Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (4): 860-872.doi: 10.3724/SP.J.1006.2022.14052


Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels

KONG Chui-Bao1(), PANG Zi-Qin1,2, ZHANG Cai-Fang1, LIU Qiang1,2, HU Chao-Hua1, XIAO Yi-Jie1, YUAN Zhao-Nian1,3,*()   

  1. 1National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning 530000, Guangxi, China
  • Received:2021-03-31 Accepted:2021-07-12 Online:2022-04-12 Published:2021-07-26
  • Contact: YUAN Zhao-Nian E-mail:kongchuibao18@163.com;yuanzn05@163.com
  • Supported by:
    China Agriculture Research System(CARS-170208);Science and Technology Innovation Project of Fujian Agriculture and Forestry University(KFA17528A)


Sugarcane is one of the important sugar crops in China. Arbuscular mycorrhizas (AM) fungi are widely distributed. Researches have shown that AM fungi infecting plant roots can promote nutrient absorption and growth of plants. In this study, pot experiment was used to set up with two fertilization levels of conventional fertilization (N) and reduced fertilization (R), and inoculated (AM) and control (CK). There were four treatments in total, and four replicates were set in each treatment. The results revealed that the plants inoculated with AM fungi did not only significantly increased the biomass accumulation, but also significantly affected the pH value, alkali hydrolyzable nitrogen and available phosphorus of sugarcane rhizosphere soil. The biomass accumulation in the AM fungus inoculation treatment under reduced fertilization was significantly higher than that of conventional fertilization. The turquoise module and darkgreen module with high specificity with nutrient phenotypes such as nitrogen and phosphorus were screened by weighted gene co-expression network analysis (WGCNA). The core genes of the module were screened with KME value greater than 0.7 as the threshold, and 408 and 21 core genes were screened, respectively. GO enrichment indicated that these core genes were mainly involved in nutrient transport, metabolism, and enzyme catalysis pathways. Based on annotation information and the connectivity of genes, 28 core genes related to the absorption and transportation of nutrients such as nitrogen and phosphorus and 108 related candidate genes were detected among the core genes screened. This study reveals the effects of AM fungi on sugarcane nutrient absorption, and provides a theoretical basis for further understanding of the molecular mechanisms of AM fungi affecting sugarcane nutrient absorption.

Key words: arbuscular mycorrhizal fungi, sugarcane growth, nutrients, WGCNA

Table 1

Effects of different treatments on growth indexes and mycelial infection rate of sugarcane plants"

Plant biomass (g)
Plant height (cm)
Mycelial infection rate (%)
AMN 31.00±0.20 a 41.43±3.27 a 31.25±4.50 b
AMR 27.47±0.84 b 40.09±4.87 a 50.25±8.14 a
CKN 26.37±0.59 b 29.93±0.92 b 0.25±0.25 c
CKR 21.24±0.24 c 23.46±1.13 b 0.50±0.29 c

Fig. 1

Image of fungal spore formation and root hyphae infection treated with AM fungus inoculation A: sporulation image of AM fungus inoculation; B: hyphae infection image of sugarcane root inoculated with AM fungus. AM: arbuscular mycorrhizas."

Table 2

Effects of different treatments on root dry weight, root length, and root surface area in sugarcane"

Root biomass (g)
Length (cm)
Surface area (cm2)
AMN 2.85±0.12 ab 15055.92±162.27 b 1636.08±54.34 a
AMR 3.13±0.06 a 17668.88±220.10 a 1676.34±20.91 a
CKN 2.56±0.02 b 12742.93±158.71 c 1258.49±65.41 c
CKR 2.71±0.20 b 13360.82±365.33 c 1408.73±23.45 b

Table 3

Effects of different treatments on the physical and chemical properties of sugarcane rhizosphere soil"

AN (mg kg-1)
AP (mg kg-1)
AK (mg kg-1)
OM (g kg-1)
AMN 6.75±0.02 b 42.47±2.52 a 12.84±0.25 a 27.38±1.28 a 9.82±0.25 a
AMR 6.92±0.03 a 36.95±3.48 a 10.86±0.37 b 25.63±0.13 ab 7.28±0.14 b
CKN 6.68±0.02 c 26.99±1.52 b 8.89±0.50 c 25.13±1.01 ab 6.79±0.22 b
CKR 6.73±0.02 bc 24.66±1.19 b 7.55±0.16 d 24.00±0.35 b 4.14±0.02 c

Fig. 2

Determination of soft threshold The ordinate of A represents the scale-free network model index; the ordinate of B represents the average network connectivity corresponding to each soft threshold; the abscissas of A and B both represent the soft threshold (β)."

Fig. 3

Gene cluster tree and module division A: gene cluster tree constructed based on topological overlap; B: gene modules obtained by dynamic shearing algorithm; color represent the modules; C: gene modules after merging similar expression patterns."

Fig. 4

Heat map of module and trait correlation The abscissa represents different traits, and the ordinate represents the feature vector of each module. The data in the square represent the correlation between the module and the trait and the P-value. Red represents the positive correlation between the module and the trait, and blue represents the negative correlation between the module and the trait."

Table 4

GO enrichment of the core gene of the module (partial data)"

GO term
GO 基因数目
Number of genes
碧绿Turquoise 代谢过程Metabolic process GO:0008152 122 2.40E-04
细胞过程Cellular process GO:0009987 119 4.70E-03
单一生物过程Single-organism process GO:0044699 99 4.13E-03
生物调节Biological regulation GO:0065007 37 4.27E-03
对刺激的反应Response to stimulus GO:0050896 35 4.78E-03
本质化过程Localization GO:0051179 29 4.74E-03
细胞Cell GO:0005623 133 5.11E-04
细胞部分Cell part GO:0044464 133 2.39E-03
细胞器Organelle GO:0043226 100 7.90E-05
膜Membrane GO:0016020 92 2.04E-03
膜部分Membrane part GO:0044425 75 2.52E-03
细胞器部分Organelle part GO:0044422 29 3.51E-03
结合Binding GO:0005488 108 2.58E-03
催化活性Catalytic activity GO:0003824 98 7.54E-03
深绿Darkgreen 代谢过程Metabolic process GO:0008152 13 1.25E-03
细胞过程Cellular process GO:0009987 8 3.45E-03
单一生物过程Single-organism process GO:0044699 8 2.54E-03
膜Membrane GO:0016020 8 3.25E-03
细胞Cell GO:0005623 7 6.45E-03
细胞部分Cell part GO:0044464 7 5.87E-03
膜部分Membrane part GO:0044425 7 2.58E-03
细胞器Organelle GO:0043226 6 4.65E-03
催化活性Catalytic activity GO:0003824 11 2.35E-03
结合Binding GO:0005488 8 4.78E-03

Table 5

Functional annotations of nutrient-related core genes in each gene module (partial data)"

