Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (02): 157-165.doi: 10.3724/SP.J.1006.2020.91048


Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16

HU Wen-Jing1,ZHANG Yong1,LU Cheng-Bin1,WANG Feng-Ju2,LIU Jin-Dong2,JIANG Zheng-Ning1,WANG Jin-Ping2,ZHU Zhan-Wang2,XU Xiao-Ting2,HAO Yuan-Feng2,HE Zhong-Hu2,3,GAO De-Rong1,*()   

  1. 1 Lixiahe Institute of Agriculture Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
    2 National Wheat Improvement Center / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 CIMMYT-China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-07-22 Accepted:2019-09-26 Online:2020-02-12 Published:2019-10-09
  • Contact: De-Rong GAO E-mail:gdr@wheat.org.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31901544);China Agriculture Research System(CARS-03-03B);China Agriculture Research System(CARS-3-2-11);the National Key Research and Development Program of China(2017YFD0100801);the National Key Research and Development Program of China(2017YFD0101802);the Natural Science Foundation of Jiangsu Province(BK20171279)


Fusarium head blight (FHB) resistance of Yangmai wheat cultivars has been paid much attention, but the underlying genetic mechanism is unclear. In recent years, Yangmai 16 is a predominant wheat cultivar durably resistant to FHB in production. A population of 174 double haploid lines (DH) produced by crossing Yangmai 16 (YM16) with the susceptible cultivar Zhongmai 895 (ZM895) was evaluated for FHB response using point inoculation from 2017 to 2019. The DH population was genotyped with wheat 660K SNP array and a high-density genetic map was constructed. Six resistance QTLs were detected, and among them, five were from the resistant parent Yangmai 16 and one from Zhongmai 895. QFhb.yaas-4DS and QFhb.yaas-6AS were detected at least in two years, explaining 8.8% to 15.0% of the phenotypic variances, respectively. QFhb.yaas-2DL and QFhb.yaas-3BL were detected only in one year, accounting for 10.5% and 14.7% of the phenotypic variances. QFhb.yaas-5BL and QFhb.yaas-4BS were detected in one year, too, accounting for 6.4% and 8.3% of the phenotypic variances, respectively. Pyramiding of multiple resistant loci with large effects (>10%) is an effective approach to increase FHB resistance. The QTLs identified from Yangmai 16 in the present study will provide a starting point for genetic studies of other Yangmai cultivars, and the QTLs closely linked to markers will be useful for marker-assisted selection in wheat FHB improvement.

Key words: Triticum aestivum, Fusarium head blight, QTL, marker-assisted breeding

Table 1

Statistic analysis of FHB severity for the Yangmai 16/Zhongmai 895 DH lines, their parents, and checks"

亲本 Parents (%) 对照 CK (%) DH群体 DH population
Yangmai 16
Zhongmai 895
Sumai 3
Zhoumai 18
Mean (%)
Max. (%)
Min. (%)
2017 14.2 A 58.7 B 5.2 A 60.2 B 29.1 18.9 83.7 3.4 0.2 0.9 0.67
2018 17.9 A 65.0 B 5.6 A 62.3 B 53.5 19.9 100.0 6.6 -0.7 -0.2 0.74
2019 23.3 A 69.7 B 6.1 A 70.1 B 49.5 18.1 89.8 10.3 -0.5 0.1 0.82

Fig. 1

Frequency distributions of DH lines with different FHB severity (2017-2019) The abscissa indicates the percentage of scabbed spikelets, and the ordinate indicates the line number."

Table 2

QTL for FHB resistance mapped in the Yangmai 16/Zhongmai 895 DH population"

QTL 年份
Physical position (Mb)
Genetic position (cM)
Marker interval
LOD 贡献率
PVE (%)
QFhb.yaas-2DL 2017 512.7-532.0 49.6 AX_111765614-AX_109738482 4.7 10.5 -6.1
QFhb.yaas-3BL 2019 637.1-647.2 138.6 AX_94528202-AX_109001202 8.9 14.7 -6.9
QFhb.yaas-4DS 2017 27.1-33.1 61.9 AX_109962849-AX_111071805 5.6 13.7 -7.2
2018 18.3-19.3 54.7 AX_111311200-AX_89421921 4.4 8.8 -5.9
2019 15.9-16.6 53.7 AX_94558069-AX_95150762 6.2 9.5 -5.6
QFhb.yaas-5BL 2018 587.1-588.8 138.7 AX_94646656-AX_109853998 3.2 6.4 -5.0
QFhb.yaas-6AS 2018 12.0-12.4 64.9 AX_109294414-AX_108848013 4.6 9.5 -6.2
2019 12.0-12.4 65.0 AX_109294414-AX_108848013 8.9 15.0 -7.1
QFhb.yaas-4BS 2018 82.7-91.3 14.7 AX_110472183-AX_94859572 4.1 8.3 5.8

