 S
41 35.83 MR 19.64 MR 66.67 S 41 60.83 S 16.66 MR 65.91 S
42 40.83 MS 15.19 MR 65.91 S 42 50.83 MS 15.77 MR 60.00 MS
43 44.17 MS 26.64 MS 68.75 S 43 65.83 S 15.39 MR 62.50 MS
44 45.00 MS 20.29 MR 79.17 S 44 60.83 S 25.12 MS 70.00 S
45 43.33 MS 19.71 MR 65.91 S 45 45.00 MS 15.68 MR 69.23 S
46 55.00 MS 15.37 MR 72.50 S 46 46.67 MS 16.57 MR 67.50 S
47 37.50 MR 13.78 MR 72.50 S 47 46.67 MS 17.89 MR 67.50 S
48 61.67 S 49.82 S 68.18 S 48 55.83 S 24.25 MS 67.50 S
49 48.33 MS 27.89 MS 66.67 S 49 61.67 S 25.24 MS 75.00 S
50 56.67 S 24.07 MS 67.50 S 50 27.50 MR 15.42 MR 61.36 MS
51 50.00 MS 22.22 MS 70.45 S 51 28.33 MR 14.49 MR 55.00 MS
52 37.93 MR 21.07 MR 55.00 MS 52 38.33 MR 15.82 MR 52.50 MS
53 53.33 MS 19.21 MR 55.00 MS 53 42.50 MS 28.78 S 55.00 MS
54 59.17 S 15.34 MR 57.50 MS 54 36.67 MR 10.30 MR 55.00 MS
55 55.83 S 23.10 MS 66.67 S 55 26.67 MR 12.11 MR 67.50 S
56 60.83 S 27.13 MS 65.91 S 56 28.33 MR 16.82 MR 70.00 S
57 64.17 S 20.17 MR 61.36 MS 57 38.33 MR 15.99 MR 67.50 S
58 63.33 S 25.74 MS 62.50 MS 58 28.33 MR 14.85 MR 68.18 S
59 61.67 S 17.84 MR 67.50 S 59 34.17 MR 19.04 MR 67.31 S
60 65.83 S 19.71 MR 67.50 S 60 31.67 MR 12.68 MR 69.23 S
61 63.33 S 21.87 MR 70.00 S 61 36.67 MR 15.06 MR 72.73 S
62 57.50 S 18.09 MR 70.00 S 62 34.17 MR 12.71 MR 66.67 S
63 54.17 MS 26.81 MS 62.50 MS 63 38.33 MR 14.84 MR 72.73 S
64 44.17 MS 22.17 MS 62.50 MS 64 55.00 MS 27.16 MS 67.50 S
65 55.83 S 18.44 MR 62.50 MS 65 33.33 MR 12.55 MR 68.18 S
66 50.83 MS 19.39 MR 68.75 S 66 35.00 MR 14.09 MR 67.50 S
67 56.67 S 18.71 MR 67.50 S 67 30.83 MR 12.85 MR 75.00 S
68 60.00 S 12.00 MR 67.50 S 68 35.00 MR 15.74 MR 75.00 S
69 45.83 MS 27.03 MS 67.50 S 69 37.50 MR 15.33 MR 67.50 S
70 54.17 MS 26.49 MS 68.18 S 70 44.17 MS 10.24 MR 75.00 S
71 54.17 MS 19.89 MR 65.91 S 71 52.50 MS 10.46 MR 75.00 S
72 50.83 MS 25.96 MS 68.18 S 72 50.83 MS 20.69 MR 70.00 S
73 48.33 MS 22.83 MS 65.91 S 73 48.33 MS 15.27 MR 67.50 S
74 50.00 MS 23.87 MS 70.45 S 74 45.00 MS 12.10 MR 57.50 MS
75 54.17 MS 20.63 MR 68.75 S 75 43.33 MS 11.62 MR 63.64 MS
76 59.17 S 14.55 MR 65.00 MS 76 45.83 MS 8.78 MR 55.00 MS
77 43.33 MS 19.86 MR 65.00 MS 77 54.17 MS 21.53 MR 62.50 MS
78 66.67 S 54.49 S 70.83 S 78 54.17 MS 22.14 MS 72.50 S
79 45.00 MS 30.83 S 67.31 S 79 71.67 S 23.73 MS 70.00 S
80 78.33 S 58.12 S 69.23 S 80 51.67 MS 19.91 MR 65.00 MS
81 33.33 MR 26.40 MS 70.83 S 81 32.50 MR 10.24 MR 63.64 MS
82 47.50 MS 21.07 MR 75.00 S 82 56.03 S 63.71 S 68.18 S
83 42.50 MS 24.60 MS 75.00 S 83 35.83 MR 7.77 MR 55.00 MS