Gene ID
Gene function
碧绿 Saccharum_officinarum_newGene_73305 蔗糖合酶2
Turquoise Sucrose synthase 2
Saccharum_officinarum_newGene_56251 氨基酸转运和代谢
Amino acid transport and metabolism
Saccharum_officinarum_newGene_107291 氨基酸转运和代谢
Amino acid transport and metabolism
Saccharum_officinarum_newGene_109658 可溶性无机焦磷酸酶; 无机离子迁移与代谢
Soluble inorganic pyrophosphatase; inorganic ion transport and metabolism
Saccharum_officinarum_newGene_84225 碳水化合物的运输和代谢
Carbohydrate transport and metabolism
Saccharum_officinarum_newGene_20999 氨基酸转运和代谢
Amino acid transport and metabolism
Saccharum_officinarum_newGene_56328 碳水化合物的运输和代谢
Carbohydrate transport and metabolism
Gene ID
Gene function
Saccharum_officinarum_newGene_61584 氨基酸转运和代谢
Amino acid transport and metabolism
Saccharum_officinarum_newGene_20996 氨基酸转运和代谢
Amino acid transport and metabolism
Saccharum_officinarum_newGene_36202 钾离子通道基因CNGC2
Cyclic nucleotide-gated ion channel 2
Saccharum_officinarum_newGene_101569 可溶性无机焦磷酸酶
Soluble inorganic pyrophosphatase
Saccharum_officinarum_newGene_36232 钾离子通道基因CNGC2
Cyclic nucleotide-gated ion channel 2
Saccharum_officinarum_newGene_60132 碳水化合物的运输和代谢
Carbohydrate transport and metabolism
Saccharum_officinarum_newGene_116537 主要诱导超级家族; 糖(及其他)转运蛋白
Major Facilitator Super family; sugar (and other) transporter
Saccharum_officinarum_newGene_68404 淀粉和蔗糖代谢; 氨基糖和核苷酸糖代谢
Starch and sucrose metabolism; amino sugar and nucleotide sugar metabolism
Saccharum_officinarum_newGene_52856 碳水化合物的运输和代谢
Carbohydrate transport and metabolism
Saccharum_officinarum_newGene_61188 主要诱导超级家族; 糖(及其他)转运蛋白
Major Facilitator Super family; sugar (and other) transporter
Saccharum_officinarum_newGene_60391 氨基酸转运和代谢
Amino acid transport and metabolism
Saccharum_officinarum_newGene_54480 主要诱导超级家族; 糖(及其他)转运蛋白
Major Facilitator Super family; sugar (and other) transporter
Saccharum_officinarum_newGene_116260 NRT1/PTR FAMILY 7.2蛋白基因
Protein NRT1/PTR FAMILY 7.2
Saccharum_officinarum_newGene_52960 氨基酸转运和代谢
Amino acid transport and metabolism
Saccharum_officinarum_newGene_76759 多肌醇多磷酸磷酸酶1
Multiple inositol polyphosphate phosphatase 1
Saccharum_officinarum_newGene_113779 NRT1/PTR FAMILY 6.4蛋白基因
Protein NRT1/PTR FAMILY 6.4
Saccharum_officinarum_newGene_1327 NRT1/PTR FAMILY 6.4蛋白基因
Protein NRT1/PTR FAMILY 6.4
深绿 Saccharum_officinarum_newGene_108443 碳水化合物的运输和代谢
Darkgreen Carbohydrate transport and metabolism
Saccharum_officinarum_newGene_105049 磷酸酯酶家族基因
Phosphoesterase family
Saccharum_officinarum_newGene_48314 可溶性无机焦磷酸酶; 能源生产与转化
Soluble inorganic pyrophosphatase; energy production and conversion
Saccharum_officinarum_newGene_90724 碳水化合物的运输和代谢
Carbohydrate transport and metabolism

Fig. 5

Co-expression network of nutrient-related core genes in the turquoise module The size of the point and the intensity of the colors represent the level of connectivity of the point in the network; the color intensity of the line represents the level of connectivity between two points."

