Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (10): 1442-1447.doi: 10.3724/SP.J.1006.2018.01442


Molecular and Cytogenetic Identification of Triticum aestivum-Leymus racemosus Translocation Line T5AS-7LrL·7LrS

Lin-Sheng WANG(),Ya-Li ZHANG,Guang-Hui NAN   

  1. Key Laboratory of Crop Genetic Improvement and Germplasm Innovation / College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
  • Received:2018-03-07 Accepted:2018-06-12 Online:2018-10-10 Published:2018-07-17
  • Contact: Lin-Sheng WANG E-mail:964965931@qq.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31501301);the International Cooperation Program of Henan Province(172102410052);the Natural Science Research Program of Henan Education Department(2011A180011)


Leymus racemosus is highly resistant to wheat scab. The transfer of resistance genes from L. racemosus to common wheat (Triticum aestivum) is important for broadening the resistant sources against scab in common wheat. In this study, the pollen of DA7Lr, a T. aestivum-L. racemosus disomic addition line with scab resistance, was irradiated with 60Co-γ ray at 1200 Rad (100 Rad min -1) before pollinating to emasculated T. aestivum cv. Chinese Spring. One plant with one translocation chromosome was detected in the M1 generation by GISH. This plant was then self-pollinated and the pollen mother cells (PMCs) of the offspring plants with two translocation chromosomes were cytologically observed, and one ring bivalent was found at meiotic metaphase I, indicating that the plant with two translocation chromosomes was one translocation homozygote. The translocation line was proved to be T5AS-7LrL·7LrS by C-banding, and sequential GISH-FISH using Oligo-pAs1-2 and Oligo-pSc119.2-2 as probes. Three EST-STS markers (BE591127, BQ168298, and BE591737) were identified to be able to track the T5AS-7LrL·7LrS line. The translocation line also serves as an resistant source against wheat scab in wheat breeding programs.

Key words: Triticum aestivum-Leymus racemosus translocation line, molecular cytogenetics, scab resistance, 60Co-γ ray

Table 1

Primers used as specific markers for discriminating translocation chromosome"

Primer name
序列 Sequence (5′-3′) EST染色体
EST chromosome
Annealing temperature (°C)
正向 Froward 反向 Reverse

Fig. 1

Fluorescence in situ hybridization (FISH) of translocation line T5AS-7LrL·7LrS (2n = 44) Sequential GISH-FISH of mitotic metaphase chromosomes. In panel A, L. racemosus genomic DNA was labeled with fluorescein-12-dUTP and visualized with green signals. In panel B, Oligo-pSc119.2-2 was labeled with TARAM and visualized with red signals ,and Oligo-pAs1-2 was labeled with 6-FAM and visualized with green signals. The arrows show translocation chromosomes."

Fig. 2

C-banding and FISH of translocation chromosome T5AS-7LrL·7LrS Chromosomes from left to right are C-banded 5A, C-banded T5AS-7LrL·7LrS, FISH T5AS-7LrL·7LrS, T5AS-7LrL·7LrS with red Oligo-pSc119.2-2, 5A with green Oligo-pSc119.2-2, FISH 7Lr, and C-banded 7Lr."

Fig. 3

Chromosome FISH at MI of PMC of translocation line T5AS-7LrL·7LrS L. racemosus genomic DNA was labeled with Fluorescein-l2-dUTP and visualized with green signals. The arrow shows the ring bivalent formed by a pair of translocation chromosomes T5AS-7LrL·7LrS."

Fig. 4

PCR profiles amplified with primers BE591127, BQ168298, and BE591737 1: Chinese Spring; 2: Leymus racemosus (Lr); 3: DA7Lr; 4: T5AS-7LrL·7LrS."

Table 1

Field evaluation of scab resistance (diseased spikelet rate) in different materials (%)"

大田鉴定 Identified in field
2015 2016 2017
中国春 Chinese Spring 35.27 39.58±7.96 30.90±8.92
T5AS-7LrL·7LrS 8.70 11.22±5.12** 9.67±7.51**
苏麦3号Sumai 3 3.90 6.35±3.12** 5.69±2.14**
绵阳85-45 Mianyang 85-45 49.23 56.32±11.26** 47.83±13.25**

Fig. 5

Evaluation of scab resistance of translocation line T5AS-7LrL·7LrS A: T5AS-7LrL·7LrS; B: Chinese Spring; C: Mianyang 85-45; D: Sumai 3."

