Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (6): 1188-1196.doi: 10.3724/SP.J.1006.2021.01053

• RESEARCH NOTES • Previous Articles     Next Articles

Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat

HAN Yu-Zhou1(), ZHANG Yong*(), YANG Yang1, GU Zheng-Zhong2, WU Ke3, XIE Quan1,*(), KONG Zhong-Xin1,*(), JIA Hai-Yan1, MA Zheng-Qiang1   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
    2Huai’an Academy of Agricultural Sciences, Huai’an 223001, Jiangsu, China
    3Tai’an Academy of Agricultural Sciences, Tai’an 271000, Shandong, China
  • Received:2020-06-27 Accepted:2020-12-01 Online:2021-06-12 Published:2020-12-31
  • Contact: ZHANG Yong,XIE Quan,KONG Zhong-Xin E-mail:2016101115@njau.edu.cn;2017101102@njau.edu.cn;quanxie@njau.edu.cn;zhxkong@njau.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2016YFD0100402);The National Natural Science Foundation of China(31801354);The National Natural Science Foundation of China(31871620);The Innovation and Entrepreneurship Talents Program of Jiangsu


Plant height affects directly the yield potential of wheat, and constitutes an important component of plant resistance to lodging. Although a large number of QTLs for plant height were detected, most of them have not been evaluated for their genetic effects yet. In the previous study, a major QTL Qph.nau-5B controlling wheat plant height was identified through association mapping in wheat variety collection. To evaluate the dwarfing effect of this QTL, three near-isogenic lines (NILs) with different alleles of Qph.nau-5B were developed using marker-assisted selection with Nanda 2419, Jichun 1016, and Zhengmai 9023 as donor and Zhongyou 9507 as receptor. The recipient genome compositions of these NILs were higher than 93%. Seven independent field trials were conducted and revealed that, compared with the recurrent parent, all NILs indicated a significant decrease in plant height (11.1 cm or 10.3% on average). Three alleles of Qph.nau-5B showed different degrees of dwarfing effects. The alleles coming from Jichun 1016 and Zhengmai 9023 displayed a similar effect on plant height (12.4 cm) in all environments, stronger than that of Nanda 2419 (8.6 cm). However, the relative dwarfism effects of different alleles were affected by different environments. Further analysis elucidated that this QTL had little detrimental influence on other agronomical traits such as spike number per plant, spike length and 1000-grain weight. These results suggested the breeding value of Qph.nau-5B that would be utilized for molecular design breeding of plant architecture in wheat.

Key words: wheat (Triticum aestivum), plant height, QTL, Qph.nau-5B, near-isogenic lines (NILs), marker-assisted selection

Table 1

Parents, generation and recipient genome compositions of Qph.nau-5B near-isogenic lines (NILs)"

Donor parents
Recurrent parent
Recipient genome composition (%)
NIL-ND 南大2419 Nanda 2419 中优9507 Zhongyou 9507 BC4F2 96.8
NIL-JC 吉春1016 Jichun 1016 中优9507 Zhongyou 9507 BC4F2 93.3
NIL-ZM 郑麦9023 Zhengmai 9023 中优9507 Zhongyou 9507 BC4F2 98.4

Table 2

Effects of different variation factors on plant height"

变异因子 Variation factors FF-value PP-value
基因型 Genotype 113.95 <0.0001
环境 Environment 218.02 <0.0001
基因型 × 环境 Genotype × Environment 5.58 <0.0001

Fig. 1

Plant height of the NILs with different alleles of Qph.nau-5B and their recurrent parent A: average plant height under seven environments; B-H: plant height in individual environments; ZY: the recurrent parent Zhongyou 9507. Different lowercases on the bars indicate significant differences at P = 0.05."

Table 3

Spike number per plant of the NILs with different alleles of Qph.nau-5B and their recurrent parent"

株系Line 2017HA 2018HA 2019HA 2018JP 2019LH 2017TA 2018TA
中优9507 Zhongyou 9507 9.2±0.5 6.3±0.7 6.8±0.3 6.3±0.4 6.9±0.4 22.9±1.0 14.6±0.1
NIL-ND 8.7±0.3 6.0±0.7 7.8±2.4 5.2±0.4 21.4±0.9 15.6±1.3
NIL-JC 9.0±0.5 5.8±0.4 6.2±0.1 5.8±0.1 14.8±0.4
NIL-ZM 8.1±0.4 5.7±1.5 7.4±0.7 6.3±0.4 6.6±0.0 19.5±0.8* 15.6±0.4

Table 4

Spike length of the NILs with different alleles of Qph.nau-5B and their recurrent parent"

株系Line 2017HA 2018HA 2019HA 2018JP 2019LH 2017TA 2018TA
中优9507 Zhongyou 9507 9.7±0.1 9.1±0.1 10.5±0.1 9.7±0.1 10.8±0.2 11.3±0.2 9.9±0.1
NIL-ND 9.8±0.1 9.1±0.1 10.8±0.1 9.9±0.5 10.8±0.0 11.6±0.2 9.6±0.3
NIL-JC 10.3±0.2** 10.7±0.1** 10.4±0.9 11.9±0.3* 10.0±0.3
NIL-ZM 9.4±0.2 10.8±0.4 9.6±0.2 10.8±0.5 11.7±0.2 9.9±0.3

Table 5

Thousand-grain weight of the NILs with different alleles of Qph.nau-5B and their recurrent parent"

株系Line 2017HA 2018HA 2019HA 2018JP 2019LH 2017TA 2018TA
中优9507 Zhongyou 9507 52.4±0.4 51.7±1.1 49.2±0.0 51.4±3.0 51.1±0.6 59.1±0.8 53.7±1.1
NIL-ND 51.9±0.4 50.4±0.9 49.1±4.8 52.0±3.0 50.6±1.3 57.1±0.7 50.6±0.4*
NIL-JC 53.3±0.8 52.8±1.7* 54.6±1.7 53.9±0.4 54.4±0.9* 49.1±2.1**
NIL-ZM 52.9±0.8 54.8±1.7* 50.6±1.1 53.7±1.4 52.6±0.6 56.9±0.4 51.4±1.2
[1] 李杏普, 兰素缺, 李孟军. 小麦矮秆基因. 北京: 中国农业出版社, 2009. pp 1-3.
Li X P, Lan S Q, Li M J. Wheat Dwarfing Genes. Beijing: China Agriculture Press, 2009. pp 1-3(in Chinese).
[2] Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica, 2010,174:447-458.
[3] Wu X, Wang Z, Chang X, Jing R. Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J Exp Bot, 2010,61:2923-2937.
pmid: 20497970
[4] Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet, 2011,122:1517-1536.
[5] Yang T, Zhang X, Liu H, Wang Z. Chromosomal arm location of a dominant dwarfing gene Rht21 in common wheat variety- XN0004. Acta Univ Agric Boreali-Occident, 1993,21:13-17.
[6] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X C. Catalogue of gene symbols for wheat. In: Ogihara Y, Takumi S, Handa H, eds. Proceedings of the 12th International Wheat Genetics Symposium. Yokohama, Japan, 2013. pp 8-13.
[7] Chen S, Gao R, Wang H, Wen M, Xiao J, Bian N, Zhang R, Hu W, Cheng S, Bie T, Wang X. Characterization of a novel reduced height gene (Rht23) regulating panicle morphology and plant architecture in bread wheat. Euphytica, 2015,203:583-594.
[8] Tian X, Wen W, Xie L, Fu L, Xu D, Fu C, Wang D, Chen X, Xia X, Chen Q, He Z, Cao S. Molecular mapping of reduced plant height gene Rht24 in bread wheat. Front Plant Sci, 2017,8:1379-1379.
[9] Mo Y, Vanzetti L S, Hale I, Spagnolo E J, Guidobaldi F, Al-Oboudi J, Odle N, Pearce S, Helguera M, Dubcovsky J. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development. Theor Appl Genet, 2018,131:2021-2035.
[10] Ellis M H, Rebetzke G J, Azanza F, Richards R A, Spielmeyer W. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor Appl Genet, 2005,111:423-430.
[11] Hai L, Guo H, Wagner C, Xiao S, Friedt W. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci, 2008,175:226-232.
[12] McIntyre C L, Mathews K L, Rattey A, Chapman S C, Drenth J, Ghaderi M, Reynolds M, Shorter R. Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet, 2010,120:527-541.
pmid: 19865806
[13] Wüerschum T, Langer S M, Longin C F H. Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet, 2015,128:865-874.
[14] Chai L, Chen Z, Bian R, Zhai H, Cheng X, Peng H, Yao Y, Hu Z, Xin M, Guo W, Sun Q, Zhao A, Ni Z. Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theor Appl Genet, 2018,131:2621-2637.
[15] Zhou C, Xiong H, Li Y, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Ding Y, Song X, Liu L. Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.). J Integr Agric, 2020,19:1721-1730.
[16] Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M, Keller B. Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet, 2003,107:1226-1234.
[17] Liu G, Jia L, Lu L, Qin D, Zhang J, Guan P, Ni Z, Yao Y, Sun Q, Peng H. Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theor Appl Genet, 2014,127:2415-2432.
[18] Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J. Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed, 2012,29:159-171.
[19] Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature, 1999,400:256-261.
[20] Wen W, Deng Q, Jia H, Wei L, Wei J, Wan H, Yang L, Cao W, Ma Z. Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts. J Exp Bot, 2013,64:3299-3312.
pmid: 23918966
[21] Bazhenov M S, Divashuk M G, Amagai Y, Watanabe N, Karlov G I. Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker. Mol Breed, 2015,35:213.
[22] Li A, Yang W, Guo X, Liu D, Sun J, Zhang A. Isolation of a gibberellin-insensitive dwarfing gene,Rht-B1e, and development of an allele-specific PCR marker. Mol Breed, 2012,30:1443-1451.
[23] Pearce S, Saville R, Vaughan S P, Chandler P M, Wilhelm E P, Sparks C A, Al-Kaff N, Korolev A, Boulton M I, Phillips A L, Hedden P, Nicholson P, Thomas S G. Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Plant Physiol, 2011,157:1820-1831.
[24] Li Y, Xiao J, Wu J, Duan J, Liu Y, Ye X, Zhang X, Guo X, Gu Y, Zhang L, Jia J, Kong X. A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol, 2012,196:282-291.
[25] Fischer R A, Quail K J. The effect of major dwarfing genes on yield potential in spring wheats. Euphytica, 1990,46:51-56.
[26] Flintham J E, Borner A, Worland A J, Gale M D. Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci, 1997,128:11-25.
[27] Evans L T. Feeding the Ten Billion: Plants and Population Growth. Cambridge UK: Cambridge University Press, 1998. pp 20-137.
[28] Yan J, Zhang S. Effects of dwarfing genes on water use efficiency of bread wheat. Front Agric Sci Eng, 2017,4:126-134.
[29] Fick G N, Qualset C O. Seedling emergence, coleoptile length, and plant height relationships in crosses of dwarf and standard-height wheats. Euphytica, 1976,25:679-684.
[30] Allan R E. Agronomic comparisons between Rht1 and Rht2 semidwarf genes in winter wheat. Crop Sci, 1989,29:1103-1108.
[31] Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd N P, Fu X. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 2018,560:595-600.
[32] Flintham J E, Gale M D. The Tom Thumb dwarfing gene Rht3 in wheat: 2. Effects on height, yield and grain quality. Theor Appl Genet, 1983,66:249-256.
doi: 10.1007/BF00251155 pmid: 24263924
[33] 贾继增, 丁寿康, 李月华, 张辉. 中国小麦的主要矮秆基因及矮源的研究. 中国农业科学, 1992,25(1):1-5.
Jia J Z, Ding S K, Li Y H, Zhang H. Studies of main dwarf genes and dwarf resources on Chinese wheat. Sci Agric Sin, 1992,25(1):1-5 (in Chinese with English abstract).
[34] Tang N, Jiang Y, He B, Hu Y. The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Agric Sci China, 2009,8:1028-1038.
[35] 周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 张立平, 陈锋. 用微卫星标记鉴定中国小麦品种中Rht8矮秆基因的分布. 作物学报, 2003,29:810-814.
Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Zhang L P, Chen F. Rht8 dwarf gene distribution in Chinese wheats identified by microsatellite marker. Acta Agron Sin, 2003,29:810-814 (in Chinese with English abstract).
[36] 王玉叶, 张海萍, 来得娥, 赵秋霞, 常成, 马传喜. 257 份小麦品种资源中矮秆基因的分子检测. 安徽农业大学学报, 2013,40:860-866.
Wang Y Y, Zhang H P, Lai D E, Zhao Q X, Chang C, Ma C X. Detection of dwarf genes in 257 wheat variety resources using molecular markers. J Anhui Agric Univ, 40:860-866 (in Chinese with English abstract).
[37] 马东钦, 王晓伟, 许兰杰, 朱有朋, 詹克慧, 王冬梅. 黄淮麦区部分小麦种质资源中矮秆基因的分布. 河南农业大学学报, 2009,43(2):118-125.
Ma D Q, Wang X W, Xu L J, Zhu Y P, Zhan K H, Wang D M. Distribution of dwarfing genes derived from some wheat germplasms in Huang-Huai wheat area. J Henan Agric Univ, 2009,43(2):118-125 (in Chinese with English abstract).
[38] Zhang X, Yang S, Zhou Y, He Z, Xia X. Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn- sown Chinese wheats detected by molecular markers. Euphytica, 2006,152:109-116.
[39] 张德强, 宋晓朋, 冯洁, 马文洁, 武炳瑾, 张传量, 崔紫霞, 冯毅, 孙道杰. 黄淮麦区小麦品种矮秆基因Rht-B1bRht-D1bRht8的检测及其对农艺性状的影响. 麦类作物学报, 2016,36:975-981.
Zhang D Q, Song X P, Feng J, Ma W J, Wu B J, Zhang C L, Cui Z X, Feng Y, Sun D J. Detection of dwarf genes Rht-B1b, Rht-D1b and Rht8 in Huang-Huai Valley winter wheat areas and their influences on agronomic characteristics. J Triticeae Crop, 2016,36:975-981 (in Chinese with English abstract).
[40] 周晓变, 赵磊, 陈建辉, 阳霞, 王永彦, 张香粉, 闫雪芳, 董中东, 崔党群, 陈锋. 黄淮麦区小麦种质资源矮秆基因分布及其与农艺性状的关系. 麦类作物学报, 2017,37:997-1007.
Zhou X B, Zhao L, Chen J H, Yang X, Wang Y Y, Zhang X F, Yan X F, Dong Z D, Cui D Q, Chen F. Distribution of dwarf genes and their association with agronomic traits in bread wheat from the Yellow and Huai wheat region. J Triticeae Crop, 2017,37:997-1007 (in Chinese with English abstract).
[41] 周强, 袁中伟, 欧俊梅, 任勇, 杜小英, 陶军, 李生荣, 刘登才. 四川小麦主要矮秆基因的分子鉴定. 麦类作物学报, 2015,35:1624-1630.
Zhou Q, Yuan Z W, Ou J M, Ren Y, Du X Y, Tao J, Li S R, Liu D C. Molecular identification of the main dwarfing genes in wheat varieties in Sichuan. J Triticeae Crop, 2015,35:1624-1630 (in Chinese with English abstract).
[42] 杨松杰. 我国小麦品种(系)矮秆基因的分子检测. 新疆农业大学硕士学位论文,新疆乌鲁木齐, 2004.
Yang S J. Molecular Detection of Dwarfing Genes in Chinese Bread Wheat. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang,China, 2004 (in Chinese with English abstract).
[43] 刘秉华, 杨丽, 王山荭. 小麦4D染色体上基因Ms2Rht10和着丝点的连锁关系图. 国外农学——麦类作物, 1995, ( 5):36-38.
Liu B H, Yang L, Wang S H. Linkage map of the genes Ms2, Rht10 and centromere on chromosome 4D of wheat. Agron Abroad: Wheat Barley Triticale, 1995, ( 5):36-38 (in Chinese).
[44] Chen L, Phillips A L, Condon A G, Parry M A J, Hu Y. GA-responsive dwarfing gene Rht12 affects the developmental and agronomic traits in common bread wheat. PLoS One, 2013,8:e62285.
[45] Worland A J, Sayers E J, Börner A. The genetics and breeding potential of Rht12, a dominant dwarfing gene in wheat. Plant Breed, 1994,113:187-196.
[46] 万洪深. 小麦骨干亲本南大2419产量相关基因组区段的定位及其等位变异的效应. 南京农业大学博士学位论文,江苏南京, 2013.
Wan H S. Yield-related Genomic Regions of Founder Wheat Parent Nanda 2419 and the Effects of Their Allelic Variations. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu,China, 2013 (in Chinese with English abstract).
[47] Wu Y, Li M, He Z, Dreisigacker S, Wen W, Jin H, Zhai S, Li F, Gao F, Liu J, Wang R, Zhang P, Wan Y, Cao S, Xia X. Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. Theor Appl Genet, 2020,133:2431-2450.
[48] Zhao J, Wang Z, Liu H, Zhao J, Li T, Hou J, Zhang X, Hao C. Global status of 47 major wheat loci controlling yield, quality, adaptation and stress resistance selected over the last century. BMC Plant Biol, 2019,19:5.
[49] Li A, Yang W, Lou X, Liu D, Sun J, Guo X, Wang J, Li Y, Zhan K, Ling H, Zhang A. Novel natural allelic variations at the Rht-1 loci in wheat. J Integr Plant Biol, 2013,55:1026-1037.
doi: 10.1111/jipb.12103 pmid: 23992198
[50] Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet, 2008,117:181-189.
pmid: 18437345
[51] Haque M A, Martinek P, Watanabe N, Kuboyama T. Genetic mapping of gibberellic acid-sensitive genes for semi-dwarfism in durum wheat. Cereal Res Commun, 2011,39:171-178.
[52] Ma Z, Sorrells M E. Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci, 1995,35:1137-1143.
[53] 赵广才, 何中虎, 田奇卓, 刘利华, 李振华, 张文彪, 张全良. 农艺措施对中优9507小麦蛋白组分和加工品质的调节效应. 作物学报, 2003,29:408-412.