Table 4

Simple correlations among different screening methods of FHB resistance of 186 homozygous lines with Fhb1 gene"

处理
Treatment
土表接种(徐州)
Soil surface inoculation
(in Xuzhou)
单花滴住(徐州)
Single flower drip inoculation
(in Xuzhou)
自然发病(建阳)
Screening under natural condition (in Jianyang)
土表接种(徐州) Screening under natural condition (in Xuzhou) 1.00 0.53** 0.19*
单花滴住(徐州) Single flower drip inoculation (in Xuzhou) 1.00 0.20*
自然发病(建阳) Screening under natural condition (in Jianyang) 1.00

Table 5

Results of FHB resistance of Xumai DH9 and Xumai 17252 screening in the wheat regional trials of Jiangsu province and Huaibei science and enterprise consortium"

品种
Variety
2017-2018年度
Plant season of 2017-2018
2018-2019年度
Plant season of 2018-2019
2019-2020年度
Plant season of 2019-2020
严重度
Severity of disease
抗性评价
Evaluation of resistance
严重度
Severity of disease
抗性评价
Evaluation of resistance
严重度
Severity of disease
抗性评价
Evaluation of resistance
徐麦DH9 Xumai DH9 2.10 MR 2.53 MR 1.22 MR
徐麦17252 Xumai 17252 1.91 MR 1.15 R
苏麦3号Sumai 3 (CK1) 1.27 R 1.45 R 1.10 R
扬麦158 Yangmai 158 (CK2) 2.15 MR 2.57 MR 1.98 MR
淮麦20 Huaimai 20 (CK3) 3.31 MS 3.37 MS 2.62 MS
矮抗58 Aikang 58 (CK4) 3.87 S 3.86 S 3.66 S

Table 6

Results of FHB resistance of Xumai DH9 and Xumai 17252 screening in the national regional trial of joint development of wheat variety"

