Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (9): 1338-1348.doi: 10.3724/SP.J.1006.2019.84172

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping of oleic acid, linoleic acid and linolenic acid contents in Brassica napus L. using DH and IF2 populations

MENG Jiang-Yu1,FU Ying1,2,HE Ya-Jun1,*(),QIAN Wei1   

  1. 1 College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
    2 Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
  • Received:2018-12-17 Accepted:2019-05-12 Online:2019-09-12 Published:2019-06-10
  • Contact: Ya-Jun HE E-mail:hyj790124@163.com
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2016YFD0100202);the National Natural Science Foundation of China(31671729);Chongqing Research Program of Basic Research and Frontier Technology(cstc2017jcyjAX0391)

Abstract:

DH and IF2 populations, consisting of 261 and 234 lines respectively, constructed using the German winter rapeseed cultivar ‘Express’ (female) and the Chinese semi-winter line ‘SWU07’ (male), were used to detect QTLs related to oleic acid, linoleic acid and linolenic acid contents in different years. A total of 71 QTLs were detected in DH population in four-year environment and 4 QTLs in IF2 population in two-year environment. After eliminating the overlapped QTLs detected in different years or different populations, totally 51 QTLs for the three traits were obtained, 15 QTLs of which were persistently detected in more than two years. These 51 QTLs were located on 13 linkage groups. Among them, 18 QTLs related to oleic acid content were located on A01, A02, A04, A05, A07, A09, and C01, respectively, explaining phenotypic variation ranging from 3.44% to 13.97%, 12 QTLs related to linoleic acid content were located on A02, A06, A09, C01, and C02, respectively, explaining phenotypic variation ranging from 3.84% to 19.51%, and 21 QTLs related to linolenic acid content were located on A01, A02, A03, A04, A05, A08, A09, C01, C02, C03, and C06, respectively, explaining phenotypic variation from 2.86% to 11.91%. These results provide more genetic information for the improvement of fatty acid quality in rapeseed breeding.

Key words: Brassica napus, oleic acid, linoleic acid, linolenic acid, QTL

Table 1

Analysis of OAC, Llei, and Llen contents in parental lines (%)"

性状 Trait 油酸 OAC 亚油酸 Llei 亚麻酸 Llen
Express 61.89 19.97 7.70
SWU07 64.67 16.80 6.88
P t-test 0.016 0.018 0.166

Table 2

Analysis of OAC, Llei, and Llen contents in DH and IF2 populations (%)"

年份
Year
性状
Trait
DH群体 DH population IF2群体 IF2 population
最小值
Min.
最大值
Max.
平均值
Average
标准差
SD
最小值
Min.
最大值
Max.
平均值
Average
标准差
SD
2010 油酸 OAC 49.30 67.10 59.11 3.42 44.83 66.24 59.63 3.12
亚油酸 Llei 14.50 25.30 19.68 2.13 15.77 24.14 19.17 1.82
亚麻酸 Llen 5.44 11.08 8.28 1.06 6.43 11.08 8.36 0.88
2011 油酸 OAC 49.72 77.45 64.60 3.66 59.32 72.53 65.16 2.27
亚油酸 Llei 9.05 23.41 16.33 1.67 13.33 18.87 15.67 1.03
亚麻酸 Llen 4.77 11.40 6.71 0.84 5.21 7.71 6.38 0.54
2012 油酸 OAC 50.94 71.15 60.88 3.34 - - - -
亚油酸 Llei 15.14 25.83 19.81 2.19 - - - -
亚麻酸 Llen 5.19 10.92 8.47 0.97 - - - -
2013 油酸 OAC 52.00 71.37 63.12 3.41 - - - -
亚油酸 Llei 13.41 24.02 18.05 2.15 - - - -
亚麻酸 Llen 5.25 11.28 8.50 1.06 - - - -

Fig. 1

Frequency distribution of OAC, Llei, and Llen contents in DH and IF2 populations"

Table 3

Correlation analysis of the same trait in different years in DH and IF2 populations"

年份
Year
性状
Trait
DH群体 DH population IF2群体 IF2 population
2010 2011 2012 2013 2010 2011
油酸 OAC 2010
2011 0.4549** 0.3476**
2012 0.5305** 0.5495**
2013 0.4068** 0.5135** 0.5630**
亚油酸 Llei 2010
2011 0.5589** 0.4320**
2012 0.5549** 0.5663**
2013 0.4919** 0.5887** 0.5613**
亚麻酸 Llen 2010
2011 0.4686** 0.2548*
2012 0.5200** 0.4270**
2013 0.5463** 0.4194** 0.6067**

