Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (7): 1275-1296.doi: 10.3724/SP.J.1006.2021.04192

• CROP GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of thaumatin-like protein family in Saccharum spontaneum and functional analysis of its homologous gene in sugarcane cultivar

SU Ya-Chun1,2, LI Cong-Na1, SU Wei-Hua1, YOU Chui-Huai3, CEN Guang-Li1, ZHANG Chang1, REN Yong-Juan1, QUE You-Xiong1,2,*()   

  1. 1Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Key Laboratory of Crop Genetics and Breeding and Comprehensive Utilization, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China;
  • Received:2020-08-21 Accepted:2020-12-01 Online:2021-07-12 Published:2021-01-04
  • Contact: QUE You-Xiong E-mail:queyouxiong@126.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2019YFD1000500);the National Natural Science Foundation of China(31671752);the China Agriculture Research System(CARS-17)

Abstract:

Thaumatin like protein (TLP) plays an important role in plant growth and development and resistance to environmental stress. In order to fully understand the structure and functional characteristics of sugarcane TLP gene family, 122 SsTLP family genes were screened and analyzed for their physicochemical properties, gene chromosomal distribution, gene structure, and phylogenetic evolution using the genomic database of Saccharum spontaneum and bioinformatics methods. In addition, one homologous gene of SsTLP87, ScTLP1, was cloned from a major sugarcane cultivar ROC22 in mainland China. Gene expression pattern, subcellular localization, transient expression, and transcriptional self-activation activity of ScTLP1 were identified. The results showed that 122 SsTLP family genes were distributed on 28 chromosomes, and there was a gene clustering with 1-13 SsTLP genes on each chromosome. Most SsTLP proteins were predicted to be acidic, hydrophobic, and unstable proteins which located in cytoplasm. There were many types and distributions of intron number (1-30), intron phase (0-2), and motif (1-5) in SsTLP family genes. Phylogenetic tree analysis indicated that the coding proteins of SsTLP genes were clustered in the I-X branches of TLP family, among which, the number of the class V SsTLPs with antibacterial potential was the most (36). ScTLP1 gene obtained from sugarcane cultivar ROC22 encoded 227 amino acid residues, belonging to the class V member. ScTLP1 was located in the cell membrane and had no transcriptional self-activation activity. The similarity of amino acid sequence between ScTLP1 and SsTLP87 was as high as 99.56%. qRT-PCR demonstrated that ScTLP1 gene was constitutively expressed in different tissues of sugarcane with the highest expression level in the bud. The expression level of ScTLP1 gene had no significant change under the treatments of abscisic acid (ABA) and salicylic acid (SA), but it was up-regulated by Sporisorium scitaminea, methyl jasmonate (MeJA), sodium chloride (NaCl), polyethylene glycol (PEG), and low temperature of 4℃. After transient overexpression of ScTLP1 gene, DAB staining in Nicotiana benthamiana leaves was deepened, and the expression level of NtEFE26 and NtPR3 was up-regulated. Furthermore, the incidence of transient overexpression of ScTLP1 gene in N. benthamiana leaves inoculated with Pseudomonas solanacearum and Fusarium solani var. coeruleum was lighter than that of the control, suggesting that ScTLP1 gene could induce an allergic reaction of N. benthamiana, participate in the ethylene and jasmonic acid signal transduction pathways, and enhance the defense effect of N. benthamiana against pathogens. These results laid a good foundation for further study on the structure and function of the TLP gene family in sugarcane.

Key words: sugarcane, thaumatin-like protein, genome-wide analysis, functional analysis

Table 1

Analysis of physicochemical properties, subcellular localizations, and signal peptides of SsTLP family proteins"