Fig. 2

Mapped QTL for FHB resistance in the Yangmai 16/Zhongmai 895 DH population Markers’ names are shown to the right of vertical axis, and their genetic positions are shown in cM to the left. Red, blue, and green represent 2017, 2018, and 2019, respectively. LOD values of QTL are shown on the right side."

Table 3

FHB severity of the Yangmai 16/Zhongmai 895 DH lines with different QTL-combinations"

QTL combination
Number of lines
Standard deviation
None 46 26.1 88.0 54.3 A 13.7 187.6
QFhb.yaas-4DS 62 18.6 71.3 43.2 B 13.1 172.0
QFhb.yaas-6AS 28 18.9 78.8 44.8 B 16.4 269.6
QFhb.yaas-4DS+QFhb.yaas-6AS 38 9.9 57.4 32.3 C 11.2 126.5

Table 4

FHB severity of the Yangmai 16/Zhongmai 895 DH lines with different QTL-combinations"

Number of QTL
Number of lines
平均PSS (100%)#
Average of PSS (100%)#
不同PSS范围内的家系数目 Number of lines in different PSS range
0-25 25-50 50-75 75-100
0 7 67.1 A 0 0 6 1
1 46 53.8 B 1 15 28 2
2 65 41.8 C 8 38 19 0
3 46 36.9 CD 10 29 7 0
4 10 30.5 D 2 8 0 0

Fig. 3

Relationship between DH lines with QTLs and FHB severity across environments PSS (percentage of scabbed spikelets) indicates the FHB severity."

