Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (5): 700-711.doi: 10.3724/SP.J.1006.2020.94107


Identification of PEPC genes from foxtail millet and its response to abiotic stress

Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU()   

  1. Millet Research Institute, Shanxi Academy of Agricultural Sciences / Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi 046011, Shanxi, China
  • Received:2019-07-24 Accepted:2020-01-15 Online:2020-05-12 Published:2020-02-14
  • Contact: Ai-Li YU E-mail:yuailimail@163.com
  • Supported by:
    This study was supported by the Project Plan of Shanxi Academy of Agricultural Sciences(YGJPY2009);This study was supported by the Project Plan of Shanxi Academy of Agricultural Sciences(YGG17021);This study was supported by the Project Plan of Shanxi Academy of Agricultural Sciences(YCX2019T05);the China Agricultural Research System(CARS-06-13.5-A23);the National Agricultural Environmental Data Center Observation and Detection Mission(ZX03S0410)


Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme in photosynthesis of C4 plants and plays an important role in a variety of metabolic and stress pathways. In this study, we identified six candidate PEPC genes from foxtail millet genome via sequence alignment. The characteristic parameters of all SiPEPC protein were very similar and the sequences were very conservative. All SiPEPC genes contained the PEPcase motif, which is the characteristic domain of PEPC gene. SiPEPCs were localized in cytoplasm, nucleus and mitochondrion. Promoter analysis identified a variety of light, hormonal, stress, and other growth-related cis-elements in the promoter sequences of SiPEPC members. The qRT-PCR expression profiles showed that the five SiPEPC genes (SiPEPC1, SiPEPC2, SiPEPC3, SiPEPC5, SiPEPC6) were induced by ABA, PEG, high salt and low temperature at seedling stage, indicating that five SiPEPC genes ate involved in abiotic signaling pathway at the seedling stage. The expression of five SiPEPC genes increased with the growth of foxtail millet under normal growth conditions, and increased significantly under drought stress at different growth stages, indicating that five SiPEPCs are involved in drought stress response at jointing, heading and filling stages. The weak light at jointing stage could induce the expression of five SiPEPC genes, while the expression level decreased sharply under moderate light intensity at jointing stage, moderate and weak light intensity at heading and filling stages, showing that light intensity seriously affects the expression of SiPEPC genes.

Key words: foxtail millet, phosphoenolpyruvate carboxylase, abiotic stress, expression analysis

Table 1

Primers used in this study"

Forward primer (5'-3')
Reverse primer (5'-3')

Table 2

Parameters of predicted foxtail millet PEPC genes"

Gene ID
Chr. location
length (bp)
No. of amino acid
Molecular weight (kD)
Intron number
Instability index
Aliphatic index
Grand average of hydropathicity
PEPcse domain location
SiPEPC1 Seita.1G020700 1784608-1791259 6652 965 5.83 109.82 9 48.48 87.36 -0.392 163-965
SiPEPC2 Seita.2G173700 26198697-26204510 5814 967 5.77 110.20 9 44.74 92.41 -0.351 164-967
SiPEPC3 Seita.4G175200 28034663-28043265 8603 964 5.95 109.98 8 45.83 85.81 -0.418 162-964
SiPEPC4 Seita.5G074200 6390259-6398514 8256 1032 7.14 114.89 20 52.09 93.87 -0.277 144-348, 414-1032
SiPEPC5 Seita.5G147000 13061164-13065839 4676 1015 5.89 113.53 6 49.05 87.69 -0.319 213-1015
SiPEPC6 Seita.5G324500 37380598-37387338 6741 969 5.70 110.44 9 44.10 89.79 -0.375 165-969

Fig. 1

Gene structure of SiPEPC genes"

Table 3

Prediction of subcellular localization of SiPEPC protein"

SiPEPC1 Cytoplasmic; nuclear; mitochondrial 3.395; 0.685; 0.414
SiPEPC2 Cytoplasmic; nuclear; mitochondrial 3.398; 0.831; 0.317
SiPEPC3 Cytoplasmic; nuclear; mitochondrial 3.679; 0.620; 0.321
SiPEPC4 Cytoplasmic; mitochondrial; nuclear 1.838; 1.290; 1.230
SiPEPC5 Cytoplasmic; mitochondrial; nuclear 2.258; 1.092; 0.472
SiPEPC6 Cytoplasmic; nuclear; mitochondrial 3.428; 0.758; 0.338

Table 4

Putative cis-elements in the promoter of SiPEPCs"

Typical sequence
Box 4 ATTAAT Light responsive element SiPEPC1, SiPEPC2, SiPEPC3
G-Box CACGTT Light responsive element SiPEPC1, SiPEPC2, SiPEPC3, SiPEPC4, SiPEPC5, SiPEPC6
GATA-motif AAGGATAAGG Light responsive element SiPEPC1, SiPEPC6
AE-box AGAAACAA Light responsive element SiPEPC2, SiPEPC4, SiPEPC6
GT1-motif GGTTAAT Light responsive element SiPEPC2, SiPEPC4, SiPEPC5
ACE GACACGTATG Light responsive element SiPEPC3, SiPEPC5
Sp1 GGGCGG Light responsive element SiPEPC3, SiPEPC4
ABRE ACGTG Abscisic acid responsiveness SiPEPC1, SiPEPC2, SiPEPC3, SiPEPC4, SiPEPC5
P-box CCTTTTG Gibberellin-responsive SiPEPC1, SiPEPC2
TATC-box TATCCCA Gibberellin-responsiveness SiPEPC2, SiPEPC4
GARE-motif TCTGTTG Gibberellin-responsive element SiPEPC6
TCA-element CCATCTTTTT Salicylic acid responsiveness SiPEPC1, SiPEPC2, SiPEPC5, SiPEPC6
ERE ATTTCATA Ethylene-responsive element SiPEPC2, SiPEPC4
CGTCA-motif CGTCA MeJA-responsiveness SiPEPC3, SiPEPC6
TGACG-motif TGACG MeJA-responsiveness SiPEPC3, SiPEPC6
TGA-element AACGAC Auxin-responsive element SiPEPC1, SiPEPC4
TC-rich repeats GTTTTCTTAC Defense and stress responsiveness SiPEPC1, SiPEPC3
LTR CCGAAA Low-temperature responsiveness SiPEPC2, SiPEPC3, SiPEPC4, SiPEPC6
WUN-motif TTATTACAT Wound-responsive element SiPEPC3
MBS CAACTG MYB binding site involved in drought-inducibility SiPEPC5
ARE AAACCA Anaerobic induction SiPEPC1, 3, 4, 6
CCGTCC-box CCGTCC Meristem specific activation SiPEPC1, 2, 4, 6
GC-motif CCCCCG Anoxic specific inducibility SiPEPC1, 2, 6
O2-site GATGACATGG Zein metabolism regulation SiPEPC2, 4, 5
RY-element CATGCATG Seed-specific regulation SiPEPC3
circadian CAAAGATATC Circadian control SiPEPC5
CAT-box GCCACT Meristem expression SiPEPC6

Fig. 2

Amino acid sequence alignment of PEPCs AtPEPC1, AtPEPC2, AtPEPC3: Arabidopsis thaliana AtPEPC1, AtPEPC2, AtPEPC3; SbPEPC1, SbPEPC2, SbPEPC3: Sorghum bicolor SbPEPC1, SbPEPC2, SbPEPC3; GmPEPC: Glycine max GmPEPC; ZmPEPC1, ZmPEPC2: Zea mays ZmPEPC1, 2; StPEPC: Solanum tuberosum StPEPC; AhPEPC: Arachis hypogaea AhPEPC; RcPEPC: Ricinus communis RcPEPC; NtPEPC: Nicotiana tabacum NtPEPC. The corresponding GenBank protein numbers are Q9MAH0.1, Q5GM68.2, Q84VW9.2, P29195.1, P29194.1, P15804.2, P51061.1, P04711.2, P51059.1, P29196.2, ABY87944.1, ABR29878.1, and P27154.1, respectively. The amino acids with an entire homology are shown by a black background, and those shared non-identical conserved identity by a graybackground (≥ 60% similarity). "

Fig. 3

Phylogenetic relationships of PEPC proteins from different species"

Fig. 4

Expression profile of SiPEPC gene under stresses at seedling stage Light green, dark green, black, light red and dark red are used to represent gene expression levels. Green indicates weak gene expression; red indicates strong gene expression. "

Fig. 5

Relative expression of SiPEPCs during different growth stages under normal and drought conditions * Significantly different at P<0.05; ** Significantly different at P<0.01. "

Fig. 6

Relative expression of SiPEPC under light and drought conditions Light green, dark green, black, light red, and dark red are used to represent gene expression levels. Green indicates weak gene expression; red indicates strong gene expression. J-1: control at jointing stage; J-2: drought at jointing stage; J-3: medium light intensity at jointing stage; J-4: weak light intensity at jointing stage; H-1: control at heading stage; H-2: drought at heading stage; H-3: medium light intensity at heading stage; H-4: weak light intensity at heading stage; F-1: drought at filling stage; F-2: drought at filling stage; F-3: medium light intensity at filling stage; F-4: weak light intensity at filling stage. "

[1] Hibberd J M, Quick W P . Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature (London), 2002,415:451-454.
doi: 10.1038/415451a pmid: 11807559
[2] Lara M V, Chuong S D X, Akhani H, Andreo S C, Edwards G E . Species Having C4 single-cell-type photosynthesis in the chenopodiaceae family evolved a photosynthetic phosphoenolpyruvate carboxylase like that of kranz-type C4 species. Plant Physiol, 2006,142:673-684.
doi: 10.1104/pp.106.085829 pmid: 16920871
[3] Merkelbach S, Gehlen J, Denecke M, Hirschet H J, Kreuzaler F . Cloning, sequence analysis and expression of a cDNA encoding active phosphoenolpyruvate carboxylase of the C3 plant Solanum tuberosum. Plant Mol Biol, 1993,23:881-888.
doi: 10.1007/bf00021542 pmid: 8251640
[4] Hart Y, Mayo A E, Milo R, Alon U . Robust control of PEP formation rate in the carbon fixation pathway of C4 plants by a bi-functional enzyme. BMC Systems Biol, 2011,5:171.
doi: 10.1186/1752-0509-5-171 pmid: 22024416
[5] 魏绍巍, 黎茵 . 植物磷酸烯醇式丙酮酸羧化酶的功能及其在基因工程中的应用. 生物工程学报, 2011,27:1702-1710.
Wei S W, Li Y . Functions of plant phosphoenolpyruvate carboxylase and its applications for genetic engineering. Chin J Biotechnol, 2011,27:1702-1710 (in Chinese with English abstract).
[6] Lebouteiller B, Gousset-Dupont A, Pierre J N, Bleton J, Tchapla A, Maucourt M, Moing A, Rolin D, Vidal J . Physiological impacts of modulating phosphoenolpyruvate carboxylase levels in leaves and seeds of Arabidopsis thaliana. Plant Sci, 2007,172:265-272.
doi: 10.1016/j.plantsci.2006.09.008
[7] Muramatsu M, Suzuki R, Yamazaki T, Miyao M . Comparison of plant-type phosphoenolpyruvate carboxylases from rice: identification of two plant-specific regulatory regions of the allosteric enzyme. Plant Cell Physiol, 2015,56:468-480.
doi: 10.1093/pcp/pcu189 pmid: 25505033
[8] Sanchez R, Cejudo F J . Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol, 2003,132:949-957.
doi: 10.1104/pp.102.019653 pmid: 12805623
[9] Dong L Y, Masuda T, Kawamura T, Hata S, Izui K . Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: comparison with the C4-form enzyme. Plant Cell Physiol, 1998,39:865-873.
doi: 10.1093/oxfordjournals.pcp.a029446 pmid: 9787461
[10] Besnard G, Pincon G, Dhonta A, D'Hont A, Hoarau J Y, Cadet F, Offmann B . Characterisation of the phosphoenolpyruvate carboxylase gene family in sugarcane ( Saccharum spp.). Theor Appl Genet, 2003,107:470-478.
doi: 10.1007/s00122-003-1268-2 pmid: 12759729
[11] Sullivan S, Jenkins G I, Nimmo H G . Roots, cycles and leaves: Expression of the phosphoenolpyruvate carboxylase kinase gene family in soybean. Plant Physiol, 2004,135:2078-2087.
doi: 10.1104/pp.104.042762 pmid: 15299132
[12] 蔡小宁, 陈茜, 杨平, 任源浩 . 磷酸烯醇式丙酮酸羧化酶的生物信息学分析. 安徽农业科学, 2008,36:914-916.
Cai X N, Chen X, Yang P, Ren Y H . Bioinformatics analysis of phosphoenolpyruvate carboxylase. J Anhui Agric Sci, 2008,36:914-916 (in Chinese with English abstract).
[13] 焦进安 . 植物磷酸烯醇式丙酮酸羧化酶的多生理功能. 植物生理学通讯, 1987, ( 1):40-43.
Jiao J A . Multiple function of phosphoenolpyruvate carboxylase in plants. Plant Physiol Commun, 1987, ( 1):40-43 (in Chinese).
[14] Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhur S, Miyao M . Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci (Oxford), 2007,172:1204-1209.