基因名称 基因ID 氨基酸数目 分子量 等电点 不稳定系数 平均疏水性 亚细胞定位 信号肽
Gene name Gene ID Amino acids number Molecular weight (kD) Isoelectric point Instability index Hydrophobicity Subcellular localization Signal peptide
SsTLP1 Sspon.01G0006490-1A 294 29.00 4.81 27.25 0.13 细胞质Cytoplasm 无No
SsTLP2 Sspon.01G0006490-2C 324 32.03 5.59 29.88 0.24 细胞质Cytoplasm 有Yes
SsTLP3 Sspon.01G0006490-3D 325 32.05 5.23 30.42 0.26 细胞质Cytoplasm 有Yes
SsTLP4 Sspon.01G0016190-1A 625 64.44 5.20 56.53 -0.10 细胞质Cytoplasm 无No
SsTLP5 Sspon.01G0016190-2B 464 46.16 5.02 59.63 0.10 细胞膜, 细胞质Cell membrane, Cytoplasm 无No
SsTLP6 Sspon.01G0016190-3C 479 47.69 4.96 59.17 0.10 细胞膜, 细胞质Cell membrane, Cytoplasm 无No
SsTLP7 Sspon.01G0016190-4D 275 27.67 4.70 54.56 0.16 细胞质Cytoplasm 有Yes
SsTLP8 Sspon.01G0016220-1A 331 32.82 5.40 41.00 0.24 细胞质Cytoplasm 有Yes
SsTLP9 Sspon.01G0016220-2C 305 31.16 8.33 59.42 0.08 细胞质Cytoplasm 有Yes
SsTLP10 Sspon.01G0016220-3D 331 32.82 5.37 40.32 0.25 细胞质Cytoplasm 有Yes
SsTLP11 Sspon.01G0018320-1A 236 23.36 4.30 32.97 0.18 细胞质Cytoplasm 有Yes
SsTLP12 Sspon.01G0018320-2B 236 23.40 4.30 31.18 0.20 细胞质Cytoplasm 有Yes
SsTLP13 Sspon.01G0018320-3C 236 23.41 4.30 34.15 0.15 细胞质Cytoplasm 有Yes
SsTLP14 Sspon.01G0020410-2C 1053 113.01 6.79 45.32 -0.14 细胞核Nucleus 无No
SsTLP15 Sspon.01G0020420-1A 297 30.21 5.60 47.32 0.08 细胞质Cytoplasm 无No
SsTLP16 Sspon.01G0020420-2B 298 30.25 5.40 45.49 0.10 细胞质Cytoplasm 无No
SsTLP17 Sspon.01G0037110-1B 334 33.68 5.03 46.39 0.06 细胞质Cytoplasm 有Yes
SsTLP18 Sspon.01G0037110-1T 334 33.68 5.03 46.39 0.06 细胞质Cytoplasm 有Yes
SsTLP19 Sspon.01G0037110-2C 334 33.68 5.03 46.39 0.06 细胞质Cytoplasm 有Yes
SsTLP20 Sspon.01G0043210-1B 289 29.55 7.44 40.68 0.12 细胞质Cytoplasm 有Yes
SsTLP21 Sspon.01G0043210-2C 424 44.00 9.26 51.46 -0.17 细胞质Cytoplasm 有Yes
SsTLP22 Sspon.01G0043210-3D 292 29.81 7.44 41.03 0.12 细胞质Cytoplasm 有Yes
SsTLP23 Sspon.01G0044270-1B 109 11.37 8.28 71.74 -0.05 细胞质Cytoplasm 无No
SsTLP24 Sspon.01G0056200-1C 95 10.02 8.89 73.11 -0.62 细胞质Cytoplasm 无No
SsTLP25 Sspon.01G0056200-2D 144 14.95 6.51 44.39 -0.24 细胞质Cytoplasm 无No
SsTLP26 Sspon.02G0009140-1A 246 24.96 4.87 43.80 -0.16 细胞质Cytoplasm 无No
SsTLP27 Sspon.02G0009140-1P 326 34.51 6.21 46.96 -0.22 细胞质Cytoplasm 无No
SsTLP28 Sspon.02G0009140-2B 236 23.98 4.87 43.62 -0.12 细胞质Cytoplasm 无No
SsTLP29 Sspon.02G0009140-2P 308 32.49 4.99 43.67 -0.10 细胞质Cytoplasm 无No
SsTLP30 Sspon.02G0009140-3C 236 23.97 4.87 44.87 -0.13 细胞质Cytoplasm 无No
SsTLP31 Sspon.02G0009140-3P 316 33.34 5.36 45.83 -0.15 细胞质Cytoplasm 有Yes
SsTLP32 Sspon.02G0009140-4D 319 33.65 5.36 45.49 -0.13 细胞质Cytoplasm 有Yes
SsTLP33 Sspon.02G0009150-1A 328 32.84 4.91 47.87 0.16 细胞质Cytoplasm 有Yes
SsTLP34 Sspon.02G0009150-2D 318 31.83 4.79 46.30 0.10 细胞质Cytoplasm 无No
SsTLP35 Sspon.02G0011230-1A 323 34.14 6.06 43.42 0.00 细胞质Cytoplasm 有Yes
SsTLP36 Sspon.02G0011230-1P 220 22.52 4.44 61.16 -0.17 细胞质Cytoplasm 无No
SsTLP37 Sspon.02G0011230-2B 289 30.43 7.36 44.32 -0.11 细胞质Cytoplasm 无No
SsTLP38 Sspon.02G0011230-2P 231 23.89 4.87 43.93 0.03 细胞质Cytoplasm 有Yes
SsTLP39 Sspon.02G0011230-3C 382 38.73 4.45 51.65 -0.12 细胞质Cytoplasm 有Yes
SsTLP40 Sspon.02G0011230-4D 323 34.23 6.18 42.60 0.00 细胞质Cytoplasm 有Yes
SsTLP41 Sspon.02G0020000-1A 137 14.35 8.32 61.73 -0.36 细胞质Cytoplasm 无No
SsTLP42 Sspon.02G0020000-1P 288 29.63 7.39 48.63 -0.12 细胞质Cytoplasm 有Yes
SsTLP43 Sspon.02G0029050-1A 135 13.93 6.52 46.66 0.35 细胞质Cytoplasm 有Yes
SsTLP44 Sspon.02G0029050-2B 227 23.17 4.74 39.91 0.25 细胞质Cytoplasm 有Yes
SsTLP45 Sspon.02G0029050-3C 227 23.23 4.78 39.64 0.26 细胞质Cytoplasm 有Yes
SsTLP46 Sspon.02G0029050-4D 215 21.88 4.96 40.74 0.39 细胞质Cytoplasm 有Yes
SsTLP47 Sspon.02G0029070-1A 190 19.81 11.44 56.10 -0.22 细胞壁, 细胞质Cell wall, Cytoplasm 无No
SsTLP48 Sspon.02G0029080-1A 459 47.73 8.61 60.12 -0.25 细胞质Cytoplasm 无No
SsTLP49 Sspon.02G0032190-1A 163 17.00 5.76 46.52 -0.29 细胞壁, 细胞质Cell wall, Cytoplasm 无No
SsTLP50 Sspon.02G0032190-1P 170 17.33 4.94 40.68 0.02 细胞质Cytoplasm 有Yes
SsTLP51 Sspon.02G0032190-2B 168 17.20 5.54 42.99 0.04 细胞质Cytoplasm 有Yes
SsTLP52 Sspon.02G0032190-3C 163 17.02 5.52 45.34 -0.34 细胞壁, 细胞质Cell wall, Cytoplasm 无No
SsTLP53 Sspon.02G0032190-4D 168 17.20 5.54 42.99 0.04 细胞质Cytoplasm 有Yes
SsTLP54 Sspon.02G0032200-1A 179 18.78 9.85 50.54 0.04 细胞质Cytoplasm 有Yes
SsTLP55 Sspon.02G0032220-1A 171 17.61 4.68 29.57 -0.06 细胞质Cytoplasm 有Yes
SsTLP56 Sspon.02G0032220-2B 171 17.38 4.35 44.70 0.22 细胞质Cytoplasm 有Yes
SsTLP57 Sspon.02G0032220-3C 132 13.56 4.12 39.94 0.09 细胞质Cytoplasm 有Yes
SsTLP58 Sspon.02G0032230-1A 168 17.20 5.54 42.99 0.04 细胞质Cytoplasm 有Yes
SsTLP59 Sspon.02G0032230-2C 409 43.36 8.98 48.87 -0.31 细胞质, 细胞核Cytoplasm, Nucleus 有Yes
SsTLP60 Sspon.02G0032240-1A 201 20.71 6.38 26.29 -0.09 细胞质Cytoplasm 有Yes