[1] Buerstmayr H, Ban T, Anderson J A . QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed, 2009,128:1-26.
doi: 10.1111/pbr.2009.128.issue-1
[2] 吴佳文, 杨荣明, 朱凤, 田子华 . 2015 年江苏省小麦赤霉病发生特点与防控对策探讨. 中国植保导刊, 2016,36(10):31-34.
Wu J W, Yang R M, Zhu F, Tian Z H . The epidemic characteristics of wheat Fusarium head blight in Jiangsu province in 2015 and discussion of its control measures. China Plant Prot, 2016,36(10):31-34 (in Chinese).
[3] 张爱民, 阳文龙, 李欣, 孙家柱 . 小麦抗赤霉病研究现状与展望. 遗传, 2018,40:858-873.
Zhang A M, Yang W L, Li X, Sun J Z . Current status and perspective on research against Fusarium head blight in wheat. Hereditas, 2018,40:858-873 (in Chinese with English abstract).
[4] 史建荣, 刘馨, 仇剑波, 祭芳, 徐剑宏, 董飞, 殷宪超, 冉军舰 . 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展. 中国农业科学, 2014,47:3641-3654.
doi: 10.3864/j.issn.0578-1752.2014.18.012
Shi J R, Liu X, Qiu B, Ji F, Xu J H, Dong F, Yin X C, Ran J J . Deoxynivalenol contamination in wheat and its management. Sci Agric Sin, 2014,47:3641-3654 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.18.012
[5] Ren J D, Wang Z, Du Z Y, Chen M Z, Zhang Y B, Quan W, Wang Y J, Jiang X, Zhang Z J . Detection and validation of a novel major QTL for resistance to Fusarium head blight from Triticum aestivum in the terminal region of chromosome 7DL. Theor Appl Genet, 2019,132:241-255.
doi: 10.1007/s00122-018-3213-4 pmid: 30327846
[6] Yi X, Cheng J, Jiang Z, Hu W, Bie T, Gao D, Li D, Wu R, Li Y, Chen S, Cheng X, Liu J, Zhang Y, Cheng S . Genetic analysis of Fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Front Plant Sci, 2018, 9: 573. .
doi: 10.3389/fpls.2018.00573 pmid: 29780395
[7] Su Z Q, Bernardo A, Tian B, Chen H, Wang S, Ma H X, Cai S B, Liu D T, Zhang D D, Li T, Trick H, St Amand P, Yu J M, Zhang Z Y, Bai G H . A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet, 2019, .
doi: 10.1038/s41588-019-0546-0 pmid: 31873299
[8] Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, Ma S W, Kong Z X, Jia L, An X, Jiang G, Liu W X, Cao W J, Zhang R R, Fan J C, Xu X W, Liu Y F, Kong Q Q, Zheng S H, Wang Y, Qin B, Cao S Y, Ding Y X, Shi J X, Yan H S, Wang X, Ran C F, Ma Z Q . Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet, 2019,.
doi: 10.1038/s41588-019-0546-0 pmid: 31873299
[9] Li T, Luo M, Zhang D, Wu D, Li L, Bai G . Effective marker alleles associated with type 2 resistance to Fusarium head blight infection in fields. Breed Sci, 2016,66:350-357.
doi: 10.1270/jsbbs.15124 pmid: 27436944
[10] Jia H Y, Zhou J Y, Xue S L, Li G Q, Yan H S, Ran C F, Zhang Y D, Shi J X, Jia L, Wang X, Luo J, Ma Z Q . A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J, 2018, 48-59.
[11] Arruda M P, Brown P, Brown-Guedira G, Krill A M, Thurber C, Merrill K R, Foresman B J, Kolb F L . Genome-wide association mapping of Fusarium head blight resistance in wheat using Genotyping-by-sequencing. Plant Genome, 2016, 9. .
doi: 10.3835/plantgenome2016.02.0021 pmid: 27902807
[12] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H . Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016,129:1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[13] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳 . 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018,44:505-511.
doi: 10.3724/SP.J.1006.2018.00505
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, Yang L, Li H J, Zhou Y . Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018,44:505-511 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00505
[14] Yu J B, Bai G H, Cai S B, Ban T . Marker-assisted characterization of Asian wheat lines for resistance to Fusarium head blight. Theor Appl Genet, 2006,113:308-320
doi: 10.1007/s00122-006-0297-z
[15] Stacey J, Isaac P G . Isolation of DNA from plants. Methods Mol Biol, 1994,28:9-15.
doi: 10.1385/0-89603-254-x:9 pmid: 8118521
[16] Cui F, Zhang N, Fan Xiao, Zhang W, Zhao C, Yang L, Pan R, Chen M, Han J, Zhao X, Ji J, Tong Y, Zhang H, Jia J, Zhao G, Li J . Utilization of a wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017, .
doi: 10.1038/s41598-019-56977-9 pmid: 31892747
[17] Stam P . Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J, 1993,3:739-744.
doi: 10.1111/j.1365-313X.1993.00739.x
[18] 王建康 . 数量性状基因的完备区间作图方法. 作物学报, 2009,35:239-245.
doi: 10.3724/SP.J.1006.2009.00239
Wang J K . Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009,35:239-245 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00239
