Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (05): 629-641.doi: 10.3724/SP.J.1006.2018.00629
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Next Articles
Da-Yong WEI1,2,3(), Yi-Xin CUI3, Qing XIONG4, Qing-Lin TANG1,2, Jia-Qin MEI3, Jia-Na LI3, Wei QIAN3,*()
[1] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014, 345: 950-953 |
[2] | Nagaharu U.Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar bode of fertilization. Jpn J Bot, 1935, 7: 389-452 |
[3] | 刘后利. 油菜遗传育种学. 北京: 中国农业大学出版社, 2000. pp 146-154 |
Liu H L.Genetics and Breeding in Rrapeseed. Beijing: Chinese Agricultural Universitatis Press, 2000. pp 146-154 (in Chinese) | |
[4] |
Mithen R.Glucosinolates-biochemistry, genetics and biological activity.Plant Growth Regul, 2001, 34: 91-103
doi: 10.1023/A:1013330819778 |
[5] |
Fahey J W, Zalcmann A T, Talalay P.The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.Phytochemistry, 2001, 56: 5-51
doi: 10.1016/S0031-9422(00)00316-2 |
[6] |
Halkier B A, Gershenzon J.Biology and biochemistry of glucosinolates.Annu Rev Plant Biol, 2006, 57: 303-333
doi: 10.1146/annurev.arplant.57.032905.105228 pmid: 16669764 |
[7] |
Bak S, Feyereisen R.The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis.Plant Physiol, 2001, 127: 108-118
doi: 10.1104/pp.127.1.108 pmid: 11553739 |
[8] |
Grubb C D, Abel S.Glucosinolate metabolism and its control.Trends Plant Sci, 2006, 11: 89-100
doi: 10.1016/j.tplants.2005.12.006 pmid: 16406306 |
[9] |
Mikkelsen M D, Naur P, Halkier B A.Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J, 2004, 37: 770-777
doi: 10.1111/j.1365-313X.2004.02002.x pmid: 14871316 |
[10] |
Wittstock U, Halkier B A.Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. Catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem, 2000, 275: 14659-14666
doi: 10.1074/jbc.275.19.14659 pmid: 10799553 |
[11] | Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires J C, Paterson A H, Chalhoub B, Wang B, Hayward A, Sharpe A G, Park B S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King G J, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin I A, Batley J, Kim J S, Just J, Li J, Xu J, Deng J, Kim J A, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links M G, Zhao M, Jin M, Ramchiary N, Drou N, Berkman P J, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S J, Choi S R, Lee T H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z.The genome of the mesopolyploid crop species Brassica rapa. Nat Genet, 2011, 43: 1035-1039 |
[12] | Liu S Y, Liu Y M, Yang X H, Tong C B, Edwards D, Parkin I A P, Zhao M X, Ma J X, Yu J Y, Huang S M, Wang X Y, Wang J Y, Lu K, Fang Z Y, Bancroft I, Yang T J, Hu Q, Wang X F, Yue Z, Li H J, Yang L F, Wu J, Zhou Q, Wang W X, King G J, Pires J C, Lu C X, Wu Z Y, Sampath P, Wang Z, Guo H, Pan S K, Yang L M, Min J M, Zhang D, Jin D C, Li W S, Belcram H, Tu J X, Guan M, Qi C K, Du D Z, Li J N, Jiang L C, Batley J, Sharpe A G, Park B S, Ruperao P, Cheng F, Waminal N E, Huang Y, Dong C H, Wang L, Li J P, Hu Z Y, Zhuang M, Huang Y, Huang J Y, Shi J Q, Mei D S, Liu J, Lee T H, Wang J P, Jin H Z, Li Z Y, Li X, Zhang J F, Xiao L, Zhou Y M, Liu Z S, Liu X Q, Qin R, Tang X, Liu W B, Wang Y P, Zhang Y Y, Lee J, Kim H H, Denoeud F, Xu X, Liang X M, Hua W, Wang X W, Wang J, Chalhoub B, Paterson A H. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun, 2014, 5: 3930 |
[13] |
Fu Y, Lu K, Qian L W, Mei J Q, Wei D Y, Peng X H, Xu X F, Li J N, Frauen M, Dreyer F, Snowdon R J, Qian W.Development of genic cleavage markers in association with seed glucosinolate content in canola.Theor Appl Genet, 2015, 128: 1029-1037
doi: 10.1007/s00122-015-2487-z pmid: 25748114 |
[14] | Howell P M, Sharpe A G, Lydiate D J.Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 2003, 46: 454-460 |
[15] |
Zhao J, Meng J.Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed, 2003, 122: 19-23
doi: 10.1046/j.1439-0523.2003.00784.x |
[16] |
Li F, Chen B Y, Xu K, Wu J F, Song W L, Bancroft I, Harper A L, Trick M, Liu S Y, Gao G Z, Wang N, Yan G X, Qiao J W, Li J, Li H, Xiao X, Zhang T Y, Wu X M.Genome-wide association sudy dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res, 2014, 21: 355-367
