Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 1017-1026.doi: 10.3724/SP.J.1006.2022.04274

• RESEARCH NOTES • Previous Articles     Next Articles

Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane

ZHOU Hui-Wen1(), QIU Li-Hang1, HUANG Xing, LI Qiang2, CHEN Rong-Fa1, FAN Ye-Geng1, LUO Han-Min1, YAN Hai-Feng1, WENG Meng-Ling1, ZHOU Zhong-Feng1,*(), WU Jian-Ming1,*()   

  1. 1Key Laboratory of Sugarcane Biotechnology and Genetic Improvement, Ministry of Agriculture and Rural Affairs / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute / Guangxi Zhuang Autonomous Region Academy of Agri-cultural Sciences, Nanning 530007, Guangxi, China
    2Scientific Research Institute of Zhanjiang State Farms, Zhanjiang 524086, Guangdong, China
  • Received:2021-04-07 Accepted:2021-09-09 Online:2022-04-12 Published:2021-10-18
  • Contact: ZHOU Zhong-Feng,WU Jian-Ming E-mail:windyrentmd@qq.com;445708586@qq.com;wujianming2004@126.com
  • Supported by:
    Sub-project of the National Key Research and Development Program of China(2019YFD1000503);Natural Science Foundation of Guangxi, China(2021GXNSFAA220014);Guangxi Innovation Team of China Agricultural Research System(nycytxgxcxtd-2021-03-02)


GA20-oxidase (GA20ox) is a key rate-limiting enzyme in the synthesis of gibberellic acid (GA), but the biological function and expression pattern of gene GA20ox1 in sugarcane remain unknown. In this study, we cloned GA20-oxidase gene (ScGA20ox1) from the sugarcane variety ROC22 sequence by RT-PCR and RACE, which had a total length of 1574 bp and a complete open reading frame (ORF) of 1125 bp that encoded 375 amino acids. The ScGA20ox1 protein is a hydrophilic protein with a molecular weight of 42.3 kD, an iscelectric point (pI) of 5.95, and no transmembrane structure or signal peptide. Real-time fluorescence quantitative analysis revealed that ScGA20ox1 had the highest expression levels in stems, medium in the leaves, and the lowest in roots of sugarcane seedlings. Drought stress, low temperature stress, and GA3 treatment change the expression patterns of ScGA20ox1 in different tissues. ScGA20ox1 was transformed into Arabidopsis via Agrobacterium-mediated transformation. Transgenic Arabidopsis thaliana plants with overexpressed ScGA20ox1 were obtained from the transformed Arabidopsis thaliana via Agrobacterium-mediated transformation, which showed a phenotypic variation of plant height and internode length increase. In conclusion, ScGA20ox1 was involved in sugarcane’s growth as a crucial regulator in response to abiotic stress and the phenotypic variation of overexpressed transgenic Arabidopsis thaliana changed, which would lay a theoretical basis for future in-depth studies on ScGA20ox1’s biological function and analysis of the molecular mechanism of sugarcane plant shape regulation.

Key words: sugarcane, gibberellin oxidase, gene cloning, expression level

Table 1

Primers used in cloning and expression analysis of ScGA20ox1"

Primer sequences (5'-3')
F1 CATCCCGC(T)A(C)GCAGTTCATCT 中间片段 Intermediate fragment
knpGA20-F GGGGTACCATGGTGCAGCAGGCTGCGC 载体构建 Vector construction
bamGA20-R CGGGATCCTCATGGAGGTGATGAGGCC 载体构建 Vector construction

Fig. 1

Agarose gel electrophoresis of PCR product for ScGA20ox1 cloning M: DL2000 marker; A: amplification result of ScGA20ox1 fragment; B: amplificatin result of 3' RACE; C: amplificatin result of 5' RACE; D: amplificatin result of ORF."

Fig. 2

Conserved functional domain of ScGA20ox1"

Fig. 3

Predicted 3-D structure of ScGA20ox1"

Fig. 4

Multiple sequence alignment analysis of GA20ox in different plants CBX45610: Triticum aestivum; NP 001241783: Zea mays; AAB48239: Oryza sativa; AAT49058: Hordeum vulgare; KY416517: Saccharum officinarum; XP-002463483: Sorghum bicolor. In the black box there are the LPWKET and NYYPPCQRP conserved domains in turn."