品种名称
Variety
2018-2019年度Plant season of 2018-2019 2019-2020年度Plant season of 2019-2020
严重度
Severity of disease
病情指数
Disease index
抗性评价
Evaluation of resistance
严重度
Severity of disease
病情指数
Disease index
抗性评价
Evaluation of resistance
徐麦DH9 Xumai DH9 1.00 10.00 MR 1.47 36.72 MR
徐麦17252 Xumai 17252 1.6 40.08 MR
苏麦3号 Sumai 3 (CK1) 0.80 1.00 R 0.09 2.26 R
郑麦9023 Zhengmai 9023 (CK2) 2.00 20.00 MR 1.69 42.13 MR
郑麦0943 Zhengmai 0943 (CK3) 2.50 50.00 MS 2.69 67.32 MS
周麦18 Zhoumai 18 (CK4) 3.20 80.00 S
[1] 程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 28:938-942.
Cheng S H, Zhang Y, Bie T D, Gao D R, Zhang B Q. Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu J Agric Sci, 2012, 28:938-942 (in Chinese with English abstract).
[2] 马鸿翔, 陆维忠. 小麦赤霉病抗性改良研究进展. 江苏农业学报, 2010, 26:197-203.
Ma H X, Lu W Z. Progress on genetic improvement for resistance to Fusarium head blight in wheat. Jiangsu J Agric Sci, 2010, 26:197-203 (in Chinese with English abstract).
[3] 刘易科, 佟汉文, 朱展望, 陈泠, 邹娟, 张宇庆, 焦春海, 高春保. 小麦赤霉病抗性改良研究进展. 麦类作物学报, 2016, 36:51-57.
Liu Y K, Tong H W, Zhu Z W, Chen L, Zou J, Zhang Y Q, Jiao C H, Gao C B. Review on improvement of Fusarium head blight resistance in wheat. J Triticeae Crop, 2016, 36:51-57 (in Chinese with English abstract).
[4] 张爱民, 阳文龙, 李欣, 孙家柱. 小麦抗赤霉病研究现状与展望. 遗传, 2018, 40:858-873.
Zhang A M, Yang W L, Li X, Sun J Z. Current status and perspective on research against Fusarium head blight in wheat. Hereditas, 2018, 40:858-873 (in Chinese with English abstract).
[5] 牛皓, 姜玉梅, 牛吉山. 小麦抗赤霉病遗传育种研究进展. 农业生物技术学报, 2020, 28:530-542.
Niu H, Jiang Y M, Niu J S. Research advances in the genetics and breeding of wheat (Triticum aestivum L.) resistance to Fusarium head blight. Chin J Agric Biotechnol, 2020, 28:530-542 (in Chinese with English abstract).
[6] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳. 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018, 44:505-511.
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, Yang L, Li H J, Zhou Y. Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018, 44:505-511 (in Chinese with English abstract).
[7] Cuthbert P A, Somers D J, Thomas J, Cloutier S, Brulé-Babel A. Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2006, 112:1465-1472.
doi: 10.1007/s00122-006-0249-7
[8] Cuthbert P A, Somers D J, Brulé-Babel A. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2007, 114:429-437.
doi: 10.1007/s00122-006-0439-3
[9] Qi L L, Pumphrey M Q, Friebe B, Chen P D, Gill B S. Fhb3 for resistance to Fusarium head blight disease of wheat Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet, 2008, 117:1155-1166.
doi: 10.1007/s00122-008-0853-9 pmid: 18712343
[10] Xue S L, Li G Q, Jia H Y, Xu F, Lin F, Tang M Z, Wang Y, An X, Xu H B, Zhang L X, Kong Z X, Ma Z Q. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2010, 121:147-156.
doi: 10.1007/s00122-010-1298-5
[11] Xue S L, Xu F, Tang M Z, Zhou Y, Li G Q, An X, Lin F, Xu H B, Jia H Y, Zhang L X, Kong Z X, Ma Z Q. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2011, 123:1055-1063.
doi: 10.1007/s00122-011-1647-z
[12] Cainong J C, Bockus W W, Feng Y, Chen P, Qi L, Sehgal S K, Danilova T V, Koo D H, Friebe B, Gill B S. Fusarium head blight disease from Elymus tsukushiensis into wheat Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet, 2015, 128:1019-1027.
doi: 10.1007/s00122-015-2485-1 pmid: 25726000
[13] Guo J, Zhang X L, Hou Y L, Cai J J, Shen X R, Zhou T T, Xu H H, Ohm H W, Wang H W, Li A F, Han F P, Wang H G, Kong L R. Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor Appl Genet, 2015, 128:2301-2316.
doi: 10.1007/s00122-015-2586-x
[14] 徐婷婷, 王永军, 狄佳春, 孙苏阳, 蔡士宾, 汪巧玲, 邹淑琼, 朱银, 杨欣, 颜伟. 小麦抗赤霉病鉴定及其抗病基因的检测. 麦类作物学报, 2019, 39:1301-1308.
Xu T T, Wang Y J, Di J C, Sun S Y, Cai S B, Wang Q L, Zou S Q, Zhu Y, Yang X, Yan W. Identification of scab-resistance wheat varieties and detection of disease resistance genes. J Triticeae Crop, 2019, 39:1301-1308 (in Chinese with English abstract).
[15] Del Blanco I A, Frohberg R C, Stack R W, Berzonsky W A, Kianian S F. Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines. Theor Appl Genet, 2003, 106:1027-1031.
pmid: 12671750
[16] Pumphrey M O, Bernardo R, Anderson J A. Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations Fhb1 QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci, 2007, 47:200-206.
doi: 10.2135/cropsci2006.03.0206
[17] McCartney C A, Somers D J, Fedak G, DePauw R M, Thomas J, Fox S L, Humphreys D G, Lukow O, Savard M E, McCallum B D. The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed, 2007, 20:209-221.
doi: 10.1007/s11032-007-9084-z
[18] Xie G Q, Zhang M C, Chakraborty S, Liu C J. Fusarium head blight resistance in Australian wheats Fusarium head blight resistance in Australian wheats. Aust J Exp Agric, 2007, 47:603-607.
doi: 10.1071/EA05250
