Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1941-1952.doi: 10.3724/SP.J.1006.2021.04227


Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate

HE Xiao1,2(), LIU Xing3, XIN Zheng-Qi1,2, XIE Hai-Yan1,2, XIN Yu-Feng1,2, WU Neng-Biao1,2,*()   

  1. 1School of Life Science, Southwest University, Chongqing 400715, China
    2Key Laboratory of Eco-environments in Three Gorges Region, Ministry of Education, Chongqing 400715, China
    3Chongqing Dazu Middle School, Chongqing 402360, China
  • Received:2020-10-14 Accepted:2021-03-19 Online:2021-10-12 Published:2021-04-01
  • Contact: WU Neng-Biao E-mail:992651097@qq.com;wunb@swu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(30500041)


In this study, based on the transcriptome data, a phenylalanine ammonia lyase gene was cloned and named PtPAL using Pinellia ternate as the experimental material. The analysis of sequence structure and systematic evolution revealed that the length of the gene was 2289 bp, encoding 762 amino acids, and the termination codon was TAA. PtPAL was the similarity of 78% compared with monocot Lilium regale PAL, with PAL-HAL, PLN02457, phe_am_lyase, Lyase_aromatic, and HutH domains that belonging to the Lyase_I_like superfamily. Phylogenetic tree analysis showed that PtPAL was closely related to the monocotyledon Lilium regale, Ananas comosusm, and Elaeis guineensis, and thus belonging to Moncotyledons. Real-time fluorescent qPCR indicated that the relative expression level of PtPAL gene was the highest in leaves, followed by tubers and roots, and the lowest in flowers. The functional expression analysis of PtPAL gene revealed that the PtPAL recombinant protein could efficiently catalyze L-Phe to t-CA, and the optimal pH and temperature of the reaction were 9.0℃ and 70℃, respectively. Km, Vmax, Kcat, and Kcat/Km of PtPAL were 0.89 mmol L -1, 63.96 nKat mg-1, 6.56 s-1, and 7.37×103 s-1 M-1. Further exploration of the effect of metal ions on PtPAL enzyme activity showed that Ba2+ could significantly enhance PtPAL enzyme activity, and Mn2+, Co2+, Cu2+, and Zn2+ inhibit the activity of PtPAL enzyme. This study lays the foundation for further research of the functional characteristics of PtPAL and the metabolic pathways of amphetamine alkaloids in Pinellia ternata.

Key words: Pinellia ternate, ephedrine, phenylalanine ammonia-lyase, gene cloning, expression analysis, enzyme kinetics analysis

Table 1

Primers used for this study"

Primer function
Primer name
Primer sequence (5′-3′)
Gene cloning
Fluorescence quantitative PCR
Construction of prokaryotic expression vector

Fig. 1

Full length CDS nucleotide sequence and amino acids sequence of PtPAL in Pinellia ternate The coding sequence and the deduced amino acid sequence are shown in uppercase letters in bold. Termination code is denoted by the asterisk; initiation code and termination code are denoted by underlines."

Fig. 2

Multiple alignment of amino acid sequences of PAL in different plants The identical amino acids are shown in white with black background, the conserved amino acids are shown in black with red background. The conserved active site motif (Ala-Ser-Gly) is indicated by filled triangles under the sequences, the other active site residues are indicated by open triangle asterisk, the conserved active site motif is denoted by red box. AtPAL: Arabidopsis thaliana (NP_187645.1); VvPAL: Vitis vinifera (RVW44079.1); LrPAL: Lilium regale (ASV46344.1); GbPAL: Ginkgo biloba (ABU49842.1); EaPAL: Equisetum arvense (AAW80639.1); PaPAL: Plagiochasma appendiculatum (AIU99853.1)."

Fig. 3

Phylogenetic tree analysis of PtPAL and PAL from other plants The number of each interior Branch is the percentage of bootstraps value (1000 replicates). PtPAL is denoted by red dot."

Fig. 4

Deduced protein structure of PtPAL A: monomer; B: homotetramer. MIO: 3,5-dihydro-5-methylene-4H-imidazol-4-one."

Fig. 5

Relative expression levels of PtPAL in different tissues Values with different lowercase letters show significant difference among different tissues at the 0.05 probability level."

Fig. 6

Time gradient induced of the recombinant PtPAL and its purified His-tagged PtPAL M: protein molecular weight standards. A: time gradient induced of reconstructive PtPAL; B: the purified His-tagged PtPAL."

Fig. 7

Functional identification of the recombinant PtPAL The blue, red, and black peak maps are trans-cinnamic acid standard, reaction, and control reaction sample, respectively."

Fig. 8

Optimum pH and temperature of PtPAL for the reaction A: the activity of PtPAL under changing pH levels; B: the activity of PtPAL across a range of temperatures. Bars indicate the standard errors of the means (n = 3)."

Fig. 9

Michaelis-Menten curves for the velocity of PtPAL Bars indicate the standard errors of the means (n = 3)."

Table 2

Comparison of PAL kinetic properties from different plants"

(mmol L-1)
(nkat mg-1)
(s-1 M-1)
PtPAL 70 0.89 63.96 6.56 7.37×103 本研究 This study
37 0.80 37.67 3.75 4.69×103
EsPAL1 37 0.144 7.45×10-3 0.588 3.87×103 Taketo et al. (2008) [20]
EsPAL2 37 0.152 5.77×10-3 0.457 3.18×103
BoPAL1 50 1.01 10.11 1.0 ×104 Hsieh et al. (2011) [21]
BoPAL2 50 0.33 16.04 4.86×104
CdPAL 55 0.101 3.36 3.32×103 Hu et al. (2011) [22]
RgPAL 50 1.3 25×103 19.20 Zhu et al. (2013) [23]
RcPAL 45 7.90 52.31 6.62 ×103 Ma et al. (2013) [24]

Fig. 10

Effects of metalions on the recombinant PtPAL ** means significant difference at the 0.01 probability level."

[1] 刘永红, 郭建宏, 刘文婷, 梁宗锁. 药用植物半夏生物碱类成分研究进展. 西北农林科技大学学报(自然科学版), 2015, 43(9):171-177.
Liu Y H, Guo J H, Liu W T, Liang Z S. Research progress on alkaloids from Pinellia ternata. J Northwest A&F Univ(Nat Sci Edn), 2015, 43(9):171-177 (in Chinese with English abstract).
[2] 郑萍, 戴贵东, 李汉青. 麻黄碱及伪麻黄碱药理作用研究进展. 宁夏医学杂志, 2002, 24(2):126-127.
Zheng P, Dai G D, Li H Q. Research progress on the pharmacological effects of ephedrine and pseudoephedrine. Ningxia Med J, 2002, 24(2):126-127 (in Chinese).
[3] 高晔珩, 党力纳. 麻黄研究进展. 陕西中医学院学报, 2003, (6):60-61.
Gao Y H, Dang L N. Research progress of Ephedra. J Shaanxi Coll Trad Chin Med, 2003, (6):60-61 (in Chinese).
[4] 杨顺楷, 杨亚力, 杨维力. 苯丙氨酸解氨酶(PAL, EC反应机理研究新进展. 生物加工过程, 2004, 2(4):1-5.
Yang S K, Yang Y L, Yang W L. Recent advances in the research of mechanism of the phenylalanine ammonia-lyase (PAL, EC reaction. Chin J Bioproc Eng, 2004, 2(4):1-5 (in Chinese with English abstract).
[5] 刘千子, 宋文琦, 张世华, 张雪梅, 程卓鑫. 菘蓝中苯丙氨酸解氨酶家族基因的鉴定及分析. 中国校医, 2019, 33(6):396.
Liu Q Z, Song W Q, Zhang S H, Zhang X M, Cheng Z X. Identification and analysis of phenylalanine ammonia-lyase family genes in Iisatis indigotica Fortune. Chin J School Doctor, 2019, 33(6):396 (in Chinese with English abstract).
[6] Appert C, Logemann E, Hahlbrock K, Schmid J, Amrhein N. Structural and catalytic properties of the four phenylalanine ammonia-lyase isoenzymes from parsley (Petroselinum crispum Nym). FEBS J, 2010, 225:491-499.
[7] Shi R, Shuford C M, Wang J P, Sun Y H, Yang Z C, Chen H C, Anukit S T, Li Q Z, Liu J, Muddiman D C, Sederoff R R, Chiang V L. Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. Planta, 2013, 238:487-497.
doi: 10.1007/s00425-013-1905-1
[8] Song J, Wang Z Z. Molecular cloning expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep, 2009, 36:939-952.
doi: 10.1007/s11033-008-9266-8 pmid: 18454352
[9] Rosler J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol, 1997, 113:175-179.
doi: 10.1104/pp.113.1.175
[10] Yu H N, Liu X Y, Gao S, Han X J, Cheng A X, Lou H X. Molecular cloning and functional characterization of a phenylalanine ammonia-lyase from liverwort Plagiochasma appendiculatum. Plant Cell Tissue Organ Cult, 2014, 117:265-277.
doi: 10.1007/s11240-014-0438-z
[11] 王燕, 刘卫红, 杜何为, 许峰, 程水源. 底物、末端产物对离体银杏叶苯丙氨酸解氨酶活性的影响. 果树学报, 2004, 21:443-446.
Wang Y, Liu W H, Du H W, Xu F, Cheng S Y. Effects of substrate and terminal products on the phenylalanine ammonia-lyse (PAL) activities in in vitro leaves of Ginkgo biloba. J Fruit Sci, 2004, 21:443-446 (in Chinese with English abstract).
[12] 江力, 袁怀波, 周强, 江汉湖. 底物和产物对鲜切山药苯丙氨酸解氨酶活性的影响. 食品科学, 2007, 28(10):35-37.
Jiang L, Yuan H P, Zhou Q, Jiang H H. Effects of substrate and products on activity of phenylalanine ammonia-lyase (PAL) in fresh-cut Dioscorea batatas. Food Sci, 2007, 28(10):35-37 (in Chinese with English abstract).
[13] 贺字典, 高增贵, 庄敬华, 陈捷, 郑俊强, 唐树戈. 玉米丝黑穗病菌对寄主防御相关酶活性的影响. 玉米科学, 2006, 14(2):150-151.
He Z D, Gao Z G, Zhuang J H, Chen J, Zheng J Q, Tang S G. Effect of maize head smut pathology (Sphacelotheca reiliana) on the major defensive enzymes of Host. J Maize Sci, 2006, 14(2):150-151 (in Chinese with English abstract).
[14] 刘佳. 美洲南瓜苯丙氨酸解氨酶(PAL)基因克隆、表达分析及品种抗灰霉病研究. 甘肃农业大学博士学位论文, 甘肃兰州, 2013.