Fig. 5

Phylogenetic relationship of amino acid sequences between ScGA20ox1 and other GA20ox proteins"

Fig. 6

Different expression of ScGA20ox gene in different organ and different treatment A: different organ; B: drought stress; C: low temperature stress; D: GA treatment. Different lowercase letters indicate significant differences between the expression level from the same tissue at 0, 24, 48 hour(s) after treatment at P < 0.05."

Fig. 7

PCR detection of resistant plants M: DL2000 marker; 1: the blank with deionized water; 2:pEASY-ScGA20ox1vector; 3: wild-type Arabidopsis thaliana; 4-13: transgenic Arabidopsis thaliana."

Fig. 8

Expression value of ScGA20ox1 in wild type (WT) and transgenic Arabidopsis thaliana (ga20-1-ga20-10) strain Different lowercase letters indicate significant differences between the treatments at P < 0.05."

Fig. 9

Determination of phenotype in over-expression transgenic Arabidopsis thaliana A: the phenotype observation; B: the measurement of plant height; C: the measurement of internodes length; D: the measurement of numbers of internodes. WT: wild-type plants of Arabidopsis thaliana; ga20-3, ga20-5, and ga20-6 represent transgenic plants of Arabidopsis thaliana. Different lowercase letters indicate significant differences between the treatments at P < 0.05."

