Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (6): 1197-1202.doi: 10.3724/SP.J.1006.2021.03037

• RESEARCH NOTES • Previous Articles    

Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton

MA Yan-Bin1(), WANG Xia2, LI Huan-Li1, WANG Pin3, ZHANG Jian-Cheng1, WEN Jin1, WANG Xin-Sheng1, SONG Mei-Fang3, WU Xia1,*(), YANG Jian-Ping4,*()   

  1. 1Institute of Cotton Research, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Yuncheng 044000, Shanxi, China
    2Department of Life Science, Yuncheng University, Yuncheng 044000, Shanxi, China
    3Beijing Radiation Center, Beijing 100875, China
    4College of Agronomy, Henan Agriculture University, Zhengzhou 450002, Henan, China
  • Received:2020-06-15 Accepted:2020-11-13 Online:2021-06-12 Published:2020-12-28
  • Contact: WU Xia,YANG Jian-Ping E-mail:myb0517@163.com;wuxiab8270@126.com;jpyang@henau.edu.cn
  • Supported by:
    The Shanxi Province Key Research and Development Program(201703D211007-3);The National Natural Science Foundation of China(31201253);The National Natural Science Foundation of China(31871709);The National Major Project for Developing New GM Crops(2016ZX08010-003);The Basic Research Program of Agricultural Sciences of Shanxi Academy(YGJPY2007);The Doctoral Research Project of Yuncheng College(YQ-2017 008)

Abstract:

In order to evaluate the potential value of maize phytochrome A1 gene (ZmPHYA1) in the improvement of cotton germplasm resources, we transferred it into upland cotton (Gossypium hirsutum L.) R15 via Agrobacterium tumefaciens-mediated transformation with glufosinate-resistance gene as selection marker. The regenerated cotton plants were obtained through callus induction, antibiotic resistance screening and differentiation induction. After screening the regenerated plants by the herbicide glufosinate ammonium in the field, PCR detection confirmed that both the target bands, including 256 bp of the glufosinate gene and 217 bp band of ZmPHYA1 gene, were detected in the homozygous transgenic plants. In addition, the exogenous ZmPHYA1 protein of about 170 kD was also checked by immuno-blot in three transgenic cotton lines. The results showed that the specific proteins could be detected in different tissues, including leaves, flowers and stems in the transgenic Line 9. The plant height of transgenic Line 9, Line 14, Line 41 were significantly shorter than that of the wild type, while the differences of other yield-related agronomic traits were not observed between the transgenic lines and the wild type. In this study, new cotton germplasms with glufosinate resistance and ZmPHYA1 gene were successfully obtained, which provided a material source for further utilization of phytochrome gene to innovate germplasm resources.

Key words: Gossypium hirsutum, maize phytochrome A1, protein expression, glufosinate resistance

Table 1

PCR primers of objective genes in transgenic cotton"

引物
Primers
序列
Primer sequences (5′-3′)
片段长度
Expected size (bp)
Basta-F ACCATCGTCAACCACTACATC 256
Basta-R GCTGCCAGAAA CCCACGTCAT
ZmPHYA1-1641F CAGCAGAAGGATGCACCCTAGGCTG 217
ZmPHYA1-1857R CGCTTGCAGTTCGGCGAGCCCATCA

Fig. 1

Transformation of exogenous ZmPHYA1 gene and the PCR detection of glufosinate-resistance genes in cotton plants A: callus screening and induction of cotton hypocotyl after Agrobacterium infection; B: callus induction and proliferation; C: somatic embyos formed from embryonic callus; D: regeneration plants; E: survived regenerated graft plants; F: PCR detection of glufosinate-resistance gene in some regenerated plants. Among them, Lane 1, 2 and 4 denote Line 9, Line 14, and Line 41, respectively, 3 denotes the non-transgenic regenerated plant, “-” denotes WT control, and “+” denotes plasmid positive amplification. M: DNA marker."

Fig. 2

Glufosinate resistant identification and PCR detection of exogenous ZmPHYA1 gene in cotton A, B: different positive plant offspring detected for herbicide resistance; C: isolated offspring of non-resistant plants; D: PCR detection of ZmPHYA1 in some resistant plants. Among them, “+” denotes plasmid positive amplification, 1 and 2 denote single progeny plant of Line 9, 3 and 4 denote single progeny plant of Line 14, 5 and 6 denote single progeny plant of Line 41. “-” denotes WT; M: DNA marker."

Fig. 3

Immuno-blot detection of exogenous ZmPHYA1 protein expression in transgenic cotton lines M: protein markers; WT: transgenic cotton receptor R15; non-transgenic line: non-resistant plants isolated from transgenic lines. Lane #9, #14, #41 represent Line 9, Line 14 and Line 41 of transformed exogenous ZmPHYA1 gene plants. “+” is positive cotton plant using the homologous gene ZmPHYA2 (3393 bp) in the transformed maize."

Fig. 4

Comparison of different agronomic traits in transgenic plants A: plant height phenotype of transgenic lines, Bar = 10 cm; B is the fiber length diagram of Line 9, Line 14 and Line 41, respectively, Bar = 1 cm. Histogram of C, D, E, and F represent the plant height, average weight of single boll seed cotton, lint percentage and fiber length of control (WT), Line 9, Line 14, and Line 41 lines, respectively. * indicates significant differences at P < 0.05."

[1] Schepens I, Duek P, Fankhauser C. Phytochrome-mediated light signalling in Arabidopsis. Curr Opin Plant Biol, 2004,7:564-569.
doi: 10.1016/j.pbi.2004.07.004 pmid: 15337099
[2] Wang H Y, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants. Trends Plant Sci, 2003,8:172-178.
doi: 10.1016/S1360-1385(03)00049-9 pmid: 12711229
[3] Basu D, Dehesh K Schneider-Poetsch H J, Harrington S E, McCouch S R, Quail P H. Rice PHYC gene: structure, expression, map position and evolution. Plant Mol Biol, 2000,44:27-42.
doi: 10.1023/a:1006488119301 pmid: 11094977
[4] Dehesh K, Tepperman J, Christensen A H, Quail P H. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet, 1991,225:305-313.
doi: 10.1007/BF00269863 pmid: 2005872
[5] Takano M, Inagaki N, Xie X Z, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005,17:3311-3325.
pmid: 16278346
[6] Takano M, Kanegae H, Shinomura T, Miyao A, Hirochika H, Furuya M. Isolation and characterization of rice phytochrome a mutants. Plant Cell, 2001,13:521-534.
doi: 10.1105/tpc.13.3.521 pmid: 11251094
[7] Ogihara Y, Shimizu H, Hasegawa K, Tsujimoto H, Sasakuma T. Chromosome assignment of four photosynthesis-related genes and their variability in wheat species. Theor Appl Genet, 1994,88:383-394.
doi: 10.1007/BF00223649 pmid: 24186023
[8] 王霞, 马燕斌, 宋梅芳, 孟凡华, 李秀全, 杨丽, 吴霞, 杨克诚, 杨建平. 小麦TaPHYA基因亚家族的克隆及表达分析. 作物学报, 2012,38:1354-1360.
Wang X, Ma Y B, Song M F, Meng F H, Li X Q, Yang L, Wu X, Yang K C, Yang J P. Isolation and expression patterns of TaPHYA gene subfamily in common wheat. Acta Agron Sin, 2012,38:1354-1360 (in Chinese with English abstract).
[9] Sheehan M J, Farmer P R, Brutnell T P. Structure and expression of maize phytochrome family homeologs. Genetics, 2004,167:1395-1405.
doi: 10.1534/genetics.103.026096 pmid: 15280251
[10] Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA, 1997,94:6809-6814.
pmid: 11038553
[11] 马燕斌, 李壮, 蔡应繁, 周朋, 肖阳, 黄玉碧, 付凤玲, 潘光堂, 杨克诚, 杨建平. 玉米2个光敏色素A基因的克隆、蛋白结构与光诱导表达模式. 中国农业科学, 2010,43:1985-1993.
Ma Y B, Li Z, Cai Y F, Zhou P, Xiao Y, Huang Y B, Fu F L, Pan G T, Yang K C, Yang J P. Isolation and primary analysis of protein structures and expression patterns responding to different light treatments of two phytochrome A genes in maize (Zea mays L.). Sci Agric Sin, 2010,43:1985-1993 (in Chinese with English abstract).
[12] Boylan M T, Quil P H. Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell, 1989,8:765-773.
[13] Jordan E T, Hatfield P M, Hondred D, Talon M, Zeevaart J A, Vierstra R D. Phytochrome A overexpression in transgenic tobacco: correlation of dwarf phenotype with high concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Plant Physiol, 1995,107:797-805.
doi: 10.1104/pp.107.3.797 pmid: 7716243
[14] Yang T, Lv R, Li J H, Lin H H, Xi D. Phytochrome A and B negatively regulate salt stress tolerance of nicotiana tobacum via ABA-jasmonic acid synergisticc ross-talk. Plant Cell Physiol, 2018,59:2381-2393.
doi: 10.1093/pcp/pcy164 pmid: 30124925
[15] Thiele A, Herold M, Lenk I, Quail P H, Gatz C. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol, 1999,120:73-82.
pmid: 10318685
[16] Garg A K, Sawers R J H, Wang H, Kim J K, Walker J M, Brutnell T P, Parthasarathy M V, Vierstra R D, Wu R J. Light-regulated overexpression of an Arabidopsis phytochrome a gene in rice alters plant architecture and increases grain yield. Planta, 2006,223:627-636.
doi: 10.1007/s00425-005-0101-3 pmid: 16136335
[17] Kong S G, Lee D S, Kwak S N, Kim J K, Sohn J K, Kim I S. Characterization of sunlight-grown transgenic rice plants expressing Arabidopsis phytochrome A. Mol Breed, 2004,14:35-46.
[18] Iwamoto M, Kiyota S, Hanada A, Yamaguchi S, Takano M. The multiple contributions of phytochromes to the control of internode elongation in rice. Plant Physiol, 2011,157:1187-1195.
doi: 10.1104/pp.111.184861 pmid: 21911595
[19] 李燕娥, 朱祯, 陈志贤, 吴霞, 王伟, 李淑君, 朱玉, 焦改丽, 吴家和, 徐鸿林, 范小平, 孟晋红, 肖桂芳, 李向辉. 豇豆胰蛋白酶抑制剂转基因棉花的获得. 棉花学报, 1998,10(5):3-5.
Li Y E, Zhu Z, Chen Z X, Wu X, Wang W, Li S J, Zhu Y, Jiao G L, Wu J H, Xu H L, Fan X P, Meng J H, Xiao G F, Li X H. Obtaining transgenic cotton plants with cowpea trypsin inhibitor gene. Cotton Sci, 1998,10(5):3-5 (in Chinese with English abstract).
[20] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993,11:122-127.
[21] 王霞, 马燕斌, 吴霞, 沈志成, 林朝阳, 李朋波, 孙璇, 王新胜, 李燕娥, 李贵全. 转G10aroA棉花株系的获得及分子生物学鉴定. 中国农业科学, 2014,47:1051-1057.
Wang X, Ma Y B, Wu X, Shen Z C, Lin C Y, Li P B, Sun X, Wang X S, Li Y E, Li G Q. Molecular biology identification of transgenic cotton lines expressing exogenous G10aroA gene. Sci Agric Sin, 2014,47:1051-1057 (in Chinese with English abstract).
[22] Christ B, Hochstrasser R, Guyer L, Francisco R, Aubry S, Hörtensteiner S, Weng J K. Non-specific activities of the major herbicide-resistance gene BAR. Nat Plants, 2017,3:937-945.
doi: 10.1038/s41477-017-0061-1 pmid: 29180815
[23] Siruguri V, Bharatraj D K, Vankudavath R N, Mendu V V R, Gupta V, Goodman R E. Evaluation of Bar, Barnase, and Barstar recombinant proteins expressed in genetically engineered Brassica juncea (Indian mustard) for potential risks of food allergy using bioinformatics and literature searches. Food Chem Toxicol, 2015,83:93-102.
doi: 10.1016/j.fct.2015.06.003 pmid: 26079618
[24] Carbonari C A, Latorre D O, Gomes G L G C, Velini E D, Owens D K, Pan Z Q, Dayan FD E. Resistance to glufosinate is proportional to phosphinothricin acetyltransferase expression and activity in LibertyLink and WideStrike cotton. Planta, 2016,243:925-933.
doi: 10.1007/s00425-015-2457-3 pmid: 26733464
[25] Hérouet C, Esdaile D G, Mallyon B A, Debruyne E, Schulz A, Currier T, Hendrickx K, Klis R J V D Rouan D. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate- ammonium herbicide in transgenic plants. Regul Toxicol Pharm, 2005,41:134-149.
[26] Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu J Z, Zhu Y, Yu S. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530.
doi: 10.1038/nbt.3208 pmid: 25893780
[1] ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689.
[2] XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671.
[3] Zuo-Min WANG,Jin LIU,Shi-Chao SUN,Xin-Yu ZHANG,Fei XUE,Yan-Jun LI,Jie SUN. Identification and Expression Analysis of Multidrug and Toxic Compound Extrusion Protein Family Genes in Colored Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1380-1392.
[4] Li-Xia QIN, Jing LI, Huan-Yang ZHANG, Sheng LI, Meng-Jie ZHU, Gai-Li JIAO, Shen-Jie WU. Cloning and Expression Analysis of Galactosyltransferase Gene GhGalT1 Promoter in Cotton [J]. Acta Agronomica Sinica, 2018, 44(02): 218-226.
[5] LI Meng-Jiao,Lü Rui-Hua,YU Jian,CAI Yu-Xiang,WANG Chuan-Hong,ZHAO Ai-Chun,LU Cheng,YU Mao-De*. Cloning and Functional Analysis of Polygalacturonase Genes from Ciboria shiraiana [J]. Acta Agron Sin, 2016, 42(02): 199-200.
[6] BI Hui-Hui, YANG Hua-Rui, MA Jun-Hui, LIU Lu-Xiang, WANG Cheng-She, XU Xi-Tang, ZOU Shu-Fang, XIE Yan-Zhou. Analysis of Protein Expression at Different Microspore Development Stages in Wheat Cultivar Shaannong 138 [J]. Acta Agron Sin, 2012, 38(03): 462-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!