SsTLP61 Sspon.02G0032240-2C 175 17.72 4.60 43.06 0.09 细胞质Cytoplasm 有Yes
SsTLP62 Sspon.02G0034650-1B 230 24.19 7.31 24.08 -0.01 细胞质Cytoplasm 有Yes
SsTLP63 Sspon.02G0034650-2D 224 23.68 7.30 22.53 0.02 细胞质Cytoplasm 有Yes
SsTLP64 Sspon.02G0036340-1B 317 32.21 4.51 39.86 0.12 细胞质Cytoplasm 无No
SsTLP65 Sspon.02G0036340-2C 322 32.67 4.51 38.40 0.13 细胞质Cytoplasm 有Yes
SsTLP66 Sspon.02G0036340-3D 316 32.12 4.51 39.95 0.12 细胞质Cytoplasm 无No
SsTLP67 Sspon.02G0041150-1B 291 30.58 8.03 51.00 0.04 细胞质Cytoplasm 有Yes
SsTLP68 Sspon.02G0041150-2C 383 40.61 8.39 48.90 -0.01 细胞质Cytoplasm 有Yes
SsTLP69 Sspon.02G0045690-2D 171 17.51 4.47 29.08 -0.03 细胞质Cytoplasm 有Yes
SsTLP70 Sspon.02G0045700-1B 173 17.67 4.26 31.34 0.10 细胞质Cytoplasm 有Yes
SsTLP71 Sspon.02G0045700-1P 416 42.99 9.33 35.28 -0.38 细胞质Cytoplasm 有Yes
SsTLP72 Sspon.02G0045700-2C 173 17.68 4.43 31.87 0.14 细胞质Cytoplasm 有Yes
SsTLP73 Sspon.02G0045700-3D 173 17.73 4.43 33.23 0.09 细胞质Cytoplasm 有Yes
SsTLP74 Sspon.02G0053220-1C 245 25.68 6.27 27.29 -0.32 细胞质Cytoplasm 有Yes
SsTLP75 Sspon.02G0053220-2D 271 28.16 5.87 38.49 -0.29 细胞质Cytoplasm 有Yes
SsTLP76 Sspon.02G0053240-1C 166 17.35 6.66 30.90 -0.17 细胞质Cytoplasm 有Yes
SsTLP77 Sspon.02G0053250-2D 233 24.46 8.92 60.54 -0.45 细胞质, 细胞核Cytoplasm, Nucleus 无No
SsTLP78 Sspon.02G0059040-1D 124 12.61 6.50 44.52 0.23 细胞膜, 细胞质Cell membrane, Cytoplasm 有Yes
SsTLP79 Sspon.02G0059050-1D 127 12.95 4.27 27.47 0.47 细胞质Cytoplasm 有Yes
SsTLP80 Sspon.03G0003060-1A 252 26.62 7.86 47.70 -0.05 细胞质Cytoplasm 有Yes
SsTLP81 Sspon.03G0003060-1P 253 26.73 7.86 47.55 -0.04 细胞质Cytoplasm 有Yes
SsTLP82 Sspon.03G0003060-2C 251 26.48 7.86 46.89 -0.06 细胞质Cytoplasm 有Yes
SsTLP83 Sspon.03G0014170-1A 633 69.61 6.63 48.05 -0.21 细胞核Nucleus 有Yes
SsTLP84 Sspon.03G0018890-1A 1028 111.78 9.42 52.82 -0.72 细胞核Nucleus 无No
SsTLP85 Sspon.03G0018890-2C 516 57.24 6.15 38.71 -0.30 细胞核Nucleus 无No
SsTLP86 Sspon.03G0018890-3D 727 80.10 6.23 49.20 -0.33 细胞核Nucleus 有Yes
SsTLP87 Sspon.03G0040280-1C 227 23.49 7.33 31.85 -0.08 细胞质Cytoplasm 有Yes
SsTLP88 Sspon.03G0040280-1P 227 23.51 7.33 31.48 -0.07 细胞质Cytoplasm 有Yes
SsTLP89 Sspon.04G0003480-1A 186 18.49 4.09 48.17 0.20 细胞质Cytoplasm 无No
SsTLP90 Sspon.04G0003480-2C 186 18.49 4.09 48.17 0.20 细胞质Cytoplasm 无No
SsTLP91 Sspon.04G0003480-3D 191 18.97 4.41 47.57 0.21 细胞质Cytoplasm 无No
SsTLP92 Sspon.05G0007890-1A 1136 124.24 5.26 52.74 -0.44 细胞核Nucleus 无No
SsTLP93 Sspon.05G0014480-1A 280 27.85 5.42 47.70 0.28 细胞质Cytoplasm 有Yes
SsTLP94 Sspon.05G0014480-1P 267 26.55 5.68 46.13 0.23 细胞质Cytoplasm 有Yes
SsTLP95 Sspon.05G0014480-2B 280 27.78 5.35 45.12 0.34 细胞质Cytoplasm 有Yes
SsTLP96 Sspon.05G0014480-3D 277 27.62 5.35 44.31 0.32 细胞质Cytoplasm 有Yes
SsTLP97 Sspon.05G0029070-1B 550 60.87 6.45 43.06 -0.32 细胞核Nucleus 有Yes
SsTLP98 Sspon.05G0029070-2C 514 56.87 6.33 45.88 -0.35 细胞核Nucleus 有Yes
SsTLP99 Sspon.05G0032300-1C 244 24.70 4.62 36.67 0.09 细胞质Cytoplasm 有Yes
SsTLP100 Sspon.05G0032300-2D 392 40.73 7.03 46.75 -0.08 细胞质Cytoplasm 无No
SsTLP101 Sspon.05G0032310-1C 242 25.22 4.53 47.73 -0.18 细胞质Cytoplasm 无No
SsTLP102 Sspon.05G0032310-2D 242 25.19 4.53 47.73 -0.17 细胞质Cytoplasm 无No
SsTLP103 Sspon.06G0027890-1B 241 25.13 6.50 41.80 -0.14 细胞质Cytoplasm 无No
SsTLP104 Sspon.06G0027890-1T 217 22.57 8.36 44.97 -0.11 细胞质Cytoplasm 无No
SsTLP105 Sspon.06G0027890-2C 251 26.21 8.10 39.51 -0.11 细胞质Cytoplasm 无No
SsTLP106 Sspon.07G0015550-1A 318 32.05 4.60 49.86 0.08 细胞质Cytoplasm 有Yes
SsTLP107 Sspon.07G0015550-2B 326 33.01 7.35 38.08 0.30 细胞质Cytoplasm 有Yes
SsTLP108 Sspon.07G0015560-1A 517 54.47 4.77 46.95 -0.11 细胞质, 细胞核, 液泡Cytoplasm, Nucleus, Vacuole 有Yes
SsTLP109 Sspon.07G0017710-1A 267 26.60 4.10 43.87 0.22 细胞质Cytoplasm 有Yes
SsTLP110 Sspon.07G0017710-2B 329 32.60 4.21 47.78 0.28 细胞膜, 细胞质, 液泡Cell membrane, Cytoplasm, Vacuole 有Yes
SsTLP111 Sspon.08G0001280-1A 260 25.63 4.82 46.65 0.35 细胞质Cytoplasm 有Yes
SsTLP112 Sspon.08G0001280-2C 260 25.58 4.65 46.15 0.36 细胞质Cytoplasm 有Yes
SsTLP113 Sspon.08G0001280-3D 279 27.61 4.92 47.72 0.10 细胞质Cytoplasm 无No
SsTLP114 Sspon.08G0003010-1A 248 25.25 8.59 38.06 0.13 细胞质Cytoplasm 有Yes
SsTLP115 Sspon.08G0003010-2B 254 25.87 8.59 36.97 0.14 细胞质Cytoplasm 有Yes
SsTLP116 Sspon.08G0003010-3C 248 25.26 8.59 37.63 0.15 细胞质Cytoplasm 有Yes
SsTLP117 Sspon.08G0007410-1A 313 31.28 4.74 33.53 0.25 细胞质Cytoplasm 有Yes
SsTLP118 Sspon.08G0007410-2C 313 31.25 4.74 34.28 0.24 细胞质Cytoplasm 有Yes
SsTLP119 Sspon.08G0015670-1A 309 31.95 6.13 49.19 0.07 细胞质Cytoplasm 有Yes
SsTLP120 Sspon.08G0015670-2B 309 31.92 6.20 46.42 0.07 细胞质Cytoplasm 有Yes
SsTLP121 Sspon.08G0015670-3D 251 26.04 9.12 55.78 -0.23 细胞质Cytoplasm 有Yes
SsTLP122 Sspon.08G0030460-1D 275 28.40 6.12 54.61 0.10 细胞质Cytoplasm 有Yes