[1] 刘晓雪, 田冰, 白晨. 我国糖料产业发展特点、问题与趋势. 中国糖料, 2019, 41(2):47-51.
Liu X X, Tian B, Bai C. Characteristics, problems and development trends of sugar crop industry in China. Sugar Crops China, 2019, 41(2):47-51 (in Chinese with English abstract).
[2] 刘燕群, 李玉萍, 梁伟红, 宋启道, 秦小立, 叶露. 国外甘蔗产业发展现状. 世界农业, 2015, (8):147-152.
Liu Y Q, Li Y P, Liang W H, Song Q D, Qin X L, Ye L. Current situation of sugarcane industry in the world. World Agric, 2015, (8):147-152 (in Chinese with English abstract).
[3] Nguyen C T, Dang L H, Nguyen D T, Tran K P, Giang B L, Tran N Q. Effect of GA3 and Gly plant growth regulators on productivity and sugar content of sugarcane. Agriculture, 2019, 9:1-13.
doi: 10.3390/agriculture9010001
[4] Praharaj S, Singh D, Guru S K, Meena B R. Effect of plant growth regulators on tiller dynamics and yield of sugarcane (Saccharum officinarum L.). Int J Bio-Resour Stress Manage, 2017, 8:75-78.
doi: 10.23910/IJBSM
[5] Qiu L H, Chen R F, Luo H M, Fan Y G, Huang X, Liu J X, Xiong F Q, Zhou H W, Gan C K, Wu J M. Effects of exogenous GA3 and DPC treatments on levels of endogenous hormone and expression of key gibberellin biosynthesis pathway genes during stem elongation in sugarcane. Sugar Technol, 2019, 21:936-948.
doi: 10.1007/s12355-019-00728-7
[6] Shomeili M, Nabipour M, Meskarbashee M, Memari H R. Effects of gibberellic acid on sugarcane plants exposed to salinity under a hydroponic system. Afr J Plant Sci, 2011, 5:609-616.
[7] 吴建明, 李杨瑞, 王爱勤, 杨丽涛, 杨柳. 甘蔗GA20氧化酶基因片段克隆及序列分析. 热带作物学报, 2009, 30:817-821.
Wu J M, Li Y R, Wang A Q, Yang L T, Yang L. Cloning and Sequence Analysis of Sugarcane GA20-oxidase Gene. Chin J Trop Crop, 30:817-821 (in Chinese with English abstract).
[8] Lu J J, Lei C Y, Zha L S. Study on the application and residues of plant growth regulators in the fruit sugarcane grown in the sub-suitable region. J Agric Sci, 2010, 2:254-256.
[9] 山雨思, 辛正琦, 何潇, 代欢欢, 吴能表. 外源茉莉酸甲酯对UV-B胁迫下颠茄生物碱积累及TAs代谢途径调控的机制探究. 作物学报, 2020, 46:1894-1904.
doi: 10.3724/SP.J.1006.2020.04050
Shan Y S, Xin Z Q, He X, Dai H H, Wu N B. Mechanism exploration on alkaloids accumulation and TAs metabolic pathways regulationB in Atropa belladonna L. treated with exogenous methyl jasmonate under UV-B stress. Acta Agron Sin, 2020, 46:1894-1904 (in Chinese with English abstract).
[10] Li J, Zhao C, Zhang M, Yuan F, Chen M. Exogenous melatonin improves seed germination in Limonium bicolor under salt stress. Plant Signal Behav, 2019, 14:1659705.
[11] 常博文, 钟鹏, 刘杰, 唐中华, 高亚冰, 于洪久, 郭炜. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响. 作物学报, 2019, 45:118-130.
doi: 10.3724/SP.J.1006.2019.84043
Chang B W, Zhong P, Liu J, Tang Z H, Gao Y B, Yu H J, Guo W. Effect of low-temperature stress and gibberellin on seed germination and seed-ling physiological responses in peanut. Acta Agron Sin, 2019, 45:118-130 (in Chinese with English abstract).
[12] 温福平, 张檀, 张朝晖, 潘映红. 赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析. 作物学报, 2009, 35:483-489.
Wen F P, Zhang T, Zhang Z H, Pan Y H. Proteome analysis of relieving effect of gibberellin on the inhibition of rice seed germination by salt stress. Acta Agron Sin, 2009, 35:483-489 (in Chinese with English abstract).
[13] 虞慧芳, 曹家树, 王永勤. 植物矮化突变体的激素调控. 生命科学, 2002, 14(2):85-88.
Yu H F, Cao J S, Wang Y Q. Hormones regulation in plant dwarfing mutants. Chin Bull Life Sci, 2002, 14(2):85-88 (in Chinese).
[14] Nam Y J, Herman D, Blomme J, Chae E, Kojima M, Coppens F, Storme V, Van Daele T, Dhondt S, Sakakibara H. Natural variation of molecular and morphological gibberellin responses. Plant Physiol, 2016, 173:703-714.
doi: 10.1104/pp.16.01626
[15] Qin X, Liu J H, Zhao W S, Chen X J, Peng Y L. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol Plant Microbe Interact, 2013, 26:227-239.
doi: 10.1094/MPMI-05-12-0138-R
[16] Lange T, Hedden P, Graebe J E. Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci USA, 1994, 91:8552-8556.
doi: 10.1073/pnas.91.18.8552
[17] 石建斌, 杨永智, 王舰. 马铃薯突变体赤霉素代谢关键酶基因差异表达分析. 生物技术通报, 2016, 32(1):1-6.