[1] 贾红梅, 方千, 张秫华, 严铸云, 柳敏. AM真菌对丹参生长及根际土壤酶活性的影响. 草业学报, 2020, 29(6):83-92.
Jia H M, Fang Q, Zhang S H, Yan Z Y, Liu M. Effects of fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza. Acta Pratac Sin, 2020, 29(6):83-92 (in Chinese with English abstract).
[2] 初亚男, 张海波, 秦泽峰, 盖京苹. AM真菌与非菌根植物的相互作用关系. 应用生态学报, 2018, 29:321-326.
Chu Y N, Zhang H B, Qin Z F, Gai J P. Relationship of AM fungi with non-mycorrhizal plants. Chin J Appl Ecol, 2018, 29:321-326 (in Chinese with English abstract).
[3] Pan S, Wang Y, Qiu Y, Chen D, Zhang L, Ye C, Guo H, Zhu W, Chen A, Xu G, Zhang Y, Bai Y, Hu S. Nitrogen-induced acidification, not N-nutrient, dominates suppressive N effects on arbuscular mycorrhizal fungi. Global Change Biol, 2020, 26:6568-6580.
doi: 10.1111/gcb.v26.11
[4] Lu M, Hedin L O. Global plant-symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat Ecol Evol, 2019, 3:239-250.
doi: 10.1038/s41559-018-0759-0
[5] Wang S, Chen A, Xie K, Yang X, Luo Z, Chen J, Zeng D, Ren Y, Yang C, Wang L, Feng H, Damar L L, Luis R H, Xu G. Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc Natl Acad Sci USA, 2020, 117:16649-16659.
[6] Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, Dormann P, Gigolashvili T, Turck F, Bucher M. AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus. Proc Natl Acad Sci USA, 2018, 115:9239-9246.
[7] Lehmann A, Rillig M C. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—a meta-analysis. Soil Biol Biochem, 2015, 81:147-158.
doi: 10.1016/j.soilbio.2014.11.013
[8] Wang Y, Zhang W, Liu W, Ahammed G J, Wen W, Guo S, Shu S, Sun J. Auxin is involved in arbuscular mycorrhizal fungi- promoted tomato growth and NADP-malic enzymes expression in continuous cropping substrates. BMC Plant Biol, 2021, 21:48.
doi: 10.1186/s12870-020-02817-2 pmid: 33461504
[9] Sonal M, Rupal S T, Anjana J. Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynth Res, 2019, 139:227-238.
doi: 10.1007/s11120-018-0538-4
[10] 沈昱翔, 陈朝儒, 张雪妹, 周浓, 杨敏, 张杰, 李逵印. 丛枝菌根对滇重楼幼苗生长及光合特性的影响. 作物杂志, 2020, (4):170-177.
Shen Y X, Chen C R, Zhang X M, Zhou N, Yang M, Zhang J, Li K Y. Effects of arbuscular mycorrhizal fungi on seedlings growth and photosynthetic characteristics of Paris polyphylla Smith var. yunnanensis. Crops, 2020, (4):170-177 (in Chinese with English abstract).
[11] 李宝深, 冯固, 吕家珑. 接种丛枝菌根真菌对玉米小斑病发生的影响. 植物营养与肥料学报, 2011, 17:1500-1506.
Li B S, Feng G, Lyu J L. The effect of inoculateding AM fungi on the disease index of corn southern leaf bligh. Plant Nutr Fert Sci, 2011, 17:1500-1506 (in Chinese with English abstract).
[12] 王倡宪, 李晓林, 宋福强, 王贵强, 李北齐. 两种丛枝菌根真菌对黄瓜苗期枯萎病的防效及根系抗病相关酶活性的影响. 中国生态农业学报, 2012, 20:53-57.
Wang C X, Li X L, Song F Q, Wang G Q, Li B Q. Effects of arbuscular mycorrhizal fungi on fusarium wilt and disease resistance-related enzyme activity in cucumber seedling root. Chin J Eco-Agric, 2012, 20:53-57 (in Chinese with English abstract).
[13] Behrooz A, Vahdati K, Rejali F, Lotfi M, Sarikhani S, Leslie C. Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. Hortscience, 2019, 54:1087-1092.
doi: 10.21273/HORTSCI13961-19