Fig. 1

Chromosome location of SsTLP family genes"

Fig. 2

Gene structure of SsTLP family The green box representes the coding sequence (CDS); the yellow box representes the untranslated region (UTR); the horizontal line in the middle of the box representes the intron; 0, 1, and 2 representes the intron phase."

Fig. 3

Conservation motif analysis of SsTLP family The boxes of different colors represent the motif types and positions."

Fig. 4

Phylogenetic tree of SsTLP family The red dot representes the Saccharum spontaneum SsTLP protein; the green dot representes the Arabidopsis thaliana AtTLP protein; the black dot representes the Oryza sativa OsTLP protein."

Fig. 5

Nucleic acid sequence and the coding amino acid sequence of ScTLP1 gene The blue font is the cysteine site; the box sequence is the THN conservative domain; the yellow sequence is the signal peptide; * representes stop codon."

Fig. 6

Multiple alignment of amino acid sequences of sugarcane ScTLP1 protein and TLP proteins of other homologous species"

Fig. 7

Tissue specific expression of ScTLP1 gene and its expression under different environmental stresses A: tissue-specific expression of ScTLP1 gene in sugarcane ROC22. R: root; SP: stem pith; L: leaf; SE: stem epidermis; B: bud. B: expression of ScTLP1 gene after inoculation with Sporisorium scitamineum. C-H: expression of ScTLP1 gene under exogenous hormones and abiotic stresses. ABA: abscisic acid; SA: salicylic acid; MeJA: methyl jasmonate; NaCl: sodium chloride; PEG: polyethylene glycol; Low temperature: 4°C low temperature treatment. The error bars represent the standard error of each group treatment (n = 3). Different lowercase letters above the bars mean significant differences at the 0.05 probability level."

Fig. 8

Transient expression effect of ScTLP1 gene in Nicotiana benthamiana leaves A: gene expression level of ScTLP1 in N. benthamiana after transient expression for 1 d. B: gene expression level of tobacco immune related genes in control group and experimental group after transient expression for 1 d. C: the DAB staining result of N. benthamiana leaves after transient expression for 2 d. D-E: the leaf phenotypes of N. benthamiana inoculated with Pseudomonas solanacearum and Fusarium solani var. coeruleum for seven days, respectively. The experimental data were normalized by the expression level of NtEF-1α gene. The error bars represent the standard errors of each group treatment (n = 3). Different lowercase letters above the bars mean significant differences at the 0.05 probability level."

Fig. 9

Subcellular localization of ScTLP1 protein in the epidermis of Nicotiana benthamiana The results include photographs taken from three perspectives, including visual field, green fluorescence, and merged field. The arrows a, b, and c represent the nucleus, cell membrane, and cytoplasm, respectively. 35S::GFP is the result of N. benthamiana injection with GV3101 bacterial solution containing subcellular localization empty vector; 35S::ScTLP1::GFP is the result of N. benthamiana injection with GV3101 bacterial solution containing and the recombinant subcellular localization vector with the target gene ScTLP1. Bar: 50 μm."

Fig. 10

Validation of transcriptional self-activation activity of ScTLP1 protein A: the growth of Y2H Gold yeast solution sprayed on SD-Trp solid medium with different concentrations of positive control, negative control and pGBKT7-ScTLP1. B: colonial staining result of SD-Trp solid culture medium with X-α-gal staining solution. C: colonial staining result after adding SD-Trp solid culture with X-α-gal staining solution. pGADT7-T+pGBKT7-p53: positive control; pGBKT7: negative control."

Table 1

Secondary structure prediction of SsTLP family proteins (%)"