Liu J. Cloning and Expression Analysis of Phenylalanine Ammonialyase gene (PAL) from Cucurbita pepo and the Study on Varieties Resistance to Botrytis Cinerea. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2013 (in Chinese with English abstract).
[15] Muñoz-Espinoza V A, Lopez-Climent M F, Casaretto J A, Gomez-Cadenas A. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. Front Plant Sci, 2015, 6:997.
doi: 10.3389/fpls.2015.00997 pmid: 26635826
[16] Ma R F, Liu Q Z, Xiao Y, Zhang L, Li Q, Yin J, Chen W S. The phenylalanine ammonia-lyase gene family in Iisatis indigotica Fortune.: molecular cloning, characterization, and expression analysis. Chin J Nat Med, 2016, 14:801-812.
[17] 罗才林, 李林, 陈立, 邓琴, 张俊, 马璇, 徐德林, 钱刚. 白及苯丙氨酸解氨酶基因的克隆、序列特征及激素响应表达分析. 中草药, 2019, 50:694-701.
Luo C L, Li L, Chen L, Deng Q, Zhang J, Ma X, Xu D L, Qian G. Cloning, sequence characterization, expression profiling of hormones response of phenylalanine ammonia-lyase gene in Bletilla striata. Chin Trad Herbal Drugs, 2019, 50:694-701 (in Chinese with English abstract).
[18] Rother D, Poppe L, Morlock G, Viergutz S, Retey J. An active site homology model of phenylalanine ammonia-lyase from P. crispum. Eur J Biochem, 2002, 269:3065-3075.
doi: 10.1046/j.1432-1033.2002.02984.x
[19] Ritter H. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell Online, 2004, 16:3426-3436.
doi: 10.1105/tpc.104.025288
[20] Okada T, Mikage M, Sekita S. Molecular characterization of the phenylalanine ammonia-lyase from Ephedra sinica. Biol Pharm Bull, 2008, 31:2194-2199.
doi: 10.1248/bpb.31.2194
[21] Hsieh L S, Hsieh Y L, Yeh C S, Cheng C Y, Yang C C, Lee P D. Molecular characterization of a phenylalanine ammonia-lyase gene (BoPAL1) from Bambusa oldhamii. Mol Biol Rep, 2011, 38:283-290.
doi: 10.1007/s11033-010-0106-2
[22] Hu G S, Jia J M, Hur Y J, Chung Y S, Lee J H, Yun D J, Chung W S, Yi G H, Kim T H, Kim D H. Molecular characterization of phenylalanine ammonia-lyase gene from Cistanche deserticola. Mol Biol Rep, 2011, 38:3741-3750.
doi: 10.1007/s11033-010-0489-0
[23] Zhu L, Cui W, Fang Y, Liu Y, Gao X, Zhou Z. Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis. Biotechnol Lett, 2013, 35:751-756.
doi: 10.1007/s10529-013-1140-7
[24] Ma W L, Wu M, Wu Y, Ren Z, Zhong Y. Cloning and characterization of a phenylalanine ammonia-lyase gene from Rhus chinensis. Plant Cell Rep, 2013, 32:1179-1190.
doi: 10.1007/s00299-013-1413-6
[25] 周修任. 优质中草药——半夏的人工栽培技术与市场前景. 科学种养, 2020, (8):56-59.
Zhou X R. High-quality Chinese herbal medicine—Pinellia ternate’s artificial cultivation technology and market prospects. Sci Plant Breed, 2020, (8):56-59 (in Chinese).
[26] 杜欣谊. 苯丙氨酸解氨酶的研究进展. 现代化农业, 2016, (7):24-26.
Du X Y. Research progress of phenylalanine ammonia lyase. Modern Agric, 2016, (7):24-26 (in Chinese).
[27] Chen M J, Vijaykumar V, Lu B W, Xia B, Li N. Cis- and trans-cinnamic acids have different effects on the catalytic properties of Arabidopsis phenylalanine ammonia lyases PAL1, PAL2 and PAL4. J Integr Plant Biol, 2005, 47:67-75.
doi: 10.1111/jipb.2005.47.issue-1
[28] 欧阳光察, 应初衍, 沃绍根, 薛应龙. 植物苯丙氨酸解氨酶的研究: VI. 水稻、小麦PAL的纯化及基本特性. 植物生理学报, 1985, 11:204-214.
Ou-Yang G C, Ying C Y, Wo S G, Xue Y L. Studies on plant phenylalanine ammonia-lyase (PAL): VI. Purification and some properties of PAL from etiolated seedings of rice (Oryza sativa) and wheat(Triticum aestivum). Physiol Mol Biol Pants, 1985, 11:204-214 (in Chinese with English abstract).