[19] Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E. Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet, 2006, 112:562-569.
pmid: 16362277
[20] 陆维忠. 小麦赤霉病抗性分子标记的筛选及其利用. 江苏农业学报, 2011, 27:243-249.
Lu W Z. Screening and application of molecular markers linked to wheat scab resistance. Jiangsu J Agric Sci, 2011, 27:243-249 (in Chinese with English abstract).
[21] 许峰, 闫素辉, 张从宇, 时侠清, 李文阳, 张子学. 基于MAS的小麦抗赤霉病育种材料抗性评价. 植物遗传资源学报, 2016, 17:132-139.
Xu F, Yan S H, Zhang C Y, Shi X Q, Li W Y, Zhang Z X. Comprehensive evaluation of breeding materials resistant to wheat scab based on MAS. J Plant Genet Resour, 2016, 17:132-139 (in Chinese with English abstract).
[22] 李静静, 史娜溶, 杨孟于, 王金鹏, 孙道杰, 冯毅, 张玲丽. 抗赤霉病小麦优异新种质的分子标记辅助选择. 麦类作物学报, 2020, 40:261-269.
Li J J, Shi N R, Yang M Y, Wang J P, Sun D J, Feng Y, Zhang L L. Marker-assisted selection for Fusarium head blight resistance of wheat germplasms with excellent agronomy traits and seed quality. J Triticeae Crop, 2020, 40:261-269 (in Chinese with English abstract).
[23] Zhu Z W, Chen L, Zhang W, Yang L J, Zhu W W, Li J H, Liu Y K, Tong H W, Fu L P, Liu J D, Rasheed A, Xia X C, He Z H, Hao Y F, Gao C B. Genome-wide association analysis of Fusarium head blight resistance in Chinese elite wheat lines. Front Plant Sci, 2020, 11:206.
[24] 马红勃, 刘东涛, 冯国华, 陈荣振, 张会云, 王静, 贾辉辉. 部分小麦品种(系)品质相关基因的分子检测. 麦类作物学报, 2015, 35:768-776.
Ma H B, Liu D T, Feng G H, Chen R Z, Zhang H Y, Wang J, Jia H H. Identification of major quality genes in some wheat cultivars from Yellow and Huai River valley wheat region. J Triticeae Crop, 2015, 35:768-776 (in Chinese with English abstract).
[25] Su Z Q, Jin S J, Zhang D D, Bai G H. Fhb1 region, a major QTL for Fusarium head blight resistance in wheat Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theor Appl Genet, 2018, 131:2371-2380.
doi: 10.1007/s00122-018-3159-6
[26] Liu S X, Pumphrey M O, Gill B S, Trick H N, Zhang J X, Dolezel J, Chalhoub B, Anderson J A. Fhb1, a major QTL for Fusarium head blight resistance in wheat Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun, 2008, 36:195-201.
doi: 10.1556/CRC.36.2008.Suppl.B.15
[27] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018, 44:473-482.
Zhu Z W, Xu D A, Cheng S H, Gao C B, Xia X C, Hao Y F, He Z H. Characterization of Fusarium head blight resistance gene fhb1 and its putative ancestor in chinese wheat germplasm. Acta Agron Sin, 2018, 44:473-482 (in Chinese with English abstract).
[28] Wang H W, Sun S L, Ge W Y, Zhao L F, Hou B Q, Wang K, Lyu Z F, Chen L Y, Xu S S, Guo J, Li M, Su P S, Li X F, Wang G P, Bo C Y, Fang X J, Zhuang W W, Cheng X X, Wu J W, Dong L H, Chen W Y, Li W, Xiao G L, Zhao J X, Hao Y C, Xu Y, Gao Y, Liu W J, Liu Y H, Yin H Y, Li J Z, Li X, Zhao Y, Wang X Q, Ni F, Ma X, Li A F, Xu S S, Bai G H, Nevo E, Gao C X, Ohm H, Kong L R. Fhb7 from fungus underlies Fusarium head blight resistance in wheat Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science, 2020, 368:6493.
[1] WANG Sha-Sha, HUANG Chao, WANG Qing-Chang, CHAO Yue-En, CHEN Feng, SUN Jian-Guo, SONG Xiao. Cloning and functional identification of TaGS2 gene related to kernel size in bread wheat [J]. Acta Agronomica Sinica, 2022, 48(8): 1926-1937.
[2] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[3] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[4] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[5] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[6] HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818.
[7] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[8] HU Wen-Jing,ZHANG Yong,LU Cheng-Bin,WANG Feng-Ju,LIU Jin-Dong,JIANG Zheng-Ning,WANG Jin-Ping,ZHU Zhan-Wang,XU Xiao-Ting,HAO Yuan-Feng,HE Zhong-Hu,GAO De-Rong. Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16 [J]. Acta Agronomica Sinica, 2020, 46(02): 157-165.
[9] Yu-Ling LI,Zheng-Ning JIANG,Wen-Jing HU,Dong-Sheng LI,Jing-Ye CHENG,Xin YI,Xiao-Ming CHENG,Rong-Lin WU,Shun-He CHENG. Mapping QTLs against Leaf Rust in CIMMYT Wheat C615 [J]. Acta Agronomica Sinica, 2018, 44(6): 836-843.
[10] Lin-Sheng WANG,Ya-Li ZHANG,Guang-Hui NAN. Molecular and Cytogenetic Identification of Triticum aestivum-Leymus racemosus Translocation Line T5AS-7LrL·7LrS [J]. Acta Agronomica Sinica, 2018, 44(10): 1442-1447.
[11] Da-Wei JIAN, Yang ZHOU, Hong-Wei LIU, Li YANG, Chun-Yan MAI, Li-Qiang YU, Xin-Nian HAN, Hong-Jun ZHANG, Hong-Jie LI. Functional Markers Reveal Genetic Variations in Wheat Improved Cultivars and Landraces from Xinjiang [J]. Acta Agronomica Sinica, 2018, 44(05): 657-671.
[12] De-Hui ZHAO, Yong Zhang, De-Sen WANG, Ling HUANG, Xin-Min CHEN, Yong-Gui XIAO, Jun YAN, Yan ZHANG, Zhong-Hu HE. Pan Bread and Steamed Bread Qualities of Novel-Released Cultivars in Northern Winter Wheat Region of China [J]. Acta Agronomica Sinica, 2018, 44(05): 697-705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .