Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (6): 1312-1324.doi: 10.3724/SP.J.1006.2022.13040
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
					
													CUI Lian-Hua**(
), ZHAN Wei-Min**(
), YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei*(
), YANG Jian-Ping*(
), YANG Qing-Hua*(
)
												  
						
						
						
					
				
| [1] | 李合生. 现代植物生理学(第3版). 北京: 高等教育出版社, 2012. pp 287-288. | 
| Li H S. Modern Plant Physiology, 3rd edn. Beijing: Higher Education Press, 2012. pp 287-288(in Chinese). | |
| [2] |  
											 Sullivan J A, Deng X W. From seed to seed: the role of photoreceptors in Arabidopsis development. Dev Biol, 2003, 260: 289-297. 
																							 pmid: 12921732  | 
										
| [3] |  
											 Wang Q, Lin C T. Mechanisms of cryptochrome-mediated photoresponses in plants. Annu Rev Plant Biol, 2020, 71: 103-129. 
																							 doi: 10.1146/annurev-arplant-050718-100300 pmid: 32169020  | 
										
| [4] |  
											 Legris M, Ince Y Ç, Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat Commun, 2019, 10: 5219. 
																							 doi: 10.1038/s41467-019-13045-0  | 
										
| [5] |  
											 Qian C Z, Chen Z R, Liu Q, Mao W W, Chen Y L, Tian W, Liu Y, Han J P, Ou-yang X H, Huang X. Coordinated transcriptional regulation by the UV-B photoreceptor and multiple transcription factors for plant UV-B responses. Mol Plant, 2020, 13: 777-792. 
																							 doi: 10.1016/j.molp.2020.02.015  | 
										
| [6] |  
											 Christie J M. Phototropin blue-light receptors. Annu Rev Plant Biol, 2007, 58: 21-45. 
																							 pmid: 17067285  | 
										
| [7] |  
											 Podolec R, Demarsy E, Ulm R. Perception and signaling of Ultraviolet-B radiation in plants. Annu Rev Plant Biol, 2021, 72: 793-822. 
																							 doi: 10.1146/annurev-arplant-050718-095946 pmid: 33636992  | 
										
| [8] |  
											 Ma L G, Gao Y, Qu L J, Chen Z L, Li J M, Zhao H Y, Deng X W. Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell, 2002, 14: 2383-2398. 
																							 doi: 10.1105/tpc.004416  | 
										
| [9] |  
											 Podolec R, Ulm R. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr Opin Plant Biol, 2018, 45: 18-25. 
																							 doi: S1369-5266(17)30208-X pmid: 29775763  | 
										
| [10] |  
											 Sharma A, Sharma B, Hayes S, Kerner K, Hoecker U, Jenkins G I, Franklin K A. UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat Commun, 2019, 10: 4417. 
																							 doi: 10.1038/s41467-019-12369-1  | 
										
| [11] |  
											 Hiltbrunner A. Shedding light on the evolution of light signalling. New Phytol, 2019, 224: 1412-1414. 
																							 doi: 10.1111/nph.16175 pmid: 31587283  | 
										
| [12] |  
											 Han X, Huang X, Deng X W. The photomorphogenic central repressor COP1: conservation and functional diversification during evolution. Plant Commun, 2020, 1: 100044. 
																							 doi: 10.1016/j.xplc.2020.100044  | 
										
| [13] |  
											 Deng X W, Caspar T, Quail P H. cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev, 1991, 5: 1172-1182. 
																							 doi: 10.1101/gad.5.7.1172  | 
										
| [14] |  
											 Deng X W, Matsui M, Wei N, Wagner D, Chu A M, Feldmann K A, Quail P H. COP1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a Gβ homologous domain. Cell, 1992, 71: 791-801. 
																							 pmid: 1423630  | 
										
| [15] |  
											 Seo H S, Yang J Y, Ishikawa M, Bolle C, Ballesteros M L, Chua N H. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature, 2003, 423: 995-999. 
																							 doi: 10.1038/nature01696  | 
										
| [16] |  
											 Yang J P, Lin R C, Sullivan J, Hoecker U, Liu B L, Xu L, Deng X W, Wang H Y. Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis. Plant Cell, 2005, 17: 804-821. 
																							 doi: 10.1105/tpc.104.030205  | 
										
| [17] |  
											 Osterlund M T, Wei N, Deng X W. The roles of photoreceptor systems and the COP1-targeted destabilization of HY5 in light control of Arabidopsis seedling development. Plant Physiol, 2000, 124: 1520-1524. 
																							 pmid: 11115869  | 
										
| [18] |  
											 Holm M, Ma L G, Qu L J, Deng X W. Two interacting bZIP proteins are direct targets of COP1-mediated control of light- dependent gene expression in Arabidopsis. Genes Dev, 2002, 16: 1247-1259. 
																							 doi: 10.1101/gad.969702  | 
										
| [19] |  
											 Ling J J, Li J, Zhu D M, Deng X W. Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness. Proc Natl Acad Sci USA, 2017, 114: 3539-3544. 
																							 doi: 10.1073/pnas.1700850114  | 
										
| [20] |  
											 Cañibano E, Bourbousse C, García-León M, Gómez B G, Wolff L, García-Baudino C, Lozano-Durán R, Barneche F, Rubio V, Fonseca S. DET1-mediated COP1 regulation avoids HY5 activity over second-site gene targets to tune plant photomorphogenesis. Mol Plant, 2021, 14: 963-982. 
																							 doi: 10.1016/j.molp.2021.03.009 pmid: 33711490  | 
										
| [21] |  
											 Ponnu J. Molecular mechanisms suppressing COP1/SPA E3 ubiquitin ligase activity in blue light. Physiol Plant, 2020, 169: 418-429. 
																							 doi: 10.1111/ppl.v169.3  | 
										
| [22] |  
											 Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli S K, Datta S. Light signaling and UV-B-mediated plant growth regulation. J Integr Plant Biol, 2020, 62: 1270-1292. 
																							 doi: 10.1111/jipb.v62.9  | 
										
| [23] |  
											 Oh J, Park E, Song K, Bae G, Choi G. PHYTOCHROME INTERACTING FACTOR8 inhibits phytochrome A-mediated far-red light responses in Arabidopsis. Plant Cell, 2020, 32: 186-205. 
																							 doi: 10.1105/tpc.19.00515  | 
										
| [24] |  
											 Ren H, Han J P, Yang P Y, Mao W W, Liu X, Qiu L L, Qian C Z, Liu Y, Chen Z R, Ou-yang X H, Chen X, Deng X W, Huang X. Two E3 ligases antagonistically regulate the UV-B response in Arabidopsis. Proc Natl Acad Sci USA, 2019, 116: 4722-4731. 
																							 doi: 10.1073/pnas.1816268116  | 
										
| [25] |  
											 Huang X, Ouyang X H, Yang P Y, Lau O S, Li G, Li J G, Chen H D, Deng X W. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell, 2012, 24: 4590-4606. 
																							 doi: 10.1105/tpc.112.103994  | 
										
| [26] |  
											 Tavridou E, Pireyre M, Ulm R. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated inhibition of hypocotyl growth in Arabidopsis. Plant J, 2020, 101: 507-517. 
																							 doi: 10.1111/tpj.14556  | 
										
| [27] |  
											 Yu Y W, Wang J, Shi H, Gu J T, Dong J G, Deng X W, Huang R F. Salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1 to control seed germination. Plant Physiol, 2016, 170: 2340-2350. 
																							 doi: 10.1104/pp.15.01724  | 
										
| [28] |  
											 Shi H, Liu R L, Xue C, Shen X, Wei N, Deng X W, Zhong S W. Seedlings transduce the depth and mechanical pressure of covering soil using COP1 and ethylene to regulate EBF1/EBF2 for soil emergence. Curr Biol, 2016, 26: 139-149. 
																							 doi: 10.1016/j.cub.2015.11.053  | 
										
| [29] |  
											 Tanaka N, Itoh H, Sentoku N, Kojima M, Sakakibara H, Izawa T, Itoh J I, Nagato Y. The COP1 ortholog PPS regulates the juvenile-adult and vegetative-reproductive phase changes in rice. Plant Cell, 2011, 23: 2143-2154. 
																							 doi: 10.1105/tpc.111.083436  | 
										
| [30] |  
											 Liu L J, Zhang Y C, Li Q H, Sang Y, Mao J, Lian H L, Wang L, Yang H Q. COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell, 2008, 20: 292-306. 
																							 doi: 10.1105/tpc.107.057281 pmid: 18296627  | 
										
| [31] |  
											 Zuo Z C, Liu H T, Liu B, Liu X M, Lin C T. Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis. Curr Biol, 2011, 21: 841-847. 
																							 doi: 10.1016/j.cub.2011.03.048  | 
										
| [32] |  
											 Kang C Y, Lian H L, Wang F F, Huang J R, Yang H Q. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell, 2009, 21: 2624-2641. 
																							 doi: 10.1105/tpc.109.069765  | 
										
| [33] |  
											 Zhao C Z, Wang P C, Si T, Hsu C C, Wang L, Zayed O, Yu Z P, Zhu Y F, Dong J, Tao W A, Zhu J K. MAP Kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev Cell, 2017, 43: 618-629. 
																							 doi: 10.1016/j.devcel.2017.09.024  | 
										
| [34] |  
											 Wei H B, Kong D X, Yang J, Wang H Y. Light regulation of stomatal development and patterning: shifting the paradigm from Arabidopsis to grasses. Plant Commun, 2020, 1: 100030. 
																							 doi: 10.1016/j.xplc.2020.100030  | 
										
| [35] |  
											 Lee J H, Jung J H, Park C M. Light inhibits COP1-mediated degradation of ICE transcription factors to induce stomatal development in Arabidopsis. Plant Cell, 2017, 29: 2817-2830. 
																							 doi: 10.1105/tpc.17.00371  | 
										
| [36] |  
											 Chen Q B, Bai L, Wang W J, Shi H Z, Botella J R, Zhan Q D, Liu K, Yang H Q, Song C P. COP1 promotes ABA-induced stomatal closure by modulating the abundance of ABI/HAB and AHG3 phosphatases. New Phytol, 2021, 229: 2035-2049. 
																							 doi: 10.1111/nph.v229.4  | 
										
| [37] | Lu Y F, Hao S X, Liu N, Bu Y F, Yang S L, Yao Y C. Light affects anthocyanin biosynthesis via transcriptional regulation of COP1 in the ever-red leaves of crabapple M. cv. ‘Royalty’. Brazilian J Bot, 2016, 39: 659-667. | 
| [38] |  
											 Wu M, Si M, Li X Y, Song L Y, Liu J L, Zhai R, Cong L, Yue R R, Yang C Q, Ma F W, Xu L F, Wang Z G. PbCOP1.1 contributes to the negative regulation of anthocyanin biosynthesis in pear. Plants (Basel), 2019, 8: 39. 
																							 doi: 10.3390/plants8020039  | 
										
| [39] | 蒋明敏. 光信号诱导茄子花青素合成的分子机制研究. 上海交通大学博士学位论文, 上海, 2016. | 
| Jiang M M. The Molecular Mechanism of Light Signal Induced Anthocyanin Biosynthesis in Solanum melongena. PhD Dissertation of Shanghai Jiao Tong University, Shanghai, China, 2016 (in Chinese with English abstract). | |
| [40] |  
											 Hao X L, Zhong Y J, Nützmann H W, Fu X Q, Yan T X, Shen Q, Chen M H, Ma Y N, Zhao J Y, Osbourn A, Li L, Tang K X. Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant Cell Physiol, 2019, 60: 1747-1760. 
																							 doi: 10.1093/pcp/pcz084  | 
										
| [41] |  
											 Rajeevan M S, Ranamukhaarachchi D G, Vernon S D, Unger E R. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods, 2001, 25: 443-451. 
																							 pmid: 11846613  | 
										
| [42] |  
											 蒋可人, 马峥, 郑航, 刘小军. 转录组与蛋白质组整合分析在生物学研究中的应用. 生物技术通报, 2018, 34(12):50-55. 
																							 doi: 10.13560/j.cnki.biotech.bull.1985.2017-0929  | 
										
| Jiang K R, Ma Z, Zheng H, Liu X J. Review on the application of integrated transcriptome and proteome analysis in biology. Biotechnol Bull, 2018, 34(12):50-55 (in Chinese with English abstract). | |
| [43] |  
											 Liu Y S, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell, 2016, 165: 535-550. 
																							 doi: 10.1016/j.cell.2016.03.014  | 
										
| [44] |  
											 Torii K U, McNellis T W, Deng X W. Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development. EMBO J, 1998, 17: 5577-5587. 
																							 pmid: 9755158  | 
										
| [45] |  
											 Zhu D M, Maier A, Lee J H, Laubinger S, Saijo Y, Wang H Y, Qu L J, Hoecker U, Deng X W. Biochemical characterization of Arabidopsis complexes containing CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA proteins in light control of plant development. Plant Cell, 2008, 20: 2307-2323. 
																							 doi: 10.1105/tpc.107.056580  | 
										
| [46] |  
											 Holm M, Hardtke C S, Gaudet R, Deng X W. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J, 2001, 20: 118-127. 
																							 pmid: 11226162  | 
										
| [47] |  
											 Jang I C, Yang J Y, Seo H S, Chua N H. HFR1 is targeted by COP1 E3 ligase for post-translational proteolysis during phytochrome A signaling. Genes Dev, 2005, 19: 593-602. 
																							 doi: 10.1101/gad.1247205  | 
										
| [48] | Huai J L, Jing Y J, Lin R C. Functional analysis of ZmCOP1 and ZmHY5 reveals conserved light signaling mechanism in maize and Arabidopsis. Physiol Plant, 2020, 169: 369-379. | 
| [49] |  
											 Liu B, Zuo Z C, Liu H T, Liu X M, Lin C T. Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes Dev, 2011, 25: 1029-1034. 
																							 doi: 10.1101/gad.2025011  | 
										
| [50] |  
											 Liu H T, Liu B, Zhao C X, Pepper M, Lin C T. The action mechanisms of plant cryptochromes. Trends Plant Sci, 2011, 16: 684-691. 
																							 doi: 10.1016/j.tplants.2011.09.002  | 
										
| [51] | 李仕铭, 周增, 涂敏, 叶肖肖, 林辰涛, 左泽乘. 拟南芥隐花色素CRY光信号通路的研究进展. 分子植物育种, 2018, 16: 4444-4452. | 
| Li S M, Zhou Z, Tu M, Ye X X, Lin C T, Zuo Z C. Research progress of photosignal pathway of cryptochrome in Arabidopsis thaliana. Mol Plant Breed, 2018, 16: 4444-4452 (in Chinese with English abstract). | |
| [52] | 周婷婷. 甜高粱隐花色素CRYPTOCHROME 1a和CRYPTOCHROME 1b的功能、信号转导机制及胁迫响应分析. 吉林大学博士学位论文, 吉林长春, 2017. | 
| Zhou T T. Function, Signaling Mechanism and Stress Response of the CRYPTOCHROME 1a and CRYPTOCHROME 1b in Sweet Sorghum. PhD Dissertation of Jilin University, Changchun, Jilin, China, 2017 (in Chinese with English abstract). | |
| [53] | Vogel C, Marcotte E M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet, 2012, 13: 227-232. | 
| [54] |  
											 Wang B B, Lin Z C, Li X, Zhao Y P, Zhao B B, Wu G X, Ma X J, Wang H, Xie Y R, Li Q Q, Song G S, Kong D X, Zheng Z G, Wei H B, Shen R X, Wu H, Chen C X, Meng Z D, Wang T Y, Li Y, Li X H, Chen Y H, Lai J S, Hufford M B, Ross-Ibarra J, He H, Wang H Y. Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet, 2020, 52: 565-571. 
																							 doi: 10.1038/s41588-020-0616-3  | 
										
| [55] |  
											 Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A. Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics, 2009, 183: 1555-1563. 
																							 doi: 10.1534/genetics.109.106922  | 
										
| [56] |  
											 Zhou Z Q, Zhang C S, Zhou Y, Hao Z F, Wang Z H, Zeng X, Di H, Li M S, Zhang D G, Yong H J, Zhang S H, Weng J F, Li X H. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. BMC Genom, 2016, 17: 178. 
																							 doi: 10.1186/s12864-016-2555-z  | 
										