Table 4

Correlation analysis of different traits in the same year in DH and IF2 populations"

年份
Year
性状
Trait
油酸
OAC
亚油酸
Llei
亚麻酸
Llen
2010 油酸 OAC -0.7018** -0.7200**
亚油酸 Llei -0.6353** 0.6839**
亚麻酸 Llen -0.6510** 0.6791**
2011 油酸 OAC -0.5899** -0.4682**
亚油酸 Llei -0.6439** 0.5080**
亚麻酸 Llen -0.6449** 0.6335**
2012 油酸 OAC
亚油酸 Llei -0.5119**
亚麻酸 Llen -0.6858** 0.5735**
2013 油酸 OAC
亚油酸 Llei -0.6612**
亚麻酸 Llen -0.5695** 0.6210**

Table 5

Putative QTLs for OAC detected in DH and IF2 populations"

QTL名称
QTL name
位置
Position
加性效应
Additive
贡献率
R2(%)
LOD 值
LOD score
置信区间
Confidence interval
qA01-OAC-2010DH-1 10.31 -0.90 6.83 5.82 9.4-11.1
qA01-OAC-2010DH-2 24.21 -0.87 6.36 5.03 22.6-27.5
qA09-OAC-2010DH-3 48.21 0.79 5.02 4.30 45.3-49.5
qA09-OAC-2010DH-4 53.81 0.68 3.44 2.95 51.9-56.7
qA09-OAC-2010DH-5 76.91 -1.29 12.85 9.41 75.9-81.0
qA09-OAC-2010DH-6 82.41 -1.17 10.84 8.48 81.0-87.7
qA09-OAC-2010DH-7# 91.51 -1.04 8.96 6.33 88.5-98.5
qC01-OAC-2010DH-8# 27.41 -1.38 13.97 10.52 25.4-28.7
qC01-OAC-2010DH-9# 30.71 -1.41 13.72 10.91 29.9-31.0
qA09-OAC-2011DH-10# 94.51 -0.81 4.79 2.65 89.9-98.8
qC01-OAC-2011DH-11# 23.91 -1.09 6.88 4.62 22.6-24.4
qC01-OAC-2011DH-12# 29.31 -1.14 7.91 5.45 28.0-29.9
qA02-OAC-2012DH-13 42.71 0.80 5.52 2.95 41.6-43.4
qA02-OAC-2012DH-14 47.01 0.82 5.70 3.06 44.9-51.0
qA04-OAC-2012DH-15 40.51 -0.91 7.15 3.80 36.4-46.6
qA09-OAC-2012DH-16 70.21 -0.88 5.88 3.42 68.1-70.8
qC01-OAC-2012DH-17 12.71 -0.94 6.30 3.22 12.1-13.7
qC01-OAC-2012DH-18# 23.61 -1.34 11.22 5.33 22.6-23.9
qC01-OAC-2012DH-19# 30.71 -1.21 9.15 4.68 29.3-31.4
qA09-OAC-2013DH-20# 91.51 -0.91 7.02 3.97 89.6-98.8
qC01-OAC-2013DH-21# 25.41 -0.78 4.35 3.00 25.1-28.0
qA02-OAC-2010IF2-22 18.21 -0.91 5.78 2.63 16.2-19.4
qA05-OAC-2011IF2-23 108.51 0.51 4.94 2.50 90.3-115.5
qA07-OAC-2011IF2-24 5.01 0.63 6.42 3.64 1.1-8.1

Fig. 2

QTLs for OAC, Llei, and Llen on different linkage groups"

Table 6

Putative QTL for Llei detected in DH population"

QTL名称
QTL name
位置
Position
加性效应
Additive
贡献率
R2 (%)
LOD值
LOD score
置信区间
Confidence interval
qA09-Llei-2010DH-1 38.21 -0.42 3.84 2.93 34.8-39.5
qA09-Llei-2010DH-2# 68.51 0.77 11.85 8.61 68.1-69.7
qA09-Llei-2010DH-3# 77.81 0.87 15.76 11.77 76.5-81.0
qA09-Llei-2010DH-4# 83.41 0.77 12.24 8.06 81.4-88.5
qC01-Llei-2010DH-5# 26.41 0.74 10.57 7.35 26.0-28.6
qA06-Llei-2011DH-6 38.61 -0.34 4.00 2.83 34.6-41.2
qA09-Llei-2011DH-7# 78.81 0.64 11.61 8.45 77.2-81.2
qA09-Llei-2011DH-8# 94.51 0.48 7.65 4.26 88.5-98.5
qC01-Llei-2011DH-9 23.91 0.50 7.43 5.48 22.6-24.3
qA09-Llei-2012DH-10# 69.71 0.83 13.69 6.52 68.4-72.0
qA09-Llei-2012DH-11# 76.91 0.98 19.51 9.03 75.9-77.8
qA09-Llei-2012DH-12# 96.51 0.72 10.28 4.23 88.5-98.7
qC01-Llei-2012DH-13 6.01 0.55 4.98 2.54 0-12.1
qA02-Llei-2013DH-14 13.21 0.57 5.70 4.16 10.3-18.0
qA09-Llei-2013DH-15# 69.51 0.58 7.23 3.71 68.9-70.8
qA09-Llei-2013DH-16# 77.81 1.05 13.51 9.28 76.6-80.8
qA09-Llei-2013DH-17# 83.41 0.92 12.34 6.68 81.4-88.0
qC01-Llei-2013DH-18 16.11 0.51 4.68 3.31 14.7-17.2
qC01-Llei-2013DH-19# 25.41 0.63 7.33 5.29 25.1-28.0
qC02-Llei-2013DH-20 4.01 -0.51 5.37 3.12 0-8.2

Table 7

Putative QTL for Llen detected in DH and IF2 populations"