doi: 10.1016/j.plantsci.2007.02.016
[15] 丁在松, 周宝元, 孙雪芳, 赵明 . 干旱胁迫下 PEPC 过表达增强水稻的耐强光能力. 作物学报, 2012,38:285-292.
doi: 10.3724/SP.J.1006.2012.00285
Ding Z S, Zhou B Y, Sun X F, Zhao M . High light tolerance is enhanced by overexpressed PEPC in rice under drought stress. Acta Agron Sin, 2012,38:285-292 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00285
[16] 焦德茂, 李霞, 黄雪清, 迟伟, 匡廷云, 古森本 . 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性. 科学通报, 2001,46:414-418.
Jiao D M, Li X, Huang X Q, Chi W, Kuang T Y, Gu S B . Photosynthetic CO2 assimilation and chlorophyll fluorescence characteristics of transgenic PEPC rice. Chin Sci Bull, 2001,46:414-418 (in Chinese).
[17] 方立锋, 丁在松, 赵明 . 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008,34:1220-1226.
Fang L F, Ding Z S, Zhao M . Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008,34:1220-1226 (in Chinese with English abstract).
[18] Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P . Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie, 2002,84:1127-1135.
doi: 10.1016/S0300-9084(02)00024-X
[19] Gonzalez M C, Sanchez R, Cejudo F J . Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 2003,216:985-992.
doi: 10.1007/s00425-002-0951-x pmid: 12687366
[20] Sanchez R, Flores A, Cejudo F J . Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006,223:901-909.
doi: 10.1007/s00425-005-0144-5
[21] Garciá-Maurino S, Monreal J, Alvarez R, Vidal J, Echevarría C . Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of sorghum vulgare: independence of osmotic stress, involvement of iontoxicity and significance of dark phosphorylation. Planta, 2003,216:648-655.
doi: 10.1007/s00425-002-0893-3 pmid: 12569407
[22] 智慧, 牛振刚, 贾冠清, 柴杨, 李伟, 王永芳, 李海权, 陆平, 白素兰, 刁现民 . 谷子干草饲用品质性状变异及相关性分析. 作物学报, 2012,38:800-807.
doi: 10.3724/SP.J.1006.2012.00800
Zhi H, Niu Z G, Jia G Q, Chai Y, Li W, Wang Y F, Li H Q, Lu P, Bai S L, Diao X M . Variation and correlation analysis of hay forage quality traits of foxtail millet [ Setaria italica (L.) Beauv.]. Acta Agron Sin, 2012,38:800-807 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00800
[23] Devos K M, Wang Z M, Beales J, Sasaki T, Gale M D . Comparative genetic maps of foxtail millet ( Setaria italica) and rice (Oryza sativa). Theor Appl Genet, 1998,96:63-68.
doi: 10.1007/s001220050709
[24] Jayaraman A, Puranik S, Rai N K, Vidapu S, Sahu P P, Lata C , Prasad M. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol, 2008,40:241-251.
doi: 10.1007/s12033-008-9081-4
[25] 赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民 . 谷子CBL基因鉴定及其在干旱, 高盐胁迫下的表达分析. 作物学报, 2013,39:360-367.
doi: 10.3724/SP.J.1006.2013.00360
Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M . Identification of CBL genes from foxtail millet ( Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agron Sin, 2013,39:360-367 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00360
[26] Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J . Genome sequence of foxtail millet ( Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012,30:549-554.
doi: 10.1038/nbt.2195 pmid: 22580950
[27] Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jen-kins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X W, Wu X M, Mitros T, Triplett J, Yang X H, Ye C Y, Mauro-herrera M, Wang L, Li P H, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M . Reference genome sequence of the model plant setaria. Nat Biotechnol, 2012,30:555-561.
doi: 10.1038/nbt.2196 pmid: 22580951
[28] Shinozaki K, Yamaguchi-Shinozaki K . A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994,6:251-264.
doi: 10.1105/tpc.6.2.251 pmid: 8148648
[29] Yu C S, Chen Y C, Lu C H, Hwang J K . Prediction of protein subcellular localization. Proteins, 2006,64:643-651.
doi: 10.1002/prot.21018 pmid: 16752418
[30] Larkin M A, Blackshields G, Brown N P, Chenna R, Mcgettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R . Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23:2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036
[31] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013,30:2725-2729.
doi: 10.1093/molbev/mst197
[32] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[33] Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K , Yamaguchi-shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003,621:137-148.
doi: 10.3897/zookeys.621.10115 pmid: 27833421
[34] Nakashima K, Yamaguchi-shinozaki K . ABA signaling in stress-response and seed development. Plant Cell Rep, 2013,32:959-970.
doi: 10.1007/s00299-013-1418-1
[35] Verma V, Ravindran P, Kumar P P . Plant hormone-mediated regulation of stress responses. BMC Plant Biol, 2016,16:86.
doi: 10.1186/s12870-016-0771-y pmid: 27079791
[36] Zhang J, Jia W, Yang J, Ismail A M . Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res, 2006,97:111-119.
doi: 10.1016/j.fcr.2005.08.018
[37] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏 . 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007,33:216-222.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P . Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agron Sin, 2007,33:216-222 (in Chinese with English abstract).
[38] Bari R, Jones J D . Role of plant hormones in plant defence responses. Plant Mol Biol, 2009,69:473-488.
doi: 10.1007/s11103-008-9435-0
[1] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[2] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[3] DU Xiao-Fen, WANG Zhi-Lan, HAN Kang-Ni, LIAN Shi-Chao, LI Yu-Xin, ZHANG Lin-Yi, WANG Jun. Identification and analysis of RNA editing sites of chloroplast genes in foxtail millet [Setaria italica (L.) P. Beauv.] [J]. Acta Agronomica Sinica, 2022, 48(4): 873-885.
[4] WU Yan-Fei, HU Qin, ZHOU Qi, DU Xue-Zhu, SHENG Feng. Genome-wide identification and expression analysis of Elongator complex family genes in response to abiotic stresses in rice [J]. Acta Agronomica Sinica, 2022, 48(3): 644-655.
[5] ZHAO Mei-Cheng, DIAO Xian-Min. Phylogeny of wild Setaria species and their utilization in foxtail millet breeding [J]. Acta Agronomica Sinica, 2022, 48(2): 267-279.
[6] WANG Yan-Peng, LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong. Genome-wide identification and expression analysis of B-box gene family in wheat [J]. Acta Agronomica Sinica, 2021, 47(8): 1437-1449.
[7] LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148.
[8] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[9] MA Gui-Fang, MAN Xia-Xia, ZHANG Yi-Juan, GAO Hao, SUN Zhao-Xia, LI Hong-Ying, HAN Yuan-Huai, HOU Si-Yu. Integrated analysis between folate metabolites profiles and transcriptome of panicle in foxtail millet [J]. Acta Agronomica Sinica, 2021, 47(5): 837-846.
[10] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[11] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[12] MENG Yu-Yu, WEI Chun-Ru, FAN Run-Qiao, YU Xiu-Mei, WANG Xiao-Dong, ZHAO Wei-Quan, WEI Xin-Yan, KANG Zhen-Sheng, LIU Da-Qun. TaPP2-A13 gene shows induced expression pattern in wheat responses to stresses and interacts with adaptor protein SKP1 from SCF complex [J]. Acta Agronomica Sinica, 2021, 47(2): 224-236.
[13] HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952.
[14] SONG Ni-Xi, LI Xia, WANG Jin, WU Bo-Han, CAO Yue, YANG Jie, XIE Yin-Feng. Effects on drought tolerance by pladienolide B and rice with high expression of C4-PEPC [J]. Acta Agronomica Sinica, 2021, 47(10): 1927-1940.
[15] JIA Xiao-Ping,YUAN Xi-Lei,LI Jian-Feng,WANG Yong-Fang,ZHANG Xiao-Mei,ZHANG Bo,QUAN Jian-Zhang,DONG Zhi-Ping. Photo-thermal interaction model under different photoperiod-temperature conditions and expression analysis of SiCCT gene in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2020, 46(7): 1052-1062.
Full text



No Suggested Reading articles found!