Shi J B, Yang Y Z, Wang J. Differential expression analysis of key enzymes of metabolic gibberellin in potatomutants. Biotechnol Bull, 2016, 32(1):124-130 (in Chinese with English abstract).
[18] Plackett A R, Thomas S G, Wilson Z A, Hedden P. Gibberellin control of stamen development a fertile field. Trends Plant Sci, 2011, 16:568-578.
doi: 10.1016/j.tplants.2011.06.007 pmid: 21824801
[19] Appleford N E J, Evans D J, Lenton J R, Gaskin P, Croker S J, Devos K M, Phillips A L, Hedden G P. Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta, 2006, 223:568-582.
pmid: 16160850
[20] Wang Y L, Sun J Z, Sameh S A, Gao L, Ni X N, Li X, Wu Y F, Jiang J X. Identification and expression analysis of Sorghum bicolor gibberellin oxidase genes with varied gibberellin levels involved in regulation of stem biomass. Ind Crops Prod, 2020, 145:111951.
[21] Voorend W, Nelissen H, Vanholme R, De Vliegher A, Van Breusegem F, Boerjan W, Roldán-Ruiz I, Muylle H, Inzé D. Overexpression of GA20-Oxidase 1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnol J, 2016, 14:997-1007.
doi: 10.1111/pbi.12458 pmid: 26903034
[22] Wang Y J, Deng D X, Ding H D, Xu X M, Zhang R, Wang S X, Bian Y L, Yin Z R, Chen Y, Xu M L. Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype: physiological and transcriptomic evidence. PLoS One, 2013, 8:e66466.
[23] Maurer A, Draba V, Pillen K. Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. J Exp Bot, 2016, 67:2507-2518.
doi: 10.1093/jxb/erw070
[24] Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif J C, Pillen K. Modelling the geneticarchitecture of flowering time control in barley through nested association mapping. Biomed Central Genomics, 2015, 16:290.
[25] Jia Q, Zhang J, Westcott S, Zhang X Q, Bellgard M, Lance R, Li C. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genom, 2009, 9:255-262.
doi: 10.1007/s10142-009-0120-4
[26] Jia Q J, Li D, Shang Y, Zhu J H, Hua W, Wang J M, Yang J M, Zhang G P. Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genomics, 2015, 16:927.
doi: 10.1186/s12864-015-2116-x
[27] 范业赓, 丘立杭, 黄杏, 周慧文, 甘崇琨, 李杨瑞, 杨荣仲, 吴建明, 陈荣发. 甘蔗节间伸长过程赤霉素生物合成关键基因的表达及相关植物激素动态变化. 植物学报, 2019, 54:486-496.
doi: 10.11983/CBB18139
Fan Y G, Qiu L H, Huang X, Zhou H W, Gan C K, Li Y R, Yang R Z, Wu J M, Chen R F. Expression analysis of key genes in gibberellin biosynthesis and related phytohormonal dynamics during sugarcane inter-node elongation. Bull Bot, 2019, 54:486-496 (in Chinese with English abstract).
[28] 沈姣, 王凯, 张文盼, 董广蕊, 石岩, 张积森. 甘蔗染色体研究近况. 热带作物学报, 2016, 37:1430-1436.
Shen J, Wang K, Zhang W P, Dong G R, Shi Y, Zhang J S. A review for the chromosome of sugarcane. Chin J Trop Crop, 2016, 37:1430-1436 (in Chinese with English abstract)
[29] Tan X, Yang H, Qiao D J, Ma X. Construction of siRNA plant expression vector interfered with GA20-oxidase and production of dwarf tobacco. Chin J Appl Environ Biol, 2008, 14:48-52.
[30] Laura H, Andres G L, Jose L G M. Characterization of gibberellin 20-oxidases in the citrus hybrid Carrizocit range. Tree Physiol, 2009, 29:569-577.
doi: 10.1093/treephys/tpn049
[31] 黄桃鹏, 李媚娟, 王睿, 李玲. 赤霉素生物合成及信号转导途径研究进展. 植物生理学报, 2015, 51:1241-1247.
Huang T P, Li M J, Wang R, Li L. Progress in study of gibberellins biosynthesis and signaling transduction pathway. Plant Physiol J, 2015, 51:1241-1247 (in Chinese with English abstract).
[32] Dai X M, Cheng X X, Li Y X. Differential expression of gibberellin 20 oxidase gene induced by abiotic stresses in Zoysiagrass (Zoysia japonica). Biologia, 2012, 67:681-688.
doi: 10.2478/s11756-012-0048-3
[33] Rieu I, Uiz-Rivero O, Ernandez-Garcia N, Griffiths J, Powers S J, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas S G. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development through-out the Arabidopsis life cycle. Plant J, 2008, 3:488-504.
[34] 谭彬, 王婷, 郝鹏博, 郑先波, 程钧, 王伟, 冯建灿. 外源GA3和PBZ对桃枝条生长及其GA相关基因表达的影响. 华北农学报, 2019, 34(2):25-34.
Tan B, Wang T, Hao P B, Zheng X B, Cheng J, Wang W, Feng J C. Effects of GA3 and PBZ on shoot growth and expression of GA-related genes in peach. Acta Agric Boreali-Sin, 2019, 34(2):25-34 (in Chinese with English abstract).