QTL名称
QTL name
位置
Position
加性效应
Additive
贡献率
R2 (%)
LOD值
LOD score
置信区间
Confidence interval
qA02-Llen-2010DH-1 38.11 -0.30 7.53 6.04 37.8-38.6
qA02-Llen-2010DH-2# 44.21 -0.33 9.51 7.88 43.4-44.9
qA08-Llen-2010DH-3 4.01 0.22 3.87 2.82 0-18.8
qA09-Llen-2010DH-4 68.51 0.25 5.60 4.59 68.1-69.7
qA09-Llen-2010DH-5 79.01 0.30 8.05 6.68 76.0-81.2
qC01-Llen-2010DH-6# 23.91 0.41 11.91 9.39 23.3-24.1
qC01-Llen-2010DH-7# 29.91 0.39 10.84 8.84 29.3-31.5
qC03-Llen-2010DH-8 17.61 0.20 2.86 2.62 13.3-20.8
qC06-Llen-2010DH-9 2.01 0.26 5.66 4.32 0-6.6
qC06-Llen-2010DH-10# 7.61 0.23 4.38 3.73 6.6-14.8
qA01-Llen-2011DH-11 63.01 -0.18 3.69 2.63 54.3-69.2
qA03-Llen-2011DH-12# 16.91 0.22 6.77 3.99 15.5-21.1
qA03-Llen-2011DH-13 27.11 0.21 5.95 4.52 25.2-29.0
qA04-Llen-2011DH-14 10.01 -0.16 3.52 2.72 0-20.4
qA05-Llen-2011DH-15 28.81 -0.24 7.92 5.81 25.8-33.1
qA05-Llen-2011DH-16 37.71 -0.18 4.65 3.34 35.5-39.7
qC01-Llen-2011DH-17# 23.91 0.21 4.82 3.61 22.8-24.5
qC01-Llen-2011DH-18 29.31 0.18 3.75 2.85 28.7-30.7
qC03-Llen-2011DH-19 4.01 -0.20 5.43 3.32 0-8.2
qC02-Llen-2011DH-20# 15.21 -0.21 6.32 4.49 9.7-22.8
qC06-Llen-2011DH-21# 7.61 0.17 3.76 2.99 6.6-18.8
qC01-Llen-2012DH-22# 23.61 0.30 6.96 3.23 17.4-23.9
qC01-Llen-2012DH-23# 29.91 0.34 9.16 4.68 28.0-31.1
qC01-Llen-2012DH-24 37.41 0.27 6.92 3.45 36.7-39.2
qC02-Llen-2012DH-25# 12.21 -0.26 6.89 2.73 8.2-14.2
qA02-Llen-2013DH-26# 43.41 -0.27 6.35 4.66 42.2-44.9
qA03-Llen-2013DH-27# 14.91 0.25 5.32 3.48 1.0-20.8
qC01-Llen-2013DH-28# 23.91 0.30 6.48 4.62 22.8-24.4
qC02-Llen-2013DH-29 5.01 -0.34 9.20 4.97 0.9-8.2
qC02-Llen-2013DH-30# 11.21 -0.30 8.07 4.83 8.2-16.9
qC02-Llen-2011IF2-31# 8.21 0.15 5.14 2.93 4.3-13.0
[1] 贺慧, 虢慧, 官春云 . 甘蓝型油菜BnACP5基因克隆及表达分析. 华北农学报, 2018,33(1):96-101.
He H, Guo H, Guan C Y . Cloning and expression analysis of BnACP5 in Brassica napus. Acta Agric Boreali-Sin, 2018,33(1):96-101 (in Chinese with English abstract).
[2] 尚国霞 . 甘蓝型油菜高油酸性状的遗传研究及近红外检测模型的建立. 西南大学硕士学位论文, 重庆, 2010.
Shang G X . Study on Inheritance and NIRS Model Establishing of High Oleic Acid Content in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2010 (in Chinese with English abstract).
[3] Simopoulos A P . The importance of the omega-6/omega-3 fatty acid ratio in cardiovascu1ar disease and other chronic diseases. Exp Biol Med, 2008,233:674-688.
[4] 刘后利 . 油菜的遗传与育种. 上海: 上海科学技术出版社, 1985. pp 141-171.
Liu H L. Inheritance and Breeding on Rapeseed. Shanghai: Shanghai Scientific & Technical Publishers, 1985. pp 141-171(in Chinese).
[5] 官春云 . 油菜高油酸遗传育种研究进展. 作物研究, 2006, (1):1-8.
Guan C Y . Advances on rape breeding for higher content of oleic acid. Crop Res, 2006, (1):1-8 (in Chinese with English abstract).
[6] 王继变, 陈洪成, 陈玉波, 张晓玉, 徐海明, 赵坚义 . 通过条件QTL定位分析油菜不同脂肪酸组分对含油量性状的影响. 浙江大学学报(农业与生命科学版), 2013,39:504-512.
Wang J B, Chen H C, Chen Y B, Zhang X Y, Xu H M, Zhao J Y . Molecular dissection of oil content with respect to fatty acid compositions by conditional QTL analysis in oilseed rape. J Zhejiang Univ(Agric Life Sci), 2013, 39:504-512 (in Chinese with English abstract).
[7] Tanhuanpää P, Vilkki J, Vihinen M . Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape(Brassica rapa ssp. oleifera). Mol Breed, 1998,4:543-550.
[8] Schierholt A, Becker H C, Ecke W . Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet, 2000,101:897-901.
[9] Hu X, Sullivan-Gilbert M, Gupta M . Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola(Brassica napus L.). Theor Appl Genet, 2006,113:497-507.
[10] 张洁夫, 戚存扣, 浦惠明, 陈松, 陈锋, 高建芹, 陈新军, 顾慧, 傅寿仲 . 甘蓝型油菜主要脂肪酸组成的QTL定位. 作物学报, 2008,34:54-60.
Zhang J F, Qi C K, Pu H M, Chen S, Chen F, Gao J Q, Chen X J, Gu H, Fu S Z . QTL identification for fatty acid content in rapeseed (Brassica napus L.). Acta Agron Sin, 2008,34:54-60 (in Chinese with English abstract).
[11] 杨燕宇, 杨盛强, 陈哲红, 官春云, 陈社员, 刘忠松 . 无芥酸甘蓝型油菜十八碳不饱和脂肪酸含量的QTL定位. 作物学报, 2011,37:1342-1350.
Yang Y Y, Yang S Q, Chen Z H, Guan C Y. Chen S Y. Liu Z S . QTL analysis of 18-C unsaturated fatty acid contents in zero-erucic rapeseed (Brassica napus L.). Acta Agron Sin, 2011,37:1342-1350 (in Chinese with English abstract).
[12] 蔡东芳, 张书芬, 肖英杰, 吴江生, 刘克德 . 甘蓝型油菜油酸、亚油酸和亚麻酸含量的关联分析. 中国油料作物学报, 2016,38:397-405.
Cai D F, Zhang S F, Xiao Y J, Wu J S, Liu K D . Association mapping of oleic acid, linoleic acid and linolenic acid in Brassica napus. Chin J Oil Crop Sci, 2016,38:397-405 (in Chinese with English abstract).
[13] Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y . Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet, 2012,125:715-729.