[29] 卢涛, 赵德立, 夏凯, 杨亚力, 杨顺楷, 刘成君. 红酵母苯丙氨酸解氨酶的分离纯化及性质研究. 四川大学学报(自然科学版), 2004, 41:865-868.
Lu T, Zhao D L, Xia K, Yang Y L, Yang S K, Liu C J. Purification and properties of phenylalanine ammonia-lyase from Rhodotorula sp. A1401. J Sichuan Univ (Nat Sci Edn), 2004, 41:865-868 (in Chinese with English abstract).
[30] 田晓明. 油茶PAL基因的全长克隆及其在原核和真核生物中的表达. 中南林业科技大学硕士学位论文, 湖南长沙, 2010.
Tian X M. Phenylalanine Ammonia-lyase Gene from Camellia oleifera Full-length Gene and Expression in Prokaryotic and Eukaryotic. MS Thesis of Central South University of Forestry & Technology, Changsha, Hunan, China, 2010 (in Chinese with English abstract).
[31] Hu Y S, Zhang L, Di P, Chen W S. Cloning and induction of phenylalanine ammonia-lyase gene fromSalvia miltiorrhiza and its effect on hydrophilic phenolic acids levels. Chin J Nat Med, 2009, 7:449-457.
doi: 10.3724/SP.J.1009.2009.00449
[32] 刘俊频, 李胜立, 袁元, 郑玲辉, 全雪丽, 吴松权. 膜荚黄芪3个苯丙氨酸解氨酶基因的克隆与表达分析. 中草药, 2019, 50:1669-1675.
Liu J P, Li S L, Yuan Y, Zheng L H, Quan X L, Wu S Q. Cloning and expression of three PAL genes in Astragalus membranaceus. Chin Trad Herbal Drugs, 2019, 50:1669-1675 (in Chinese with English abstract).
[33] Lee B K, Park M R, Srinivas B, Chun J C, Kwon I S, Chung M, Yoo N H. Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa. Mol Cell, 2003, 16:34-39.
[34] Zhu Q, Dabi T, Beeche A, Yamamoto R, Lawton M A, Lamb C. Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase. Plant Mol Biol, 1995, 29:535-550.
pmid: 8534851
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[4] JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839.
[5] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[6] YIN Ming, YANG Da-Wei, TANG Hui-Juan, PAN Gen, LI De-Fang, ZHAO Li-Ning, HUANG Si-Qi. Genome-wide identification of GRAS transcription factor and expression analysis in response to cadmium stresses in hemp (Cannabis sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1054-1069.
[7] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[8] JIA Xiao-Ping, LI Jian-Feng, ZHANG Bo, QUAN Jian-Zhang, WANG Yong-Fang, ZHAO Yuan, ZHANG Xiao-Mei, WANG Zhen-Shan, SANG Lu-Man, DONG Zhi-Ping. Responsive features of SiPRR37 to photoperiod and temperature, abiotic stress and identification of its favourable allelic variations in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 638-649.
[9] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[10] YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862.
[11] LI Guo-Ji, ZHU Lin, CAO Jin-Shan, WANG You-Ning. Cloning and functional analysis of GmNRT1.2a and GmNRT1.2b in soybean [J]. Acta Agronomica Sinica, 2020, 46(7): 1025-1032.
[12] Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agronomica Sinica, 2020, 46(5): 700-711.
[13] LIANG Si-Wei,JIANG Hao-Liang,ZHAI Li-Hong,WAN Xiao-Rong,LI Xiao-Qin,JIANG Feng,SUN Wei. Genome-wide identification and expression analysis of HD-ZIP I subfamily genes in maize [J]. Acta Agronomica Sinica, 2020, 46(4): 532-543.
[14] Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861.
[15] WANG Yan-Hua,XIE Ling,YANG Bo,CAO Yan-Ru,LI Jia-Na. Flowering genes in oilseed rape: identification, characterization, evolutionary and expression analysis [J]. Acta Agronomica Sinica, 2019, 45(8): 1137-1145.
Full text



No Suggested Reading articles found!