[35] 叶家其, 张毓婷, 傅鹰, 周明兵, 汤定钦. 毛竹茎秆伸长过程中赤霉素生物合成、降解和信号转导关键基因的鉴定及表达分析. 生物工程学报, 2019, 35:647-666.
Ye J Q, Zhang Y T, Fu Y, Zhou M B, Tang D Q. Genome-wide identification and expression analysis of gibberellin biosynthesis, metabolism and signaling family genes inPhyllostachys edulis. Chin J Biotechnol, 35:647-666 (in Chinese with English abstract).
[36] He H, Liang G, Lu S, Wang P, Liu T, Ma Z, Zuo C, Sun X, Chen B, Mao J. Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape(Vitis vinifera L.). Genes, 2019, 10:680.
doi: 10.3390/genes10090680
[37] Hedden P. The genes of the green revolution. Trends Genet, 2003, 19:5-9.
pmid: 12493241
[38] 李飞鸿, 侯应军, 李雪涵, 余心怡, 渠慎春. 苹果赤霉素氧化酶基因MdGA2ox8的克隆功能分析. 中国农业科学, 2018, 51:4339-4351.
Li F H, Hou Y J, Li X H, Yu X Y, Qu S C. Cloning and function analysis of apple gibberellin oxidase gene MdGA2ox8. Sci Agric Sin, 2018, 51:4339-4351 (in Chinese with English abstract).
[39] 李军, 赵爱春, Umuhoza D, 王茜龄, 刘长英, 鲁成, 余茂德. 桑树MaDFR的克隆及功能分析. 中国农业科学, 2014, 47:4524-453.
Li J, Zhao A C, Umuhoza D, Wang Q L, Liu C Y, Lu C, Yu M D. Cloning and function analysis of aMadfr gene from mulberry. Sci Agric Sin, 47:4524-4532 (in Chinese with English abstract).
[40] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-1), ‘Green Revolution’ rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2001, 99:9043-9048.
doi: 10.1073/pnas.132266399
[41] Do P T, Tar J R D, Lee H, Folta M K, Zhang Z Y J. Expression of ZmGA20ox cDNA alters plant morphology and increases biomass production of switchgrass(Panicum virgatum L.). Plant Biotechnol J, 2016, 1532-1540.
[42] Huang S, Raman A S, Ream J E, Fujiwara H R, Cerny E, Brown S M. Overexpression of 20-oxidase confers a gibberellin- overproduction phenotype in Arabidopsis. Plant Physiol, 1998, 118:7739-7781.
[43] Coles A L, Phillips J P, Croker S J, Garcia-Lepe R, Hedden P. Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J, 1999, 17:5479-5556.
[44] Eriksson M E, Israelsson M, Olsson O, Moritz T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol, 2001, 18:7849-7788.
[1] CUI Lian-Hua, ZHAN Wei-Min, YANG Lu-Hao, WANG Shao-Ci, MA Wen-Qi, JIANG Liang-Liang, ZHANG Yan-Pei, YANG Jian-Ping, YANG Qing-Hua. Molecular cloning of two maize (Zea mays) ZmCOP1 genes and their transcription abundances in response to different light treatments [J]. Acta Agronomica Sinica, 2022, 48(6): 1312-1324.
[2] YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190.
[3] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[4] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[5] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[6] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[7] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[8] SU Ya-Chun, LI Cong-Na, SU Wei-Hua, YOU Chui-Huai, CEN Guang-Li, ZHANG Chang, REN Yong-Juan, QUE You-Xiong. Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar [J]. Acta Agronomica Sinica, 2021, 47(7): 1275-1296.
[9] TANG Rui-Min, JIA Xiao-Yun, ZHU Wen-Jiao, YIN Jing-Ming, YANG Qing. Cloning of potato heat shock transcription factor StHsfA3 gene and its functional analysis in heat tolerance [J]. Acta Agronomica Sinica, 2021, 47(4): 672-683.
[10] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[11] YUE Jie-Ru, BAI Jian-Fang, ZHANG Feng-Ting, GUO Li-Ping, YUAN Shao-Hua, LI Yan-Mei, ZHANG Sheng-Quan, ZHAO Chang-Ping, ZHANG Li-Ping. Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging [J]. Acta Agronomica Sinica, 2021, 47(3): 405-415.
[12] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[13] NIU Na, LIU Zhen, HUANG Peng-Xiang, ZHU Jin-Yong, LI Zhi-Tao, MA Wen-Jing, ZHANG Jun-Lian, BAI Jiang-Ping, LIU Yu-Hui. Genome-wide identification and expression analysis of potato GAUT gene family [J]. Acta Agronomica Sinica, 2021, 47(12): 2348-2361.
[14] XIE Pan, LIU Wei, KANG Yu, HUA Wei, QIAN Lun-Wen, GUAN Chun-Yun, HE Xin. Identification and relative expression analysis of CBF gene family in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(12): 2394-2406.
[15] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
Full text



No Suggested Reading articles found!