doi: 10.1093/dnares/dsu002 pmid: 24510440 |
[17] | Qu C M, Li S M, Duan X J, Fan J H, Jia L D, Zhao H Y, Lu K, Li J N, Xu X F, Wang R.Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L. Genes, 2015, 6: 1215-1229 |
[18] |
Harper A L, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I.Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol, 2012, 30: 798-802
doi: 10.1038/nbt.2302 pmid: 20 |
[19] | Lu G, Harper A L, Trick M, Morgan C, Fraser F, O'Neill C, Bancroft I. Associative transcriptomics study dissects the genetic architecture of seed glucosinolate content in Brassica napus. DNA Res, 2014, 21: 613-625 |
[20] |
Langfelder P, Horvath S.WGCNA: an R package for weighted correlation network analysis.BMC Bioinformatics, 2008, 9: 559
doi: 10.1186/1471-2105-9-559 |
[21] |
宋长新, 雷萍, 王婷. 基于WGCNA算法的基因共表达网络构建理论及其R软件实现. 基因组学与应用生物学, 2013, 32: 135-141
doi: 10.3969/gab.032.000135 |
Song C X, Lei P, Wang T.Gene co-expression network analysis ased onWGCNA algorithm-theory and implementation in R Software.Genom Appl Biol, 2013, 32: 135-141 (in Chinese with English abstract)
doi: 10.3969/gab.032.000135 |
|
[22] |
Farber C R.Systems-level analysis of genome-wide association data.G3-Genes Genom Genet, 2013, 3: 119-129
doi: 10.1534/g3.112.004788 pmid: 23316444 |
[23] | SAS V9.13 software.SAS Institute, Cary, NC, USA, 2005 |
[24] |
Li H, Durbin R.Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics, 2009, 25: 1754-1760
doi: 10.1093/bioinformatics/btp324 |
[25] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data.Genome Res, 2010, 20: 1297-1303
doi: 10.1101/gr.107524.110 |
[26] |
Aulchenko Y S, Ripke S, Isaacs A, Van Duijn C M. GenABEL: an R library for genome-wide association analysis.Bioinformatics, 2007, 23: 1294-1296
doi: 10.1093/bioinformatics/btm108 pmid: 17384015 |
[27] |
Merk H L, Yarnes S C, Van Deynze A.Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm.J Am Soc Hort Sci, 2012, 137: 427-437
doi: 10.1002/aur.1564 |
[28] |
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimentel H, Salzberg S L, Rinn J L, Pachter L.Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks.Nat Protoc, 2012, 7: 562-578
doi: 10.1038/nprot.2012.016 |
[29] |
Li Q, Yang X H, Xu S T, Cai Y, Zhang D L, Han Y J, Li L, Zhang Z X, Gao S B, Li J S, Yan J B.Genome-wide association studies identified three independent polymorphisms associated with alpha-tocopherol content in maize kernels.PLoS One, 2012, 7: e36807
doi: 10.1371/journal.pone.0036807 pmid: 3352922 |
[30] |
Kroymann J, Textor S, Tokuhisa J G, Falk K L, Bartram S, Gershenzon J, Mitchell-Olds T.A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway.Plant Physiol, 2001, 127: 1077-1088
doi: 10.1104/pp.010416 |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[4] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[5] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[6] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[7] | KONG Chui-Bao, PANG Zi-Qin, ZHANG Cai-Fang, LIU Qiang, HU Chao-Hua, XIAO Yi-Jie, YUAN Zhao-Nian. Effects of arbuscular mycorrhizal fungi on sugarcane growth and nutrient- related gene co-expression network under different fertilization levels [J]. Acta Agronomica Sinica, 2022, 48(4): 860-872. |
[8] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[9] | WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769. |
[10] | ZHAO Hai-Han, LIAN Wang-Min, ZHAN Xiao-Deng, XU Hai-Ming, ZHANG Ying-Xin, CHENG Shi-Hua, LOU Xiang-Yang, CAO Li-Yong, HONG Yong-Bo. Genetic dissection of the bacterial blight disease resistance in super hybrid rice RILs using genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(1): 121-137. |
[11] | ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39. |
[12] | WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510. |
[13] | ZENG Wei-Ying, LAI Zhen-Guang, SUN Zu-Dong, YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min. Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq [J]. Acta Agronomica Sinica, 2021, 47(8): 1460-1471. |
[14] | GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214. |
[15] | MA Juan, CAO Yan-Yong, LI Hui-Yong. Genome-wide association study of ear cob diameter in maize [J]. Acta Agronomica Sinica, 2021, 47(7): 1228-1238. |
|