蛋白名称
Protein name
α-螺旋
Alpha helix
延伸链
Extended strand
不规则卷曲
Random coil
蛋白名称
Protein
name
α-螺旋
Alpha helix
延伸链
Extended strand
不规则卷曲
Random coil
SsTLP1 19.05 15.99 64.97 SsTLP62 18.70 15.65 65.65
SsTLP2 22.84 16.05 61.11 SsTLP63 19.20 16.52 64.29
SsTLP3 23.08 16.00 60.92 SsTLP64 24.92 14.20 60.88
SsTLP4 20.80 15.36 63.84 SsTLP65 23.91 14.91 61.18
SsTLP5 20.47 10.13 69.40 SsTLP66 24.68 14.24 61.08
SsTLP6 22.55 9.39 68.06 SsTLP67 14.78 20.27 64.95
SsTLP7 22.91 11.64 65.45 SsTLP68 18.28 15.93 65.80
SsTLP8 27.79 14.20 58.01 SsTLP69 9.36 22.81 67.84
SsTLP9 26.56 13.11 60.33 SsTLP70 9.25 18.50 72.25
SsTLP10 28.70 13.90 57.40 SsTLP71 14.90 18.51 66.59
SsTLP11 12.71 16.95 70.34 SsTLP72 9.25 20.23 70.52
SsTLP12 12.71 19.07 68.22 SsTLP73 9.25 18.50 72.25
SsTLP13 9.75 16.95 73.31 SsTLP74 7.76 19.59 72.65
SsTLP14 31.15 15.10 53.75 SsTLP75 10.33 13.65 76.01
SsTLP15 12.79 19.19 68.01 SsTLP76 7.83 21.08 71.08
SsTLP16 11.07 19.13 69.80 SsTLP77 19.74 12.45 67.81
SsTLP17 11.98 15.27 72.75 SsTLP78 26.61 20.97 52.42
SsTLP18 11.98 15.27 72.75 SsTLP79 18.11 22.83 59.06
SsTLP19 11.98 15.27 72.75 SsTLP80 17.86 15.87 66.27
SsTLP20 15.22 17.99 66.78 SsTLP81 18.18 15.81 66.01
SsTLP21 17.92 16.75 65.33 SsTLP82 17.93 16.33 65.74
SsTLP22 15.75 17.81 66.44 SsTLP83 29.07 17.85 53.08
SsTLP23 36.70 0.92 62.39 SsTLP84 27.04 9.92 63.04
SsTLP24 3.16 9.47 87.37 SsTLP85 40.50 13.76 45.74
SsTLP25 9.72 14.58 75.69 SsTLP86 30.54 17.06 52.41
SsTLP26 8.13 18.70 73.17 SsTLP87 24.23 11.01 64.76
SsTLP27 19.02 13.50 67.48 SsTLP88 24.23 11.45 64.32
SsTLP28 11.02 19.07 69.92 SsTLP89 9.68 21.51 68.82
SsTLP29 19.81 15.91 64.29 SsTLP90 9.68 21.51 68.82
SsTLP30 8.90 19.07 72.03 SsTLP91 9.95 23.56 66.49
SsTLP31 22.78 10.76 66.46 SsTLP92 40.49 10.56 48.94
SsTLP32 22.57 11.29 66.14 SsTLP93 13.21 22.86 63.93
SsTLP33 13.41 21.34 65.24 SsTLP94 11.99 20.97 67.04
SsTLP34 11.32 22.96 65.72 SsTLP95 13.93 22.14 63.93
SsTLP35 17.65 16.41 65.94 SsTLP96 15.88 21.30 62.82
SsTLP36 11.82 15.45 72.73 SsTLP97 29.09 18.18 52.73
SsTLP37 12.46 15.57 71.97 SsTLP98 29.77 16.54 53.70
SsTLP38 9.52 25.54 64.94 SsTLP99 12.30 21.72 65.98
SsTLP39 12.57 14.40 73.04 SsTLP100 15.31 20.66 64.03
SsTLP40 17.65 16.10 66.25 SsTLP101 12.40 24.79 62.81
SsTLP41 13.14 12.41 74.45 SsTLP102 12.40 24.79 62.81
SsTLP42 13.19 15.62 71.18 SsTLP103 13.69 12.03 74.27
SsTLP43 17.78 20.00 62.22 SsTLP104 16.59 14.75 68.66
SsTLP44 12.78 20.26 66.96 SsTLP105 16.33 11.16 72.51
SsTLP45 12.33 19.82 67.84 SsTLP106 17.30 16.98 65.72
SsTLP46 16.28 20.93 62.79 SsTLP107 26.99 21.17 51.84
SsTLP47 13.68 13.68 72.63 SsTLP108 31.53 12.77 55.71
SsTLP48 15.25 19.17 65.58 SsTLP109 16.48 19.48 64.04
SsTLP49 0.00 23.93 76.07 SsTLP110 19.45 17.33 63.22
SsTLP50 9.41 21.18 69.41 SsTLP111 29.23 12.69 58.08
SsTLP51 11.31 19.64 69.05 SsTLP112 28.46 13.46 58.08
SsTLP52 0.00 22.09 77.91 SsTLP113 22.94 13.98 63.08
SsTLP53 11.31 19.64 69.05 SsTLP114 17.74 20.97 61.29
SsTLP54 29.61 20.11 50.28 SsTLP115 21.26 20.47 58.27
SsTLP55 9.36 22.81 67.84 SsTLP116 18.95 21.37 59.68
SsTLP56 11.70 22.22 66.08 SsTLP117 22.68 18.85 58.47
SsTLP57 21.97 18.18 59.85 SsTLP118 22.36 18.85 58.79
SsTLP58 11.31 19.64 69.05 SsTLP119 20.39 16.50 63.11
SsTLP59 20.29 11.49 68.22 SsTLP120 19.09 16.50 64.40
SsTLP60 15.42 14.93 69.65 SsTLP121 17.13 10.36 72.51
SsTLP61 10.29 21.14 68.57 SsTLP122 21.45 14.55 64.00
[1] Kombrink E, Somssich I E. Pathogenesis-related Proteins and Plant Defense. Berlin: Springer, 1997. pp 107-128.
[2] Sels J, Mathys J, Coninck B M A D, Cammue B P A, Bolle M F C D. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem, 2008,46:941-950.
doi: 10.1016/j.plaphy.2008.06.011 pmid: 18674922
[3] Petre B, Major I, Rouhier N, Sébastien D. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar. BMC Plant Biol, 2011,11:33.
doi: 10.1186/1471-2229-11-33 pmid: 21324123
[4] Nusrat Y, Mahjabeen S, Mamoona N, Roquyya G, Hafiz Muzzammel R. Molecular characterization, structural modeling, and evaluation of antimicrobial activity of Basrai thaumatin-like protein against fungal infection. BioMed Res Int, 2017,2017:5046451.
doi: 10.1155/2017/5046451 pmid: 28875151
[5] 姜晓玲, 黄秋娴, 李虹, 赵嘉平. 植物类甜蛋白基因家族研究进展. 浙江农林大学学报, 2012,29:279-287.
Jiang X L, Huang Q X, Li H, Zhao J P. A review of advances in plant thaumatin-like proteins. J Zhejiang A&F Univ, 2012,29:279-287 (in Chinese with English abstract).
[6] Jami S K, Anuradha T S, Guruprasad L, Kirti P B. Molecular, biochemical and structural characterization of osmotin-like protein from black nightshade (Solanum nigrum). J Plant Physiol, 2007,164:238-252.
doi: 10.1016/j.jplph.2006.01.006 pmid: 16542753
[7] Fierens E, Gebruers K, Voet A R D, De Maeyer M, Courtin C M, Delcour J A. Biochemical and structural characterization of TLXI, the Triticum aestivum L. thaumatin-like xylanase inhibitor. J Enzyme Inhib Med Chem, 2009,24:646-654.