[14] Heikham E, Thokchom S D, Samta G, Rupam K. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci, 2019, 10:470.
doi: 10.3389/fpls.2019.00470 pmid: 31031793
[15] 赵青华, 孙立涛, 王玉, 丁兆堂, 李敏. 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响. 植物生理学报, 2014, 50:164-170.
Zhao Q H, Sun L T, Wang Y, Ding Z T, Li M. Effects of arbuscular mycorrhizal fungi and nitrogen regimes on plant growth, nutrient uptake and tea quality in Camellia sinensis (L.) O. Kuntze. Plant Physiol J, 2014, 50:164-170 (in Chinese with English abstract).
[16] 袁丽环. 不同肥力水平下接种丛枝菌根(AM)对翅果油树幼苗生长的影响. 中国农学通报, 2010, 26(6):173-177.
Yuan L H. Effect of arbuscular mycorrhizal fungi on the growth of Elaeagnus mollis seedling at different fertility levels. Chin Agric Sci Bull, 2010, 26(6):173-177 (in Chinese with English abstract).
[17] 屈明华, 俞元春, 李生, 张金池. 喀斯特生境下AMF侵染对任豆生长的影响. 生态环境学报, 2020, 29:231-239.
Qu M H, Yu Y C, Li S, Zhang J C. Effects of arbuscular mycorrhizal fungi (AMF) on the growth of Zenia insignis in Karst Habitats. Ecol Environ Sci, 2020, 29:231-239 (in Chinese with English abstract).
[18] Olivier G, Gaetan D, Rudie A, Jane G, Bernard P, Karen A, Jerry J, Guillaume M, Carine C, Catherine H, Laurent C, Nabila Y, Adam H, David S, Yesesri C, Avinash S, Andrzej K, Agnes C, Marie-Anne V S, Kankshita S, Christopher T, Helene B, Blake S, Jean C G, Edwin V D V, Robert H, Jeremy S, Angeligue D H. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun, 2018, 9:2638.
doi: 10.1038/s41467-018-05051-5
[19] 黄振瑞, 周文灵, 江永, 李奇伟, 陈清, 张福锁. 优化施肥对甘蔗产量、养分吸收及肥料利用率的影响. 热带作物学报, 2015, 36:1568-1573.
Huang Z R, Zhou W L, Jiang Y, Li Q W, Chen Q, Zhang F S. Effect of optimum fertilization on sugarcane yield, nutrient uptake and fertilizer use efficiency. Chin J Trop Crops, 2015, 36:1568-1573 (in Chinese with English abstract).
[20] Hartoyo B, Trisilawati O. Diversity of arbuscular mycorrhiza fungi (AMF) in the rhizosphere of sugarcane. IOP Conf Ser: Earth Environ Sci, 2021, 653:12066.
[21] 覃晓娟, 廖楠, 张金莲, 李冬萍, 李松, 袁照年, 陈廷速. 广西红壤区甘蔗根际土壤丛枝菌根真菌种类的18S rDNA基因序列分析鉴定及多样性分析. 热带作物学报, 2018, 39:2241-2249.
Qin X J, Liao N, Zhang J L, Li D P, Li S, Yuan Z N, Chen T S. Arbuscular mycorrhizal fungi diversity and 18S rDNA gene sequence analysis and identification in rhizosphere of sugarcane in red soil in Guangxi. Chin J Trop Crops, 2018, 39:2241-2249 (in Chinese with English abstract).
[22] Juntahum S, Jongrungklang N, Kaewpradit W, Lumyong S, Boonlue S. Impact of arbuscular mycorrhizal fungi on growth and productivity of sugarcane under field conditions. Sugar Technol, 2020, 22:451-459.
doi: 10.1007/s12355-019-00784-z
[23] Musa Y, Ridwan I, Ponto H, Ala A, Farid B M, Widiayani N, Yayank A R. Application of Arbuscular Mycorrhizal Fungus (AMF) improves the growth of single-bud sugarcane (Saccharum officinarum L.) seedlings from different bud location. IOP Conf Ser: Earth Environ Sci, 2020, 486:12122.
[24] Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005, 17:1-45.
[25] 杨宇昕, 桑志勤, 许诚, 代文双, 邹枨. 利用WGCNA进行玉米花期基因共表达模块鉴定. 作物学报, 2019, 45:161-174.
doi: 10.3724/SP.J.1006.2019.83053