[19] Zhai S N, He Z H, Wen W E, Jin H, Liu J D, Zhang Y, Liu Z Y, Xia X C . Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat. Theor Appl Genet, 2016,129:377-394.
doi: 10.1007/s00122-015-2634-6 pmid: 26602234
[20] 李慧慧, 张鲁燕, 王建康 . 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010,36:918-931.
Li H H, Zhang L Y, Wang J K . Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010,36:918-931 (in Chinese with English abstract).
[21] Srinivasachary, Gosman N, Steed A, Simmonds J, Leverington- Waite M, Wang Y, Snape J, Nicholson P . Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet, 2008,116:1145-1153.
doi: 10.1007/s00122-008-0742-2
[22] Srinivasachary, Gosman N, Steed A, Hollins T, Bayles R, Jennings P, Nicholson P . Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet, 2008,118:695-702.
doi: 10.1007/s00122-008-0930-0 pmid: 19034409
[23] Buerstmaye H, Ban T, Anderson J A . QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed, 2009,128:1-26.
doi: 10.1111/pbr.2009.128.issue-1
[24] Jaiswal V, Gahlaut V, Mathur S, Agarwal P, Khandelwal M K, Khurana J P, Tyagi A K, Balyan H S, Gupta P K . Identification of novel SNP in promoter sequence of TaGW2-6A associated with grain weight and other agronomic traits in wheat(Triticum aestivum L.). PLoS One, 2015,10:e0129400.
doi: 10.1371/journal.pone.0129400 pmid: 26076351
[25] Somers D J, Fedak G, Savard M . Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003,46:555-564.
doi: 10.1139/g03-033 pmid: 12897863
[26] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎 . 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018,44:473-482.
doi: 10.3724/SP.J.1006.2018.00473
Zhu Z W, Xu D A, Cheng S H, Gao C B, Xia X C, Hao Y F, He Z H . Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in Chinese wheat germplasm. Acta Agron Sin, 2018,44:473-482 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00473
[27] 程顺和, 张勇, 张伯桥, 高德荣, 吴宏亚, 陆成彬, 吕国锋, 王朝顺 . 小麦抗赤霉病育种2条技术路线的探讨. 扬州大学学报(农业与生命科学版), 2003,24(1):59-62.
Cheng S H, Zhang Y, Zhang B Q, Gao D R, Wu H Y, Lu C B, Lyu G F, Wang C S . Discussion of two ways of breeding scab resistance in wheat. J Yangzhou Univ (Agric Life Sci Edn), 2003,24(1):59-62 (in Chinese with English abstract).
[1] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[2] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[3] JIANG Peng, ZHANG Xu, WU Lei, HE Yi, ZHANG Ping-Ping, MA Hong-Xiang, KONG Ling-Rang. Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2021, 47(5): 869-881.
[4] HUANG Yi-Wen, DAI Xu-Ran, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, YU Guang-Jun, ZHANG Hong-Jun, LI Hong-Jie, ZHOU Yang. Relationship between the allelic variations at the Ppo-A1 and Ppo-D1 loci and pre-harvest sprouting resistance in wheat [J]. Acta Agronomica Sinica, 2021, 47(11): 2080-2090.
[5] ZHANG Yi,XU Nai-Yin,GUO Li-Lei,YANG Zi-Guang,ZHANG Xiao-Qing,YANG Xiao-Ni. Optimization of test location number and replicate frequency in regional winter wheat variety trials in northern winter wheat region in China [J]. Acta Agronomica Sinica, 2020, 46(8): 1166-1173.
[6] HAN Le,DU Ping-Ping,XIAO Kai. Functional characteristics of TaPYR1, an abscisic acid receptor family gene in mediating wheat tolerance to drought stress [J]. Acta Agronomica Sinica, 2020, 46(6): 809-818.
[7] JIANG Peng,HE Yi,ZHANG Xu,WU Lei,ZHANG Ping-Ping,MA Hong-Xiang. Genetic analysis of plant height and its components for wheat (Triticum aestivum L.) cultivars Ningmai 9 and Yangmai 158 [J]. Acta Agronomica Sinica, 2020, 46(6): 858-868.
[8] Yu-Ling LI,Zheng-Ning JIANG,Wen-Jing HU,Dong-Sheng LI,Jing-Ye CHENG,Xin YI,Xiao-Ming CHENG,Rong-Lin WU,Shun-He CHENG. Mapping QTLs against Leaf Rust in CIMMYT Wheat C615 [J]. Acta Agronomica Sinica, 2018, 44(6): 836-843.
[9] Lin-Sheng WANG,Ya-Li ZHANG,Guang-Hui NAN. Molecular and Cytogenetic Identification of Triticum aestivum-Leymus racemosus Translocation Line T5AS-7LrL·7LrS [J]. Acta Agronomica Sinica, 2018, 44(10): 1442-1447.
[10] Da-Wei JIAN, Yang ZHOU, Hong-Wei LIU, Li YANG, Chun-Yan MAI, Li-Qiang YU, Xin-Nian HAN, Hong-Jun ZHANG, Hong-Jie LI. Functional Markers Reveal Genetic Variations in Wheat Improved Cultivars and Landraces from Xinjiang [J]. Acta Agronomica Sinica, 2018, 44(05): 657-671.
[11] De-Hui ZHAO, Yong Zhang, De-Sen WANG, Ling HUANG, Xin-Min CHEN, Yong-Gui XIAO, Jun YAN, Yan ZHANG, Zhong-Hu HE. Pan Bread and Steamed Bread Qualities of Novel-Released Cultivars in Northern Winter Wheat Region of China [J]. Acta Agronomica Sinica, 2018, 44(05): 697-705.
Full text



No Suggested Reading articles found!