pmid: 18951281
[8] Reimmann C, Dudler R. cDNA cloning and sequence analysis of a pathogen-induced thaumatin-like protein from rice ( Oryza sativa). Plant Physiol, 1993,101:1113-1114.
doi: 10.1104/pp.101.3.1113 pmid: 8310049
[9] Piggott N, Ekramoddoullah A K M, Liu J J, Yu X S. Gene cloning of a thaumatin-like (PR-5) protein of western white pine (Pinus monticola D. Don) and expression studies of members of the PR-5 group. Physiol Mol Plant Pathol, 2004,64:1-8.
[10] Liu D Q, He X, Li W X, Feng G. Molecular cloning of a thaumatin-like protein gene from Pyrus pyrifolia and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Plant Cell Tissue Organ Cult, 2012,111:29-39.
[11] 王树军, 冯超, 王凌云, 李焕苓, 刘保华, 王家保. 荔枝类甜蛋白基因的克隆与表达分析. 园艺学报, 2015,42:1385-1392.
Wang S J, Feng C, Wang L Y, Li H L, Liu B H, Wang J B. Cloning and expression analysis of thaumatin-like protein gene from Litchi chinenesis. Acta Hortic Sin, 2015,42:1385-1392 (in Chinese with English abstract).
[12] Pritsch C, Vance C P, Bushnell W R, Somers D A, Hohnef T M, Muehlbauera G J. Systemic expression of defense response genes in wheat spikes as a response to Fusarium graminearum infection. Physiol Mol Plant Pathol, 2001,58:1-12.
[13] Dalen L S, Johnsen Ø, Lönneborg A, Yaish M W. Freezing tolerance in Norway spruce, the potential role of pathogenesis-related proteins. Acta Physiol Plant, 2015,37:1717.
[14] Misra R C, Sandeep, Kamthan M, Kumar S, Ghosh S. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Sci Rep, 2016,6:25340.
doi: 10.1038/srep25340 pmid: 27150014
[15] Zhang J S, Zhang X T, Tang H B, Zhang Q, Hua X T, Ma X K, Zhu F, Jones T, Zhu X G, Bowers J, Wai C M, Zheng C F, Shi Y, Chen S, Xu X M, Yue J J, Nelson D R, Huang L X, Li Z, Xu H M, Zhou D, Wang Y G, Hu W C, Lin J S, Deng Y J, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L M, Yu L, Xin Y H, Ge L F, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W P, Ma Y H, Ma P P, Lv M J, Chen F M, Zheng G G, Xu J S, Yang Z H, Deng F, Chen X Q, Liao Z Y, Zhang X X, Lin Z C, Lin H, Yan H S, Kuang Z, Zhong W M, Liang P P, Wang G F, Yuan Y, Shi J X, Hou J X, Lin J X, Jin J J, Cao P J, Shen Q C, Jiang Q, Zhou P, Ma Y Y, Zhang X D, Xu R R, Liu J, Zhou Y M, Jia H F, Ma Q, Qi R, Zhang Z L, Fang J P, Fang H K, Song J J, Wang M G, Dong G G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X P, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q Y, Wang J P, Wang K, Schatz M C, Heckerman D, Sluys M A V, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018,50:1565-1573.
doi: 10.1038/s41588-018-0237-2 pmid: 30297971
[16] Shatters R G, Boykin L M, Lapointe S L, Hunter W B, Weathersbee III A A. Phylogenetic and structural relationships of the PR5 gene family reveal an ancient multigene family conserved in plants and select animal taxa. J Mol Evol, 2006,63:12-29.
doi: 10.1007/s00239-005-0053-z pmid: 16736102
[17] Zhao J P, Su X H. Patterns of molecular evolution and predicted function in thaumatin-like proteins of Populus trichocarpa. Planta, 2010,232:949-962.
doi: 10.1007/s00425-010-1218-6 pmid: 20645107
[18] Yang Y Y, Gao S W, Su Y C, Lin Z L, Guo J L, Li M J, Wang Z T, Que Y X, Xu L P. Transcripts and low nitrogen tolerance: regulatory and metabolic pathways in sugarcane under low nitrogen stress. Environ Exp Bot, 2019,163:97-111.
[19] Liu F, Huang N, Wang L, Ling H, Sun T T, Ahmad W, Muhammad K, Guo J X, Xu L P, Gao S W, Que Y X, Su Y C. A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci, 2017,8:2262.
doi: 10.3389/fpls.2017.02262 pmid: 29387074
[20] Wang L, Liu F, Zhang X, Wang W J, Sun T T, Chen Y F, Dai M J, Yu S X, Xu L P, Su Y C, Que Y X. Expression characteristics and functional analysis of the ScWRKY3 gene from sugarcane. Int J Mol Sci, 2018,19:4059.
[21] Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. Circ Calif Agric Exp Station, 1950,347:357-359.
[22] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[23] Liu F, Sun T T, Wang L, Su W H, Gao S W, Su Y C, Xu L P, Que Y X. Plant jasmonate ZIM domain genes: shedding light on structure and expression patterns of JAZ gene family in sugarcane. BMC Genomics, 2017,18:771.
doi: 10.1186/s12864-017-4142-3 pmid: 29020924
[24] 王玲, 刘峰, 戴明剑, 孙婷婷, 苏炜华, 王春风, 张旭, 毛花英, 苏亚春, 阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析. 作物学报, 2018,44:1367-1379.
Wang L, Liu F, Dai M J, Sun T T, Su W H, Wang C F, Zhang X, Mao H Y, Su Y C, Que Y X. Cloning and expression characteristic analysis of ScWRKY4 gene in sugarcane. Acta Agron Sin, 2018,44:1367-1379 (in Chinese with English abstract).
[25] Liu J J, Sturrock R, Ekramoddoullah A K M. The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep, 2010,29:419-436.
doi: 10.1007/s00299-010-0826-8 pmid: 20204373
[26] 刘潮, 韩利红, 宋培兵, 王德琴, 王海波, 唐利洲. 辣椒类甜蛋白基因家族鉴定及表达分析. 江苏农业学报, 2018,34(1):122-129.