| [1] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. | 
| [2] | XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120. | 
| [3] | LI Wen-Lan, LI Wen-Cai, SUN Qi, YU Yan-Li, ZHAO Meng, LU Shou-Ping, LI Yan-Jiao, MENG Zhao-Dong. A study of expression pattern of auxin response factor family genes in maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(6): 1138-1148. | 
| [4] | TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683. | 
| [5] | YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415. | 
| [6] | YANG Qin-Li, YANG Duo-Feng, DING Lin-Yun, ZHANG Ting, ZHANG Jun, MEI Huan, HUANG Chu-Jun, GAO Yang, YE Li, GAO Meng-Tao, YAN Sun-Yi, ZHANG Tian-Zhen, HU Yan. Identification of a cotton flower organ mutant 182-9 and cloning of candidate genes [J]. Acta Agronomica Sinica, 2021, 47(10): 1854-1862. | 
| [7] | HE Xiao, LIU Xing, XIN Zheng-Qi, XIE Hai-Yan, XIN Yu-Feng, WU Neng-Biao. Molecular cloning, expression, and enzyme kinetic analysis of a phenylalanine ammonia-lyase gene in Pinellia ternate [J]. Acta Agronomica Sinica, 2021, 47(10): 1941-1952. | 
| [8] | Tong-Hong ZUO, He-Cui ZHANG, Qian-Ying LIU, Xiao-Ping LIAN, Qin-Qin XIE, Deng-Ke HU, Yi-Zhong ZHANG, Yu-Kui WANG, Xiao-Jing BAI, Li-Quan ZHU. Molecular cloning and expression analysis of BoGSTL21 in self-incompatibility Brasscia oleracea [J]. Acta Agronomica Sinica, 2020, 46(12): 1850-1861. | 
| [9] | Xiao-Qiang ZHAO,Bin REN,Yun-Ling PENG,Ming-Xia XU,Peng FANG,Ze-Long ZHUANG,Jin-Wen ZHANG,Wen-Jing ZENG,Qiao-Hong GAO,Yong-Fu DING,Fen-Qi CHEN. Epistatic and QTL × environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments [J]. Acta Agronomica Sinica, 2019, 45(6): 856-871. | 
| [10] | Yun-Fu LI,Jing-Xian WANG,Yan-Fang DU,Hua-Wen ZOU,Zu-Xin ZHANG. Identification of indeterminate domain protein family genes associated with flowering time in maize [J]. Acta Agronomica Sinica, 2019, 45(4): 499-507. | 
| [11] | ZHANG Chun-Xiao,LI Shu-Fang,JIN Feng-Xue,LIU Wen-Ping,LI Wan-Jun,LIU Jie,LI Xiao-Hui. QTL mapping of salt and alkaline tolerance-related traits at the germination and seedling stage in maize (Zea mays L.) using three analytical methods [J]. Acta Agronomica Sinica, 2019, 45(4): 508-521. | 
| [12] | XUE Xiao-Meng,LI Jian-Guo,BAI Dong-Mei,YAN Li-Ying,WAN Li-Yun,KANG Yan-Ping,HUAI Dong-Xin,LEI Yong,LIAO Bo-Shou. Expression profiles of FAD2 genes and their responses to cold stress in peanut [J]. Acta Agronomica Sinica, 2019, 45(10): 1586-1594. | 
| [13] | Hong-Dan LI,Lei YAN,Lei SUN,Xiao-Cong FAN,Shi-Zhan CHEN,Yan ZHANG,Lin GUO,Guang-Xia YOU,Zhuang LI,Zong-Ju YANG,Liang SU,Jian-Ping YANG. Transcription Abundances of CRY1b and CRY2 Genes in Response to Different Light Treatments in Maize [J]. Acta Agronomica Sinica, 2018, 44(9): 1290-1300. | 
| [14] | Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366. | 
| [15] | Huan TAN,Yu-Hui LIU,Li-Xia LI,Li WANG,Yuan-Ming LI,Jun-Lian ZHANG. Cloning and Functional Analysis of R2R3 MYB Genes Involved in Anthocyanin Biosynthesis in Potato Tuber [J]. Acta Agronomica Sinica, 2018, 44(7): 1021-1031. | 
										
  | 
								||