Zhao G C, He Z H, Tian Q Z, Liu L H, Li Z H, Zhang W B, Zhang Q L. Regulating effect of the treatment of agronomic practice on protein component and bread making quality in Zhongyou 9507 wheat. Acta Agron Sin, 2003,29:408-412 (in Chinese with English abstract).
[54] 冯洁, 许小宛, 李小东, 张传量, 崔紫霞, 冯毅, 孙道杰. 黄淮麦区小麦品种和CIMMYT材料的矮秆基因型及其对株高和胚芽鞘的影响. 麦类作物学报, 2018,38:668-673.
Feng J, Xu X W, Li X D, Zhang C L, Cui Z X, Feng Y, Sun D J. Dwarf genotype of wheat from Huang-Huai River wheat area and CIMMYT and their effects on plant height and coleoptile length. J Triticeae Crop, 2018,38:668-673 (in Chinese with English abstract).
[55] 许琦, 杨娜, 柴永峰, 杨淑巧, 赵智勇, 裴蕾, 郭文治, 刘跃鹏. 中国小麦主要矮秆基因的分布及其对株高的影响. 西北农业学报, 2014,23(5):59-64.
Xu Q, Yang N, Chai Y F, Yang S Q, Zhao Z Y, Pei L, Guo W Z, Liu Y P. Distribution and impact on plant height of major wheat dwarfing genes in China. Acta Agric Boreali-Occident Sin, 2014,23(5):59-64 (in Chinese with English abstract).
[56] Watson A, Ghosh S, Williams M J, Cuddy W S, Simmonds J, Rey M, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski N M, Breakspear A, Korolev A, Rayner T, Dixon L E, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters M J, DeLacy I H, Zhou J, Uauy C, Boden S A, Park R F, Wulff B B H, Hickey L T. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants, 2018,4:23-29.
pmid: 29292376
[57] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, Maccaferri M, Salvi S, Milner S G, Cattivelli L, Mastrangelo A M, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova A R, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards K J, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J, 2014,12:787-796.
pmid: 24646323
[58] Röder M S, Huang X Q, Börner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics, 2008,8:79-86.
doi: 10.1007/s10142-007-0053-8 pmid: 17554574
[59] Wu X, Cheng R, Xue S, Kong Z, Wan H, Li G, Huang Y, Jia H, Jia J, Zhang L, Ma Z. Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breed, 2014,33:129-138.
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[4] FU Mei-Yu, XIONG Hong-Chun, ZHOU Chun-Yun, GUO Hui-Jun, XIE Yong-Dun, ZHAO Lin-Shu, GU Jia-Yu, ZHAO Shi-Rong, DING Yu-Ping, XU Yan-Hao, LIU Lu-Xiang. Genetic analysis of wheat dwarf mutant je0098 and molecular mapping of dwarfing gene [J]. Acta Agronomica Sinica, 2022, 48(3): 580-589.
[5] MA Hong-Bo, LIU Dong-Tao, FENG Guo-Hua, WANG Jing, ZHU Xue-Cheng, ZHANG Hui-Yun, LIU Jing, LIU Li-Wei, YI Yuan. Application of Fhb1 gene in wheat breeding programs for the Yellow-Huai Rivers valley winter wheat zone of China [J]. Acta Agronomica Sinica, 2022, 48(3): 747-758.
[6] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[7] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[8] WANG Ying, GAO Fang, LIU Zhao-Xin, ZHAO Ji-Hao, LAI Hua-Jiang, PAN Xiao-Yi, BI Chen, LI Xiang-Dong, YANG Dong-Qing. Identification of gene co-expression modules of peanut main stem growth by WGCNA [J]. Acta Agronomica Sinica, 2021, 47(9): 1639-1653.
[9] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[10] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[11] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[12] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[13] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[14] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
[15] MENG Jiang-Yu, LIANG Guang-Wei, HE Ya-Jun, QIAN Wei. QTL mapping of salt and drought tolerance related traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 462-471.
Full text



No Suggested Reading articles found!