Yang Y X, Sang Z Q, Xu C, Dai W S, Zou C. Identification of maize flowering gene co-expression modules by WGCNA. Acta Agron Sin, 2019, 45:161-174 (in Chinese with English abstract).
[26] 王思瑶, 丛日征, 闫晓娜, 于宏影, 崔嵘. 利用加权基因共表达网络分析(WGCNA)的方法挖掘偃松种子萌发过程关键基因. 温带林业研究, 2019, 2(1):39-46.
Wang S Y, Cong R Z, Yan X N, Yu H Y, Cui R. Mining key genes in seed germination of Pinus Pumila by weighted gene co- expression network analysis (WGCNA). J Temp For Res, 2019, 2(1):39-46 (in Chinese with English abstract).
[27] 李旭凯, 李任建, 张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络. 作物学报, 2019, 45:1349-1364.
doi: 10.3724/SP.J.1006.2019.82061
Li X K, Li R J, Zhang B J. Identification of rice stress-related gene co-expression modules by WGCNA. Acta Agron Sin, 2019, 45:1349-1364 (in Chinese with English abstract).
[28] 傅明川, 李浩, 陈义珍, 柳展基, 刘任重, 王立国. 利用WGCNA鉴定棉花抗黄萎病相关基因共表达网络. 作物学报, 2020, 46:668-679.
doi: 10.3724/SP.J.1006.2020.94124
Fu M C, Li H, Chen Y Z, Liu Z J, Liu R Z, Wang L G. Identification of co-expressed modules of cotton genes responding to Verticillium dahliae infection by WGCNA. Acta Agron Sin, 2020, 46:668-679 (in Chinese with English abstract).
[29] 全国农业技术推广服务中心. 土壤分析技术规范(第2版). 北京: 中国农业出版社, 2006. pp 36-73.
National Agricultural Technology Extension Service Center. Technical Specifications for Soil Analysis, 2nd edn. Beijing: China Agriculture Press, 2006. pp36-73(in Chinese with English abstract).
[30] 王幼珊, 张淑彬, 张美庆. 中国丛枝菌根真菌资源与种质资源. 北京: 中国农业出版社, 2012. pp 166-168.
Wang Y S, Zhang S B, Zhang M Q. Arbuscular Mycorrhizal Fungi and Germplasm Resources in China. Beijing: China Agriculture Press, 2012. pp 166-168(in Chinese).
[31] 吴凯朝, 黄诚梅, 李杨瑞, 杨丽涛, 吴建明. TRIzol试剂法快速高效提取3种作物不同组织总RNA. 南方农业学报, 2012, 43:1934-1939.
Wu K C, Huang C M, Li Y R, Yang L T, Wu J M. Fast and effective total RNA extraction from different tissues in three crops through the TRIzol reagent method. J Southern Agric, 2012, 43:1934-1939 (in Chinese with English abstract).
[32] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lyu M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M, Souza G M, Moore P H, Sankoff D, Vanburen R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50:1565-1573.
doi: 10.1038/s41588-018-0237-2
[33] 巨飞燕, 张思平, 刘绍东, 马慧娟, 陈静, 葛常伟, 沈倩, 张小萌, 刘瑞华, 赵新华, 张永江, 庞朝友. 利用WGCNA进行棉花果枝节间伸长相关基因共表达模块鉴定. 棉花学报, 2019, 31:403-413.
Ju F Y, Zhang S P, Liu S D, Ma H J, Chen J, Ge C W, Shen Q, Zhang X M, Liu R H, Zhao X H, Zhang Y J, Pang C Y. Identification of co-expression modules of genes related to internode elongation of cotton fruiting branches by WGCNA. Cotton Sci, 2019, 31:403-413 (in Chinese with English abstract).
[34] 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块. 作物学报, 2020, 46:385-394.
doi: 10.3724/SP.J.1006.2020.93021
Ma J, Cao Y Y, Wang L F, Li J J, Wang H, Fan Y P, Li H Y. Identification of gene co-expression modules of maize plant height and ear height by WGCNA. Acta Agron Sin, 2020, 46:385-394 (in Chinese with English abstract).
[35] Panhai B, Hejazi M A. Weighted gene co-expression network analysis of the salt-responsive transcriptomes reveals novel hub genes in green halophytic microalgae Dunaliella salina. Sci Rep, 2021, 11:1607.
doi: 10.1038/s41598-020-80945-3
