Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (9): 1349-1364.doi: 10.3724/SP.J.1006.2019.82061
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
LI Xu-Kai1,LI Ren-Jian2,ZHANG Bao-Jun2,*()
[1] | Larcher W . Physiological Plant Ecology. England: J R Etherington, 1996. pp 630-631. |
[2] | Krasensky J, Jonak C . Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot, 2012, 63:1593-1608. |
[3] | Abebe T, Guenzi A C, Martin B, Cushman J C . Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol, 2003,131:1748-1755. |
[4] | Richards R A . Defining selection criteria to improve yield under drought. Plant Growth Regul, 1996,20:157-166. |
[5] | Cushman J C, Bohnert H J . Genomic approaches to plant stress tolerance. Curr Opin Plant Biol, 2000,3:117-124. |
[6] | Jin J J, Zhang H, Zhang J F, Liu P P, Cao P J . Integrated transcriptomics and mtabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics, 2017,18:496. |
[7] | Duan M, Zhang R X, Zhu F G, Zhang Z Q, Gou L M, Wang T . A lipid-anchored NAC transcription factor is translocated into the nucleus and activates glyoxalase I expression during drought stress. Plant Cell, 2017,29:1748-1772. |
[8] | Zhang B, Horvath S . A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005,4:17. |
[9] | Goldberg D H, Victor J D, Gardner E P, Gardner D . Spike train analysis toolkit: enabling wider application of information-theoretic techniques to neurophysiology. Neuroinformatics, 2009,7:165-178. |
[10] | Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Bundschuh R, Blachly J S, Yan P . Quality control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014,13(S3):7-14. |
[11] | Bolger A M . Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics, 2014, 30:2114-2120. |
[12] | Kim D, Langmead B, Salzberg S L . HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 2015,12:357-360. |
[13] | Liao Y, Smyth G K, Shi W . featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014,30:923-930. |
[14] | Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinform, 2008,9:559. |
[15] | Robinson M D, McCarthy D J, Smyth G K . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010,26:139-140. |
[16] | Chen C J, Xia R, Chen H, He Y H . TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user- friendly interface. BioRxiv, 2018 [2018-10-31]. https://doi.org/10.1101/289660. |
[17] | Su G, Morris J H, Demchak B, Bader G D . Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics, 2014, 47: 8.13.1-8.13.24. |
[18] | Jin J, Zhang H, Kong L, Gao G, Luo J . A portal for the functional and evolutionary study of plant transcription factors. Nucl Acids Res, 2014,42:D1182-1187. |
[19] | Song J, Wei X J, Shao G N, Sheng Z, Chen D, Liu C, Jiao G, Xie L, Tang S P, Hu P S . The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol, 2014,84:301-314. |
[20] | Fang J, Chai C L, Qian Q, Li C, Tang J, Sun L, Huang Z, Guo X, Sun C, Liu M, Zhang Y, Lu Q, Wang Y, Lu C, Han B, Chen F, Cheng Z K, Chu C C . Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Plant J, 2008,54:177-189. |
[21] | Qin Y H, Shen X, Wang N L, Ding X P . Characterization of a novel cyclase-like gene family involved in controlling stress tolerance in rice. J Plant Physiol, 2015,181:30-41. |
[22] | Lu G W, Wu F Q, Wu W, Wang H J, Zheng X M, Zhang Y, Chen X, Zhou K, Jin M, Cheng Z, Li X Y, Jiang L, Wang H Y, Wan J M . Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. Plant J, 2014,78:468-480. |
[23] | Chen J Q, Meng X P, Zhang Y, Xia M, Wang X P . Over- expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett, 2008,30:2191-2198. |
[24] | Singh A, Sahi C, Grover A . Chymotrypsin protease inhibitor gene family in rice: genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes. Gene, 2009,428:9-19. |
[25] | Zhang X, Zhang B, Li M J, Cui Y C, Wang M L, Xia X J . OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis. J Plant Biol, 2016,59:271-281. |
[26] | Huang J, Wang M M, Bao Y M, Sun S J, Pan L J, Zhang H S . SRWD: a novel WD40 protein subfamily regulated by salt stress in rice(Oryza sativa L.). Gene, 2008,424:71-79. |
[27] | Liu S P, Zheng L Q, Xue Y H, Zhang Q, Wang L, Shou H X . Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J Plant Biol, 2010,53:444-452. |
[28] | Zhou L G, Liu Z C, Liu Y H, Kong D Y, Li T F, Chen L, Luo L J . A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep, 2016,6:30264. |
[29] | Xiong L Z, Yang Y N . Disease resistance and abiotic stress tolerance in rice areinversely modulated by an abscisicacid- inducible mitogen-activated protein kinase. Plant Cell, 2003,15:745-759. |
[30] | Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H Y, Tsutsumi N . OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst, 2005,80:135-139. |
[31] | Du H, Wu N, Chang Y, Li X H, Xiao J H, Xiong L Z . Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice. Plant Mol Biol, 2013,83:475-488. |
[32] | Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K . Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta, 2007,226:1007-1016. |
[33] | Zhang X, Zhang B, Li M J, Yin X M, Huang L F, Cui Y C, Wang M L, Xia X J . OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis. J Plant Biol, 2016,59:271-281. |
[34] | Huang J, Wang M M, Bao Y M, Sun S J, Pan L J, Zhang H S . A novel WD40 protein subfamily regulated by salt stress in rice(Oryza sativa L.). Gene, 2008,424:71-79. |
[35] | Hackenberg T, Juul T, Auzina A, Gwizdz S, Malolepszy A, Van Der Kelen K, Dam S, Bressendorff S, Lorentzen A, Roepstorff P, Lehmann Nielsen K, Jørgensen J E, Hofius D, Van Breusegem F, Petersen M, Andersen S U . Catalase and NO CATALASE ACTIVITY1 promote autophagy-dependent cell death in Arabidopsis. Plant Cell, 2013,25:4616-4626. |
[36] | 刘晓东, 王若仲, 焦彬彬, 代培红, 李月 . 拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应. 植物学报, 2016,51:586-593. |
Liu X D, Wang R Z, Jiao B B, Dai P H, Li Y . Indole acetic acid-amido aynthetase GH3-6 negatively regulates response to drought and salt in arabidopsis. Chin Bull Bot, 2016,51:586-593 (in Chinese with English abstract). | |
[37] | Shafi A, Dogra V, Gill T, Ahuja P S, Sreenivasulu Y . Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One, 2014,9:e110302. |
[38] | Wrzaczek M, Brosché M, Salojärvi J, Kangasjärvi S, Idänheimo N, Mersmann S, Robatzek S, Karpiński S, Karpińska B, Kangasjärvi J . Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol, 2010,10:95. |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400. |
[3] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[4] | ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. |
[5] | YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. |
[6] | YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050. |
[7] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[8] | YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128. |
[9] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[10] | WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151. |
[11] | WANG Xia, YIN Xiao-Yu, Yu Xiao-Ming, LIU Xiao-Dan. Effects of drought hardening on contemporary expression of drought stress memory genes and DNA methylation in promoter of B73 inbred progeny [J]. Acta Agronomica Sinica, 2022, 48(5): 1191-1198. |
[12] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[13] | WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261. |
[14] | KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. |
[15] | CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790. |
|