[14] Fu Y, Lu K, Qian L W, Mei J Q, Wei D Y, Peng X, Xu X F, Li J N, Frauen M, Dreyer F, Snowdon R J, Qian W . Development of genic cleavage markers in association with seed glucosinolate content in canola. Theor Appl Genet, 2015,128:1029-1037.
[15] Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q F . Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid. Proc Natl Acad Sci USA, 2003,100:2574-2579.
[16] 高建芹, 张洁夫, 浦惠明, 戚存扣, 傅寿仲 . 近红外光谱法在测定油菜籽含油量及脂肪酸组成中的应用. 江苏农业学报, 2007,23(3):189-195.
Gao J Q, Zhang J F, Pu H M, Qi C K, Fu S Z . Analysis of oil, oleic acid and erucic acid contents in rapeseed by near infrared reflectance spectroscopy (NIRS). Jiangsu J Agric Sci, 2007,23(3):189-195 (in Chinese with English abstract).
[17] Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang T T, Zhang T Z . QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica, 2006,152:367-378.
[18] Churchill G A, Doerge R W . Empirical threshold values for quantitative trait mapping. Genetics, 1994,138:963-971.
[19] 刘列钊, 李加纳 . 利用甘蓝型油菜高密度SNP遗传图谱定位油酸、亚麻酸及芥酸含量QTL位点. 中国农业科学, 2014,47:24-32.
Liu L Z, Li J N . QTL mapping of oleic acid, linolenic acid and erucic acid content in Brassica napus by using the high density SNP genetic map. Sci Agric Sin , 2014,47:24-32 (in Chinese with English abstract).
[20] 高建芹, 浦惠明, 戚存扣, 张洁夫, 龙卫华, 陈新军, 傅寿仲 . 高含油量油菜种子和果皮油份积累及主要脂肪酸的动态变化. 中国油料作物学报, 2009,31:173-179.
Gao J Q, Pu H M, Qi C K, Zhang J F, Long W H, Chen X J, Fu S Z . Dynamics of oil and major fatty acids accumulation in seed and silique husk of high oil content rape seed. Chin J Oil Crop Sci, 2009,31:173-179 (in Chinese with English abstract).
[21] 李成磊, 付三雄, 戚存扣 . 甘蓝型油菜种子发育过程中主要脂肪酸的积累及相关分析. 江苏农业学报, 2011,27:258-263.
Li C L, Fu S X, Qi C K . Accumulation and correlation analysis of main fatty acids in developing seeds of Brassica napus L. Jiangsu J Agric Sci, 2011,27:258-263 (in Chinese with English abstract).
[22] 毛龙 . 甘蓝型油菜SNP遗传连锁图谱的构建及品质性状QTL定位. 华中农业大学硕士学位论文, 湖北武汉, 2013.
Mao L . Construction of a Genetic Linkage Map Using SNP Array and QTL Analysis of Quality Traits in Brassica napus. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract).
[23] Schierholt A, Rücker B, Becker H C . Inheritance of high oleic acid mutations in winter oilseed rape (Brassica napus, L.). Crop Sci, 2001,41:1444-1449.
[24] 周永明, 刘后利 . 甘蓝型油菜种子中几种主要脂肪酸含量的遗传. 作物学报, 1987,13:1-10.
Zhou Y M, Liu H L . Inheritance of fatty acid content in rapeseed (Brassica napus L.). Acta Agron Sin, 1987,13:1-10 (in Chinese with English abstract).
[25] 刘定富, 刘后利 . 甘蓝型油菜脂肪酸成分的基因作用形式和效应. 作物学报, 1990,16:193-199.
Liu D F, Liu H L . Gene action and effect of fatty acid in Brassica napus L. Acta Agron Sin, 1990,16:193-199 (in Chinese with English abstract).
[26] 戚存扣, 盖钧镒, 章元明 . 甘蓝型油菜芥酸含量的主基因+多基因遗传. 遗传学报, 2001,28:182-187.
Qi C K, Gai J Y, Zhang Y M . Major gene plus poly-gene inheritance of erucic acid content in Brassica napus L. Acta Genet Sin, 2001,28:182-187 (in Chinese with English abstract).
[27] Burns M J, Barnes S R, Bowman J G, Clarke M H E, Werner C P, Kearsey M J . QTL analysis of an intervarietal set of substitution lines in Brassica napus:(i) Seed oil content and fatty acid composition. Heredity, 2003,90:39-48.
[28] Zhao J Y, Dimov Z, Becker H C, Ecke W, Möllers C . Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breed, 2008,21:115-125.
[29] Scheffler J A, Sharpe A G, Schmidt H, Sperling P, Parkin I A P, Lühs W, Lydiate D J, Heinz E . Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet, 1997,94:583-591.
[30] Mikolajczy K, Dabert M, Karlowski W M, Spasibionek S, Nowakowska J, Cegielska-Taras T, Bartkowiak-Broda I . Allele-specific SNP markers for the new low linolenic mutant genotype of winter oilseed rape. Plant Breed, 2009,129:465-580.
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[5] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[6] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[7] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[8] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[9] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[10] ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490.
[11] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[12] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[13] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[14] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[15] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!