[36] Khalil H A. Influence of vesicular-arbuscula mycorrhizal fungi (Glomus spp.) on the response of grapevines rootstocks to salt stress. Asian J Crop Sci, 2013, 5:393-404.
doi: 10.3923/ajcs.2013.393.404
[37] 张敏瑜, 王明元, 侯式贞, 刘建福, 林萍, 李雨晴. 接种丛枝菌根真菌对柑橘生长与次生代谢的影响. 热带亚热带植物学报, 2020, 28:78-83.
Zhang M Y, Wang M Y, Hou S Z, Liu J F, Lin P, Li Y Q. Effects of arbuscular mycorrhizal fungi on plant growth and secondary metabolism in Citrus reticulata. J Trop Subtrop Bot, 2020, 28:78-83 (in Chinese with English abstract).
[38] 张延旭, 毕银丽, 郭楠, 宋子恒, 李向磊, 苗春光. 接种不同丛枝菌根真菌对黄花苜蓿生长影响. 煤炭学报, 2019, 44:3815-3822.
Zhang Y X, Bi Y L, Guo N, Song Z H, Li X L, Miao C G. Effects of arbuscular mycorrhizal fungi on the growth of Medicago falcata. J China Coal Soc, 2019, 44:3815-3822 (in Chinese with English abstract).
[39] Hong J J, Park Y S, Bravo A, Bhattarai K K, Daniels D A, Harrison M J. Diversity of morphology and function in arbuscular mycorrhizal symbioses in Brachypodium distachyon. Planta, 2012, 236:851-865.
doi: 10.1007/s00425-012-1677-z
[40] 李少朋, 毕银丽, 孔维平, 王瑾, 余海洋. 丛枝菌根真菌在矿区生态环境修复中应用及其作用效果. 环境科学, 2013, 34:4455-4459.
Li S P, Bi Y L, Kong W P, Wang J, Yu H Y. Effects of the arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas. Environ Sci, 2013, 34:4455-4459 (in Chinese with English abstract).
[41] Jiang F, Zhang L, Zhou J, George T S, Feng G. Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus (P) by carrying bacteria along their extraradical hyphae. New Phytol, 2021, 230:304-315.
doi: 10.1111/nph.v230.1
[42] Li X L, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil, 1991, 136:41-48.
doi: 10.1007/BF02465218
[43] Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact, 2007, 20:1055-1062.
doi: 10.1094/MPMI-20-9-1055
[44] 赵浩波, 任卫波, 于秀敏, 武自念, 张继泽, 孔令琪. 不同氮素水平对羊草形态及生理指标的影响. 中国草地学报, 2020, 42(3):15-20.
Zhao H B, Ren W B, Yu X M, Wu Z N, Zhang J Z, Kong L Q. Effects of different nitrogen levels on morphological and physiological indices of Leymus chinensis seedlings. Chin J Grassland, 2020, 42(3):15-20 (in Chinese with English abstract).
[45] Pace D A, Fang J, Cintron R, Docampo M D, Moreno S N J. Overexpression of a cytosolic pyrophosphatase (TgPPase) reveals a regulatory role of pyrophosphate in glycolysis for Toxoplasma gondii. Biochem J, 2011, 440:229-240.
doi: 10.1042/BJ20110641
[46] May A, Berger S, Hertel T, Kock M. The Arabidopsis thaliana phosphate starvation responsive gene AtPPsPase1 encodes a novel type of inorganic pyrophosphatase. Biochim Biophys Acta, 2011, 1810:178-185.
[47] Lebaudy A, Véry A, Sentenac H. K+ channel activity in plants: Genes, regulations and functions. FEBS Lett, 2007, 581:2357-2366.
pmid: 17418142
[48] Li J, Wu W H, Wang Y. Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+ stress. J Integr Plant Biol, 2017, 59:895-909.
doi: 10.1111/jipb.v59.12
[49] Lam H M, Chiao Y A, Li M W, Yung Y K, Ji S. Putative nitrogen sensing systems in higher plants. J Integr Plant Biol, 2006, 48:873-888.
doi: 10.1111/jipb.2006.48.issue-8