[1] McGuire P E, Dvorak J . High salt-tolerance potential in wheatgrasses. Crop Sci, 1981,21:702-705
doi: 10.2135/cropsci1981.0011183X002100050018x
[2] Mujeeb-Kazi A, Bekele G T, Mirand J L. Incorporation of alien genetic information from Elymus giganteus into Triticum aestivum. In: Proc the 6th Int Wheat Genet Symp, Kyoto, Japan, 1983. pp 223-231
[3] Mujeeb-Kazi A, Rodriguez R . An intergeneric hybrid of Triticum aestivum L. × Elymus giganteus. J Hered, 1981,72:253-256
[4] 陈佩度, 王兆悌, 王苏玲, 黄俐, 王裕中, 刘大钧 . 将大赖草种质转移给普通小麦的研究: III. 抗赤霉病异附加系选育. 遗传学报, 1995,22:206-210
Chen P D, Wang Z T, Wang S L, Huang L, Wang Y Z, Liu D J . Transfer of useful germplasm from Leymus racemosus Lam. to common wheat: III. Development of addition lines with wheat scab resistance. Acta Genet Sin, 1995,22:206-210 (in Chinese with English abstract)
[5] Qi L L, Wang S L, Chen P D . Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet, 1997,95:1084-1091
[6] 刘文轩, 陈佩度, 刘大钧 . 利用减数分裂期成株电离辐射选育小麦-大赖草易位系的研究. 植物学报, 1999,41:463-467
doi: 10.3321/j.issn:1672-9072.1999.05.003
Liu W X, Chen P D, Liu D J . Development of Triticum aestivum-Leymus racemosus translocation lines by irradiating adult plants at meiosis. Acta Bot Sin, 1999,41:463-467 (in Chinese with English abstract)
doi: 10.3321/j.issn:1672-9072.1999.05.003
[7] 刘文轩, 陈佩度, 刘大钧 . 利用花粉辐射诱发普通小麦与大赖草染色体易位的研究. 遗传学报, 2000,27:44-49
doi: 10.1007/BF02983442
Liu W X, Chen P D, Liu D J . Studies of the development of Triticum aestivum-Leymus racemosus translocation lines by pollen irradiation. Acta Genet Sin, 2000,27:44-49 (in Chinese with English abstract)
doi: 10.1007/BF02983442
[8] 刘文轩, 陈佩度, 刘大钧 . 一个普通小麦-大赖草易位系T01的选育与鉴定. 作物学报, 2000,26:305-309
doi: 10.3321/j.issn:0496-3490.2000.03.009
Liu W X, Chen P D, Liu D J . Selection, breeding and identification of T01: a Triticum aestivum-Leymus racemosus translocation line. Acta Agron Sin, 2000,26:305-309 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2000.03.009
[9] 杨宝军, 窦全文, 刘文轩, 周波, 陈佩度 . 普通小麦-大赖草易位系NAU601和NAU618的选育及双端二体测交分析. 遗传学报, 2002,29:350-354
Yang B J, Dou Q W, Liu W X, Zhou B, Chen P D . Development of Triticum aestivum-Leymus racemosus translocation lines NAU601 and NAU618 and their test-cross analysis with double ditelosomic. Acta Genet Sin, 2002,29:350-354 (in Chinese with English abstract)
[10] Yuan J H, Chen P D, Liu D J . Development of Triticum aestivum- Leymus racemosus translocation lines using gametocidal chromosomes. Sci China Ser C: Life Sci, 2003,46:522-530
[11] Wang L S, Chen P D, Wang X E . Molecular cytogenetic analysis of Triticum aestivum-Leymus racemosus reciprocal chromosomal translocation T7DS·5LrL/T5LrS·7DL. Chin Sci Bull, 2010,55:1026-1031
[12] 崔承齐, 王林生, 陈佩度 . 普通小麦-大赖草易位系T7BS·7Lr#1S和T2AS·2AL-7Lr#1S的分子细胞遗传学鉴定. 作物学报, 2013,39:191-197
Cui C Q, Wang L S, Chen P D . Molecular and cytogenetic identification of Triticum aestivum-Leymus racemosus translocation lines T7BS·7Lr#1S and T2AS·2AL-7Lr#1S. Acta Agron Sin, 2013,39:191-197 (in Chinese with English abstract)
[13] Wang L S, Chen P D . Development of Triticum aestivum-Leymus racemosus sub.7Lr#1S(7A) with resistance to wheat scab and their analysis with meiosis. Chin Sci Bull, 2008,53:3522-3529
[14] Qi L L, Pumphrey M O, Friebe B, Gill B S . Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet, 2008,117:1155-1166 (in Chinese with English abstract)
[15] Gill B S, Friebe B . Standard karyotype and system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome, 1991,34:830-839
[16] Mukai Y, Nakahara Y, Yamamoto M . Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993,36:489-494