Liu C, Han L H, Song P B, Wang D Q, Wang H B, Tang L Z. Identification and expression analysis of thaumatin-like protein gene in pepper. Jiangsu J Agric Sci, 2018,34(1):122-129 (in Chinese with English abstract).
[27] 刘潮, 韩利红, 王海波, 宋培兵, 唐利洲. 胡萝卜类甜蛋白家族鉴定与生物信息学分析. 中国蔬菜, 2017, ( 2):38-44.
Liu C, Han L H, Wang H B, Song P B, Tang L Z. Identification and bioinformatics analysis of thaumatin-like protein family in Daucus carota. China Veget, 2017, ( 2):38-44 (in Chinese).
[28] 张华崇, 张文蔚, 简桂良, 李蔚. 陆地棉TLP基因家族的全基因组鉴定及表达分析. 棉花学报, 2019,31:381-393.
Zhang H C, Zhang W W, Jian G L, Li W. Genome-wide identification and expression analysis of TLP genes in Gossypium hirsutum L. Cotton Sci, 2019,31:381-393 (in Chinese with English abstract).
[29] Leone P, Menu-Bouaouiche L, Peumans W J, Payan F, Barre A, Roussel A, van Damme E J M, Rougé P. Resolution of the structure of the allergenic and antifungal banana fruit thaumatin-like protein at 1.7-Å. Biochimie, 2006,88:45-52.
doi: 10.1016/j.biochi.2005.07.001 pmid: 16085352
[30] Koiwa H, Kato H, Nakatsu T, Oda J, Yamada Y, Sato F. Crystal structure of tobacco PR-5d protein at 1.8 Å resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins 1. J Mol Biol, 1999,286:1137-1145.
doi: 10.1006/jmbi.1998.2540 pmid: 10047487
[31] Grenier J, Potvin C, Asselin A. Some fungi express β-1,3-glucanases similar to thaumatin-like proteins. Mycologia, 2000,92:841-848.
[32] Kim B G, Fukumoto T, Tatano S, Tatano S, Gomi K, Akimitsu K. Molecular cloning and characterization of a thaumatin-like protein-encoding cDNA from rough lemon. Physiol Mol Plant Pathol, 2010,74:3-10.
[33] 冯超. 荔枝类甜蛋白基因克隆与表达分析. 海南大学硕士学位论文, 海南海口, 2011.
Feng C. Cloning and Expression Analysis of Thaumatin-like Protein Gene from Litchi (Litchi chenesis sonn.). MS Thesis of Hainan University, Haikou, Hainan, China, 2011 (in Chinese with English abstract).
[34] 张计育, 渠慎春, 乔玉山, 章镇, 郭忠仁. 湖北海棠类甜蛋白基因MhPR5的克隆与表达特性分析. 植物资源与环境学报, 2013,22(2):1-7.
Zhang J Y, Qu S C, Qiao Y S, Zhang Z, Guo Z R. Cloning and expression characteristics analysis on thaumatin-like protein gene MhPR5 of Malus hupehensis. J Plant Resour Environ, 2013,22(2):1-7 (in Chinese with English abstract).
[35] 李刚波, 杨峰, 赵林, 樊继德, 李勇, 陆信娟, 杨艳, 王福建. ‘黄冠’梨类甜蛋白编码基因PbPR5的克隆及其表达特性分析. 果树学报, 2016,33:129-136.
Li G B, Yang F, Zhao L, Fan J D, Li Y, Lu X J, Yang Y, Wang F J. Molecular cloning and expression analysis for PbPR5 on Pyrus bretschneideri ‘Huangguan’. J Fruit Sci, 2016,33:129-136 (in Chinese with English abstract).
[36] Zhang Y H, Ding S S. Isolation of an osmotin-like protein gene from strawberry and analysis of the response of this gene to abiotic stresses. J Plant Physiol, 2007,164:68-77.
doi: 10.1016/j.jplph.2006.02.002 pmid: 16603274
[37] Wang L K, Yang L H, Zhang J X, Dong J, Yu J, Zhou J, Zhuge Q. Cloning and characterization of a thaumatin-like protein gene PeTLP in Populus deltoids × P. euramericana cv. ‘Nanlin 895’. Acta Physiol Plant, 2013,35:2985-2998.
[38] 邢莉萍, 王华忠, 蒋正宁, 倪金龙, 曹爱忠, 于玲, 陈佩度. 小麦类甜蛋白基因的转化及转基因植株的抗病性分析. 作物学报, 2008,34:349-354.
Xing L P, Wang H Z, Jiang Z N, Ni J L, Cao A Z, Yu L, Chen P D. Transformation of wheat thaumatin-like protein gene and diseases resistance analysis of the transgenic plants. Acta Agron Sin, 2008,34:349-354 (in Chinese with English abstract).
[39] Olivia O J, Cameron C I, John J M, Maclean D J, Schenk P M, Kazan K. Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiol Mol Plant Pathol, 2006,67:171-179.
[40] Sundar A R, Barnabas E L, Malathi P, Viswanathan R. A Mini-Review on Smut Disease of Sugarcane Caused by Sporisorium scitamineum. Croatia: InTech, 2012. pp 109-128.
[41] Liu B, Xue X D, Cui S P, Zhang X Y, Han Q M, Zhu L, Liang X F, Wang X J, Huang L L, Chen X M, Kang Z S. Cloning and characterization of a wheat β-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol Biol Rep, 2010,37:1045.
doi: 10.1007/s11033-009-9823-9 pmid: 19757158
[42] 周思泓. 薇甘菊MmZFP1和MmTLPs在病害、干旱胁迫响应中的功能及调控研究. 中国农业大学博士学位论文, 北京, 2015.
Zhou S H. Studies on Function and Regulation of MmZFP1 and MmTLPs in Disease and Drought Stress Response from Mikania micrantha. PhD Dissertation of China Agricultural University, Beijing, China, 2015 (in Chinese with English abstract).
[43] 刘潮, 韩利红, 王海波, 高永, 唐利洲. 枣类甜蛋白基因家族的鉴定与生物信息学分析. 果树学报, 2018,35:393-401.
Liu C, Han L H, Wang H B, Gao Y, Tang L Z. Identification and bioinformatics analysis of thaumatin-like protein gene in Chinese jujube. J Fruit Sci, 2018,35:393-401 (in Chinese with English abstract).
[44] Narasimhan M L, Damsz B, Coca M A, Ibeas J I, Yun D J, Pardo J M, Hasegawa P M, ABressan R. A plant defense response effector induces microbial apoptosis. Mol Cell, 2001,8:921-930.
doi: 10.1016/s1097-2765(01)00365-3 pmid: 11684026