[1] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[2] ZHANG Xue-Lin, LI Xiao-Li, HE Tang-Qing, ZHANG Chen-Xi, TIAN Ming-Hui, WU Mei, ZHOU Ya-Nan, HAO Xiao-Feng, YANG Qing-Hua. Effects of arbuscular mycorrhizal fungi on grain yield and nitrogen uptake in maize [J]. Acta Agronomica Sinica, 2021, 47(8): 1603-1615.
[3] LIU Ya-Wen, ZHANG Hong-Yan, CAO Dan, LI Lan-Zhi. Prediction of drought and salt stress-related genes in rice based on multi-platform gene expression data [J]. Acta Agronomica Sinica, 2021, 47(12): 2423-2439.
[4] ZENG Jian, XU Xian-Chao, XU Yu-Fei, WANG Xiu-Cheng, YU Hai-Yan, FENG Bei-Bei, XING Guang-Nan. Utilization of dynamic transcriptomics analysis for candidate gene mining of 100-seed weight in soybean [J]. Acta Agronomica Sinica, 2021, 47(11): 2121-2133.
[5] Ming-Chuan FU,Hao LI,Yi-Zhen CHEN,Zhan-Ji LIU,Ren-Zhong LIU,Li-Guo WANG. Identification of co-expressed modules of cotton genes responding to Verticillium dahliae infection by WGCNA [J]. Acta Agronomica Sinica, 2020, 46(5): 668-679.
[6] LI Xu-Kai,LI Ren-Jian,ZHANG Bao-Jun. Identification of rice stress-related gene co-expression modules by WGCNA [J]. Acta Agronomica Sinica, 2019, 45(9): 1349-1364.
[7] Xiao-Hua XIAN,Jia WANG,Xin-Fu XU,Cun-Min QU,Kun LU,Jia-Na LI,Lie-Zhao LIU. Mining Yellow-seeded Micro Effect Loci in B. napus by Integrated GWAS and WGCNA Analysis [J]. Acta Agronomica Sinica, 2018, 44(8): 1105-1113.
[8] Da-Yong WEI, Yi-Xin CUI, Qing XIONG, Qing-Lin TANG, Jia-Qin MEI, Jia-Na LI, Wei QIAN. Identification of Candidate Genes for Seed Glucosinolate Content of Rapeseed by Using Genome-wide Association Mapping and Co-expression Networks Analysis [J]. Acta Agronomica Sinica, 2018, 44(05): 629-641.
[9] CHEN Dan-Mei,YUAN Ling,HUANG Jian-Guo,JI Jian-Hua,HOU Hong-Qian,LIU Yi-Ren. Influence of Long-term Fertilizations on Nutrients and Fungal Communities in Typical Paddy Soil of South China [J]. Acta Agron Sin, 2017, 43(02): 286-295.
[10] LIU Yan-Hui,WANG Shuang-Lei,LI Jin-Pu,QIN Du-Lin,ZHANG Mei-Ling,NIE Jun-Jun,MAO Li-Li,SONG Xian-Liang,SUN Xue-Zhen. Effects of Cotton Straw Returning on Soil Available Nutrients and Microbial Characteristics [J]. Acta Agron Sin, 2016, 42(07): 1037-1046.
[11] ZHANG Fan,SUI Ning,YU Chao-Ran,LIU Rui-Xian,YANG Chang-Qin,SONG Guang-Lei,MENG Ya-Li,ZHOU Zhi-Guo. Effects of Wheat Straw Returning and K Fertilizer Application on Yield and Nutrients Uptake of Cotton [J]. Acta Agron Sin, 2014, 40(12): 2169-2175.
[12] QIN Shu-Hao,CAO Li,ZHANG Jun-Lian,SHI Shang-Li,WANG Di. Effect of Rotation of Leguminous Plants on Soil Available Nutrients and Physical and Chemical Properties in Continuous Cropping Potato Field [J]. Acta Agron Sin, 2014, 40(08): 1452-1458.
[13] LI Wen-Xi,LU Jian-Wei,LU Jun-Ming,LI Xiao-Kun,DAI Zhing-Gang,YANG Juan. Effect of Fertilization on Yield of Forage Grass,Nutrient Uptake and Soil Properties under Sudangrass and Ryegrass Rotation Regime [J]. Acta Agron Sin, 2009, 35(7): 1350-1356.
[14] SHEN Jin-Xiong;LI Zhi-Yu;LIAO Xing;GUO Qing-Yuan. Effect of Phosphorus on Yield and Mineral Nutrient Absorption and Accumulation in Rape (Brassica napus L.) [J]. Acta Agron Sin, 2006, 32(08): 1231-1235.
Full text



No Suggested Reading articles found!