[17] Zhang P, Li W L, Friebe B, Gill B S . Simultaneous painting of three genomes in hexaploid wheat by BACK-FISH. Genome, 2004,47:979-878
doi: 10.1139/g04-042 pmid: 15499412
[18] Pedersen C, Linde-Laursen I . Chromosomal locations of four minor rDNA loci and a marker microsatellite sequence in barley. Chromos Res, 1994,2:65-71
doi: 10.1007/BF01539456 pmid: 8162323
[19] Tang Z X, Yang Z J, Fu S L . Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet, 2014,55:313-318
doi: 10.1007/s13353-014-0215-z
[20] Sharp P J, Cao S, Desai S, Gale M D . The isolation characterization and application in the Triticae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet, 1989,78:342-348
[21] 王裕中, 杨新宁, 尚庆璞 . 小麦赤霉病抗性鉴定技术的改进及其抗源的开拓. 中国农业科学, 1982,23(5):66-67
Wang Y Z, Yang X N, Shang Q P . The improvement of identification technique of scab (Gibberella zeae Petch.) resistance of wheat and the development of resistant sources. Sci Agric Sin, 1982,23(5):66-67 (in Chinese with English abstract)
[22] Sears E R . The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp Biol, 1956,9:1-22
[23] Sharma D, Knott D R . The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Genome, 1966,8:137-143
[24] Sears E, Gustafson J . Use of radiation to transfer alien chromosome segments to wheat. Crop Sci, 1993,33:897-901
doi: 10.2135/cropsci1993.0011183X003300050004x
[25] Friebe B, Jiang J M, Raupp W J, McIntosh R A, Gill B S . Characterization of wheat-alien translocations conferring resistance to diseases and pets: current status. Euphytica, 1996,91:59-87
doi: 10.1007/BF00035277
[26] Luan Y, Wang X, Liu W, Li C, Zhang J, Gao A, Wang Y, Yang X, Li L . Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta, 2010,232:501-510
[27] Zhang J, Liu W, Wu X, Yang X, Li X, Lu Y, Li L . An intercalary translocation from Agropyron cristatum 6P chromosome into common wheat confers enhanced kernel number per spike. Planta, 2016,244:853-864
[28] Song L, Lu Y, Zhang J, Pan C, Yang X, Li X, Liu W, Li L . Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet, 2016,129:1023-1034
[29] Chen P D, Qi L L, Zhou B, Zhang S Z, Liu D J . Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6A: I. Translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995,91:1125-1128
[30] 李桂萍, 陈佩度, 张守忠, 赵和 . 小麦-簇毛麦6VS/6AL易位染色体对小麦农艺性状的影响. 植物遗传资源报, 2011,12:744-749
Li G P, Chen P D, Zhang S Z, Zhao H . Effects of the 6VS/6AL translocation chromosome on agronomic characteristics of wheat. J Plant Genet Resour, 2011,12:744-749 (in Chinese with English abstract)
[31] Subbarao G V, Ban T, Masahiro K, Osamu I, Samejima H, Wang H Y, Pearse S J, Gopalakrishnan S, Nakahara K, Zakir Hossain A K M, Tsujimoto H, Berry W L . Can biological nitrification inhibition (BNI) genes from perennial Leymus racemosus(Triticeae) combat nitrification in wheat farming? Plant & Soil, 2007,299:55-64
[32] Subbarao G V, Sahrawat K L, Nakahara K, Rao I M, Ishitani M, Hash C T, Kishii M, Bonnett D G, Berry W L, Lata J C . A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI). Ann Bot, 2013,112:297-316
doi: 10.1093/aob/mcs230
[1] CUI Cheng-Qi,WANG Lin-Sheng,CHEN Pei-Du. Molecular and Cytogenetic Identification of Triticum aestivumLeymus racemosus Translocation Lines T7BS•7Lr#1S and T2AS•2AL-7Lr#1S [J]. Acta Agron Sin, 2013, 39(02): 191-197.
[2] Jiang Guo-liang;Wu Zhao-su. Studies on the Development of Scab Resistant Gene Pool in Wheat [J]. Acta Agron Sin, 1993, 19(05): 441-452.
Full text



No Suggested Reading articles found!