[45] 马骊, 袁金海, 孙万仓, 刘自刚, 曾秀存, 武军艳, 方彦, 李学才, 陈奇, 许耀照, 蒲媛媛, 刘海卿, 杨刚, 刘林波. 白菜型冬油菜类甜蛋白的筛选、克隆及其在低温胁迫下的表达. 作物学报, 2017,43:620-628.
Ma L, Yuan J H, Sun W C, Liu Z G, Zeng X C, Wu J Y, Fang Y, Li X C, Chen Q, Xu Y Z, Pu Y Y, Liu H Q, Yang G, Liu L B. Selection and cloning of thaumatin-like protein (TLP) gene from winter Brassica rapa and its expression under low temperature stress. Acta Agron Sin, 2017,43:620-628 (in Chinese with English abstract).
[46] Sharma P, Kumar S. Differential display-mediated identification of three drought-responsive expressed sequence tags in tea [ Camellia sinensis(L.) O. Luntze]. J Biosci, 2005,30:231-235.
doi: 10.1007/BF02703703 pmid: 15886459
[47] Yoshiki N, Shogo S, Kenta K, Maki K, Mineo S, Masanori S, Kosuke Y, Suguru O, Hikaru S. Yeast functional screen to identify genes conferring salt stress tolerance in Salicornia europaea. Front Plant Sci, 2015,6:920.
doi: 10.3389/fpls.2015.00920 pmid: 26579166
[48] 麻楠, 乔金柱, 孙天杰, 李姗, 魏凤菊, 王冬梅. 小麦翻译控制肿瘤蛋白(TCTP)与索马甜类蛋白(TLP)的相互作用. 农业生物技术学报, 2018,26:911-919.
Ma N, Qiao J Z, Sun T J, Li S, Wei F J, Wang D M. Interaction between translationally controlled tumer protein (TCTP) and thaumatin-like protein (TLP) in wheat ( Triticum aestivum). J Agric Biotechnol, 2018,26:911-919 (in Chinese with English abstract).
[1] XIAO Jian, CHEN Si-Yu, SUN Yan, YANG Shang-Dong, TAN Hong-Wei. Characteristics of endophytic bacterial community structure in roots of sugarcane under different fertilizer applications [J]. Acta Agronomica Sinica, 2022, 48(5): 1222-1234.
[2] ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026.
[3] KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872.
[4] YANG Zong-Tao, LIU Shu-Xian, CHENG Guang-Yuan, ZHANG Hai, ZHOU Ying-Shuan, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane ubiquitin-like protein UBL5 responses to SCMV infection and interacts with SCMV-6K2 [J]. Acta Agronomica Sinica, 2022, 48(2): 332-341.
[5] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, LIU Shu-Xian, SHANG He-Yang, HUANG Guo-Qiang, XU Jing-Sheng. Sugarcane PsbR subunit response to SCMV infection and its interaction with SCMV-6K2 [J]. Acta Agronomica Sinica, 2021, 47(8): 1522-1530.
[6] WANG Heng-Bo, CHEN Shu-Qi, GUO Jin-Long, QUE You-Xiong. Molecular detection of G1 marker for orange rust resistance and analysis of candidate resistance WAK gene in sugarcane [J]. Acta Agronomica Sinica, 2021, 47(4): 577-586.
[7] YANG Yang, LI Huai-Lin, HU Li-Min, FAN Chu-Chuan, ZHOU Yong-Ming. Genetic analysis and molecular characterization of multilocular trait in the srb mutant of Brassica rapa L. [J]. Acta Agronomica Sinica, 2021, 47(3): 385-393.
[8] ZHANG Rong-Yue, WANG Xiao-Yan, YANG Kun, SHAN Hong-Li, CANG Xiao-Yan, LI Jie, WANG Chang-Mi, YIN Jiong, LUO Zhi-Ming, LI Wen-Feng, HUANG Ying-Kun. Identification of brown rust resistance and molecular detection of Bru1 gene in new and main cultivated sugarcane varieties [J]. Acta Agronomica Sinica, 2021, 47(2): 376-382.
[9] CANG Xiao-Yan, XIA Hong-Ming, LI Wen-Feng, WANG Xiao-Yan, SHAN Hong-Li, WANG Chang-Mi, LI Jie, ZHANG Rong-Yue, HUANG Ying-Kun. Evaluation of natural resistance to smut in elite sugarcane varieties (lines) [J]. Acta Agronomica Sinica, 2021, 47(11): 2290-2296.
[10] ZHANG Hai, CHENG Guang-Yuan, YANG Zong-Tao, WANG Tong, LIU Shu-Xian, SHANG He-Yang, ZHAO He, XU Jing-Sheng. Cloning of sugarcane ScCRT1 gene and its response to SCMV infection [J]. Acta Agronomica Sinica, 2021, 47(1): 94-103.
[11] ZHENG Qing-Lei,YU Chen-Jing,YAO Kun-Cun,HUANG Ning,QUE You-Xiong,LING Hui,XU Li-Ping. Cloning and expression analysis of sugarcane Fe/S precursor protein gene ScPetC [J]. Acta Agronomica Sinica, 2020, 46(6): 844-857.
[12] LUO Jun,LIN Zhao-Li,LI Shi-Yan,QUE You-Xiong,ZHANG Cai-Fang,YANG Zai-Qi,YAO Kun-Cun,FENG Jing-Fang,CHEN Jian-Feng,ZHANG Hua. Effects of different soil improvement measures on soil physicochemical properties and microbial community structures in mechanically compacted acidified sugarcane field [J]. Acta Agronomica Sinica, 2020, 46(4): 596-613.
[13] WANG Heng-Bo,QI Shu-Ting,CHEN Shu-Qi,GUO Jin-Long,QUE You-Xiong. Development and application of SSR loci in monoploid reference genome of sugarcane cultivar [J]. Acta Agronomica Sinica, 2020, 46(4): 631-642.
[14] ZHANG Hai, LIU Shu-Xian, YANG Zong-Tao, WANG Tong, CHENG Guang-Yuan, SHANG He-Yang, XU Jing-Sheng. Sugarcane PsbS subunit response to Sugarcane mosaic virus infection and its interaction with 6K2 protein [J]. Acta Agronomica Sinica, 2020, 46(11): 1722-1733.
[15] GAO Shi-Wu,FU Zhi-Wei,CHEN Yun,LIN Zhao-Li,XU Li-Ping,GUO Jin-Long. Cloning and expression analysis of metallothionein family genes in response to heavy metal stress in sugarcane (Saccharum officinarum L.) [J]. Acta Agronomica Sinica, 2020, 46(02): 166-178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!